一篇有关DNA甲基化的表观遗传学英文文献,与大家共勉

一篇有关DNA甲基化的表观遗传学英文文献,与大家共勉
一篇有关DNA甲基化的表观遗传学英文文献,与大家共勉

Epigenetics 4:6, 394-398; August 16, 2009; ? 2009 Landes Bioscience

REsEARch pApER

Introduction

Many health policies worldwide, including the US Department of Health and Human Services Public Health Service Centers for Disease Control,1 UK National Service Framework for Maternity Services 2 and National Institute for Health and Clinical Excellence guidance on Antenatal Care 3 highlight the critical importance of folic acid supplementation during pregnancy in the prevention of neural tube defects. However, supplementation with this vitamin has also been shown to have a range of other benefits. For example, it is implicated in reduction of the risk of low birth weight (with its associated sequelae)1-4 and has also been shown to be essential for normal development.5

A major effect of maternal folic acid intake duing pregnancy on the unborn child is thought to be through its role as an inter-mediate in the one carbon pathway.4,5 A reduction in folate sup-ply or in its conversion to one carbon methyl donors can lead to chromosomal strand breaks and altered methylation of spe-cific regions of the DNA (CpG islands).6 In monocytes, animal models, primary tumour cells and cell lines, the effect of folate and/or methyl group depletion on methylation-associated change has received considerable attention. In these studies, a near uni-versal finding of an overall decrease in genomic methylation has been identified, frequently accompanied by inappropriate gene-specific hypo- or hyper-methylation at promoter-associated CpG

islands.6-8 Thus, the bioavailability of folate and its one-carbon intermediaries to the fetus, particularly during the first trimes-ter of pregnancy, is a key component in “setting” the epigenetic programme through alteration of methylation patterns across the genome.

While these studies provide convincing data of the effect of folate on fetal genome-wide DNA methylation, much of the data is derived from animal or in vitro models. Furthermore, the mechanisms by which folate supplementation influences fetal methylation patterns and growth in humans are poorly under-stood. In this preliminary study, we examined the relationship between supplemental folic acid intake during pregnancy, blood folate parameters and genome-wide methylation levels (using methylation of long interspersed nucleotide element-1, LINE-1, sequences as a surrogate). Importantly, we present data on these relationships, for the first time, in human cord blood.

Results

Associations between folate-related parameters and LINE-1 methylation. In order to determine which of the folate-related parameters were the best predictors of LINE-1 methylation, we examined potential correlations between LINE-1 methylation and folic acid supplementation/blood folate indices. The selected indicator of genome-wide methylation, LINE-1, did not deviate

*Correspondence to: William E. Farrell; Email: w.e.farrell@https://www.360docs.net/doc/bb15787758.html, Submitted: 08/06/09; Accepted: 08/18/09

Previously published online: https://www.360docs.net/doc/bb15787758.html,/journals/epigenetics/article/9766LINE-1 DNA methylation is inversely correlated with

cord plasma homocysteine in man

A preliminary study

Anthony A. Fryer,1 Tamer M. Nafee,2 Khaled M.K. Ismail,2 William D. carroll,3 Richard D. Emes 1 and William E. Farrell 1,*

1

Institute of Science and Technology in Medicine; 2Academic Unit of Obstetrics and Gynaecology; Keele University Medical School; University Hospital of North

Staffordshire; Stoke-on-Trent, Staffordshire UK; 3Department of Paediatrics; Derbyshire Children’s Hospital; Derby, UK

Keywords: LINE-1, methylation, homocysteine, fetal, folic acid, cord blood

Abbreviations: LINE-1, long interspersed nucleotide element-1; HPLC, high performance liquid chromatography

Folic acid supplementation during pregnancy has known beneficial effects. It reduces risk of neural tube defects and low birth weight. Folate and other one-carbon intermediates might secure these clinical effects via DNA methylation. however, most data on the effects of folate on the epigenome is derived from animal or in vitro models. We examined the relationship be-tween cord blood methylation and maternal folic acid intake, cord blood folate and homocysteine using data from 24 pregnant women. Genome-wide methylation was determined by the level of methylation of LINE-1 repeats using pyrosequencing. We show that cord plasma homocysteine (p = 0.001, r = -0.688), but not serum folate or maternal folic acid intake, is inverse correlated with LINE-1 methylation. This remained significant after correction for potential confounders (p = 0.004). These data indicate that levels of folate-associated intermediates in cord blood during late pregnancy have significant consequences for the fetal epigenome.

REsEARch pApER

BRIEF REpoRT

Discussion

These data show that cord plasma homocysteine concentration is significantly inversely correlated with genome-wide methylation, as assessed using mean LINE-1 methylation, in humans. To our

knowledge, this is a novel and previously unreported but highly

significant finding.

In this study, we used LINE-1 methylation by Pyrosequencing

as a marker of genome-wide methylation. Over 500,000 LINE-1

sequences exist,9 comprising about 5% of the human genome.

Yang et al.9 and others have shown that LINE-1 methylation measured by Pyrosequencing is reproducible and correlates well with global DNA methylation level. In particular, Pyrosequencing technology can detect subtle differences in mean LINE-1 methylation levels. Indeed, our data illustrate the view of Ogino et al.10 that the use of an accurate and precise method to measure methylation such as LINE-1 is essential to demonstrate the subtle differences in methyla-tion patterns expected in response to changes in folate exposure.

The relationship between folate and methylation patterns is complex. Folate has a range of effects that are critical to fetal development. Dietary

folate deficiency leads to genome-wide hypomethylation 11 and hyper-homocysteinaemia.12 However, folate is also critical for DNA synthesis and

is a substrate for a number of reactions that influence the metab-olism of several amino acids. While the contribution of folate or its intermediaries to these individual pathways is difficult to dissect, our data suggests that homocysteine may reflect a better indicator of methyl group supply and therefore more accurately reflect ‘functional’ folate availability and utilization in genome-wide methylation. This view is supported by Ingrosso et al.13 who showed that hyper-homocysteinaemia was associated with DNA hypo-methylation in uraemic patients.Our data also suggests that factors affecting the one carbon pathway in late gestation may have an important role in influenc-ing epigenetic patterns. This is particularly important given the focus on supplementation during the first trimester in the preven-tion of neural tube defects 1-3 and raises the question as to whether further research should focus on changes in the one-carbon path-way throughout gestation.The potential clinical implications of our findings are worthy of further investigation. Interestingly, in our preliminary studies, we also identified an association between LINE-1 methylation and birth weight centile (p = 0.014, data not shown), support-ing the concept that factors associated with changes in methyla-tion during pregnancy may be important in fetal and potentially

longer term outcomes, as descibed in the Barker hypothesis.14

from normality (p = 0.854), allowing the generation of correla-tion coefficients. Our data (Table 1) showed that, in univariate analyses, neither cord serum folate levels (p = 0.338) nor reported total folic acid supplemental intake during pregnancy (p = 0.152) were significantly associated with mean LINE-1 methylation. The association between prescribed folic acid dose per day and mean LINE-1 methylation approached statistical significance (p = 0.080). However, as shown in Figure 1, fetal plasma homo-cysteine concentration was highly significantly inversely cor-related with mean LINE-1 methylation (p = 0.001, r = -0.688; Table 1).Multivariate assessment. In order to examine the inter-relationship between the predictors and identify potential con-founding factors, we then used a multivariate stepwise regression model to determine the best predictors of mean LINE-1 methy-lation. In this model, we included folate-related parameters listed in Table 1 together with fetal gender, gestational age, maternal age, maternal parity and maternal body mass index. In this analysis, plasma homocysteine levels remained the only significant predictor (p = 0.004).Table 1. Associations between folate-related parameters and cord blood LINE-1 methylation

Variable

n

p

adjusted R 2

r

precribed folic acid dose per day

(mg)

24

0.080

0.093

0.364

Reported gestational supplemen-tal folic acid intake (mg)230.1520.0520.308cord serum folate (μmol/L)230.338-0.0020.209cord plasma homocysteine (μmol/L)210.0010.446

-0.688Figure 1. Association of mean LINE-1 methylation with cord plasma homocysteine concentration. Error bars represent standard error of the mean (sEM) of at least three replicates for each of the 4 LINE-1 cpG sites.

in humans. Undoubtedly, replication of our findings in larger independent populations, and providing answers for the above questions, would have major implications on current policies for folic acid supplementation during pregnancy and of general foodstuffs.

Subjects and Methods

Patients. Twenty-nine women attending the Maternity Unit of the University Hospital of North Staffordshire were recruited into the study between 2007–2008. The study was approved by the Local Research Ethics Committee and all women provided written informed consent. Demographic data on maternal age at delivery, parity, body mass index, fetal gender, anti-epileptic drug usage and folate supplementation during pregnancy were collected prospectively by the study research midwife and these were checked against the mother’s clinical record. Given the known anti-folate and teratogenic effects of carbamazepine,19 five women on this medication were excluded from subsequent analy-ses. Table 2 shows the demographics of the study population.Blood samples were collected at term from the umbilical cord into sample bottles containing ethylene diamine tetraacetic acid (for methylation analysis), heparin (for plasma homocysteine measurement) and without anti-coagulant (for serum folate measurement).

Measurement of blood folate parameters. Folate was measured in 23/24 serum samples using a competitive immunoassay-based assay employing direct chemiluminescent technology with an acridinium ester label on Siemens Advia Centaur equipment and reagents (Siemens Medical Solutions Diagnostics) as per manu-facturer’s instructions. Homocysteine was measured in 21/24 heparinised plasma samples using High Performance Liquid Chromatography (HPLC) at the Heart of England Foundation Hospital, Birmingham, UK as described by Martin et al.20 This method uses ion-paired reversed-phase HPLC of reduced sam-ples followed by oxidative mode coulometric electrochemical detection.

However, it is clear that the relationship between folate intake, levels of one carbon intermediates, DNA methylation and fetal growth is not a simple one. In this context, while maternal nutri-tion is a recognized predictor of birth weight, the precise role of folate remains a topic of debate.15,16

We recognize that there are limitations to this preliminary study. The relatively small sample size deterred us from under-taking multiple corrections for potentially confounding data such as maternal genotype, alcohol and coffee consumption and tobacco exposure that exposed the study to a risk of type II error. However, while a larger study is underway examining a range of folate parameters throughout gestation, we felt that these prelim-inary findings on late gestation effects were sufficiently compel-ling and novel as to warrant dissemination to allow reproduction elsewhere. Equally, there is also a small risk of type I error, though the signifcance of the relationship between LINE-1 methylation and cord plasma homocysteine is sufficiently strong to withstand Bonferroni correction. Furthermore, our analyses were hypothe-sis-driven and are consistent with findings in animal models.To our knowledge these data are unique in that they pres-ent, for the first time, measurements in human cord blood. The association between folic acid supplementation and the fetal epig-enome raises several intriguing questions: (1) Does maternal folic acid supplementation produce its beneficial effects through fetal epigenetic modifications? (2) If so, what is the best predictor of methyl donor supply and are these epigenetic changes dose- and time-related? (3) What are the long-term implications of these epigenetic modifications? (4) If the association between fetal birth weight and the fetal epigenome hold true, can this provide the mechanistic link between birth weight and risk of adult-hood disease later in life? Recent epidemiological data showing a robust association between folic acid supplementation and the risk of respiratory disease during childhood highlights the danger of assuming only benefits when considering the value of folic acid supplementation in public health programs.18

In summary, our data shows that folate indices during preg-nancy are associated with methylation of the fetal epigenome

Table 2. Demographic data on the study population

Maternal variables Age (years, mean ± sD), n = 2429.4 ± 7.0parity (median, range), n = 23 1 (0–3)BMI (median, IQR 1), n=23

26.2 (22.4–30.8)Daily folate dose (mg, median, range), n = 24400 (0–5000)Total supplemental folate intake (g, median, IQR), n = 23

3.2 (0–95)Neonatal variables

Gestation (weeks, mean ± sD), n = 2439.3 ± 1.9Birth weight (kg, mean ± sD), n = 24 3.33 ± 0.52Birth weight (percentile, median, IQR), n = 24

30.5 (12.5–58.4)

Gender (% female), n = 24

58.3%cord serum folate (μmol/L, mean ± sD), n = 2315.8 ± 3.5cord plasma homocysteine (μmol/L, mean ± sD), n = 2110.8 ± 3.8cord LINE-1 methylation (mean %, mean ± sD), n = 24

71.9 ± 3.0

1

IQR: Inter-quartile range.

at dispensation 18 comprises, in the pre-converted sequence, 5 T residues and a non-CpG C residue. Hence, in the event of poor conversion, the signal of the peaks following this would demon-strate lower peak heights than those prior to the poly-T signal. Hence, we were able to assess efficiency and reproducibility of conversion by examining the ratio of the peak heights for the G residues at dispensations 21 and 17. This gave consistent ratios of 0.997 ± 0.055. As an additional check, LINE-1 Pyrosequencing of in vitro methylated and bisulphite converted DNA was also used as verification of the efficiency of bisulphite conversion. Sham bisulphite-conversion served as negative control for the specificity of the LINE-1 primers.

Statistical analysis. All data were analysed using STATA sta-tistical software (College Station, TX, version 8).

Normality of data were tested formally using the Shapiro-Wilk W test. In accordance with our null hypotheses, associa-tions between LINE-1 methylation and maternal folate intake,

cord blood folate and homocysteine were sought using univariate linear regression analysis. For normally distributed data, degrees of association were expressed as correlation coefficients. To exam-ine the data for potential confounding factors, a stepwise multi-variate regression model was created as described in the Results

section.Acknowledgements We are grateful to Mrs. Angela Rooney for invaluable help in

recruiting the patients for this study, and to Dr. Craig Webster for help on the measurement of plasma homocysteine. Supported in part by Egyptian Cultural Bureau (to K.M.K.I. and T.M.N.), West Midlands Association of Clinical Biochemistry Robert Gaddie Memorial Fund (to A.A.F.), North Staffordshire Medical Institute (to W.D.C., A.A.F. and K.M.K.I.) and World

Cancer Research Fund (to W.E.F., A.A.F., R.D.E., W.D.C. and K.M.K.I.).

The authors’ responsibilities were as follows: A.A.F., K.M.K.I., W.D.C. and W.E.F. were responsible for the initial study design, K.M.K.I. oversaw patient recruitment, W.D.C. designed the demographic data collection tool, T.M.N. performed the LINE-1 analysis under the supervision of W.E.F. and A.A.F. A.A.F., W.D.C. and R.D.E. performed the data analysis and all authors were involved in completing the final manuscript. All authors had a significant role in this project and approved the final ver-sion of the manuscript.

DNA extraction and bisulphite conversion. DNA was extracted from cord blood using standard phenol/chloroform

procedures. Sodium bisulfite conversion was carried out as pre-viously described 21 using the EZ DNA Methylation Gold kit (Zymo Research, Orange County, CA, USA).

LINE-1 methylation. LINE-1 assessment of global methyla-tion was performed essentially as described by the manufacturer using Pyrosequencing with the LINE-1 primer set (PyroMark LINE-1 kit, Biotage AB, Uppsala, Sweden) and results were analyzed using the Q-CpG software (Biotage AB, Uppsala, Sweden).

The analysed sequence allowed quantitation of the methylation status of four CpG sites. An example of the pyrograms obtained

is shown in Figure 2. The level of methylation was expressed as the percentage of methylated cytosines over the sum of methy-lated and unmethylated cytosines. These data were combined to give a mean methylation value for the four sites. Experiments were repeated at least three times on each cord blood sample and mean values were calculated from these separate experiments. Non-CpG cytosine residues were used as built in controls to verify bisulphite conversion. In the sequence analysed (Fig. 2

), the poly-T signal Figure 2. Example of LINE-1 sequencing program. Ratios of peak

heights at G residues at dispensations 17 and 21 (excluding enzyme [E]

and substrate [s] addition, marked with *) were used as an internal

control for bisulphite conversion.

References

1.

US Department of Health and Human Services Public Health Service Centers for Disease Control. Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. Morbidity and Mortality Weekly Report 1992; 41.

2. Department of Health: National Service Framework for Children, Young People and Maternity Services, 2004.

3.

National Institute for Health and Clinical Excellence, Clinical Guideline 62; Antenatal care: Routine care for the healthy pregnant woman, 2008.

4.

Nafee TM, Farrell WE, Carrol W , Fryer AA, Ismail KMK. Epigenetic control of fetal gene expression. Br J Gynaecol 2008; 115:158-68.

5.

Zeisel SH. Importance of methyl donors during repro-duction. Am J Clin Nutr 2009; 89:673-7.

6.

Kim YI. Folate, colorectal carcinogenesis and DNA methylation: lessons from animal studies. Environ Mol Mutagen 2004; 44:1-25.

7. Kim YI. Will mandatory folic acid fortification prevent

or promote cancer. Am J Clin Nutr 2004; 80:1123-8.8. Jones PA, Baylin SB. The fundamental role of epigenet-ic events in cancer. Nature Rev Genet 2002; 3:415-28.9. Yang AS, Estécio MR, Doshi K, Kondo Y, Tajara EH,

Issa JP . A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 2004; 32:38.

10. Ogino S, Kawasaki T, Nosho K, Ohnishi M, Suemoto

Y, Kirkner GJ, Fuchs CS. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer 2008; 122:2767-73.

11. Jacob RA, Gretz DM, Taylor PC, James SJ, Pogribny

IP , Miller BJ, et al. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr 1998; 128:1204-12.

12. Forges T, Monnier-Barbarino P , Alberto JM, Guéant-Rodriguez RM, Daval JL, Guéant JL. Impact of folate and homocysteine metabolism on human reproductive health. Hum Reprod Update 2007; 13:225-38.

13. Ingrosso D, Cimmino A, Perna AF , Masella L, De

Santo NG, De Bonis ML, et al. Folate treatment and unbalanced methylation and changes of allelic expres-sion induced by hyperhomocysteinaemia in patients with uraemia. Lancet 2003; 361:1693-9.

14. Barker DJ. The fetal and infant origins of adult disease.

Br Med J 1990; 301:1111.

15. Yajnik CS, Deshmukh US. Maternal nutrition, intra-

uterine programming and consequential risks in the offspring. Rev Endocr Metab Disord 2008; 9:203-11.

16. Cutfield WS, Hofman PL, Mitchell M, Morison IM.

Could epigenetics play a role in the developmental origins of health and disease? Pediatr Res 2007; 61:68-

75.

17. Scholl TO, Johnson WG. Folic acid: influence on the

outcome of pregnancy. Am J Clin Nutr 2000; 71:1295-

303.18. H?berg SE, London SJ, Stigum H, Nafstad P, Nystad

W. Folic acid supplements in pregnancy and early

childhood respiratory health. Arch Dis Child 2009;

94:180-4.

19. Kishi T, Fujita N, Eguchi T-A, Ueda K. Mechanism for

reduction of serum folate by antiepileptic drugs during

prolonged therapy. J Neurol Sci 1997; 145:109-12.

20. Martin SC, Tsakas-Ampatzis I, Bartlett WA, Jones AF.

Measurement of plasma total homocysteine by HPLC

with coulometric detection. Clin Chem 1999; 45:150-

2.

21. Simpson DJ, Hibberts NA, McNicol AM, Clayton

RN, Farrell WE. Loss of pRb expression in pituitary

adenomas is associated with methylation of the RB1

CpG island. Cancer Res 2000; 60:1211-6.

22. World Health Organisation, WHO Child Growth

Standards based on length/height, weight and age. Acta

Paediatr Suppl 2006; 450:76-85.

医学遗传学试题A答案

滨州医学院 《医学遗传学》试题(A卷) (考试时间:120分钟,满分:80分) 选择题(每题 1 分共20 分) 请将答案填到后面对应的表格中,未填入者不得分 1、下列哪些疾病不属于染色体不稳定综合征:( D ) A Bloom综合征 B Fanconi贫血症 C 着色性干皮病 D 先天性巨结肠病 2、下列哪个基因属于肿瘤抑制基因,并在人类恶性肿瘤中存在的变异占据第一位。( A ) A P53基因 B Rb基因 C WT1基因 D MTS1基因 3、下列核型是先天愚型患者核型的是( C )。 A 47,XX(XY),+13 B 47,XX(XY),+18 C 47, XX(XY), +21 D 46,XX(XY),del(5)(p15) 4、下列核型是猫叫综合征患者核型的是( D )。 A 47,XX(XY),+13 B 47,XX(XY),+18 C 47, XX(XY), +21 D 46,XX(XY),del(5)(p15) 5、下列属于Klinefelter综合征患者核型的是( D )。 A 47,XYY B 47,XXX C 45,X D 47,XXY 6、一个947人的群体,M血型348人,N血型103人,MN血型496人,则 A 。 A.M血型者占36.7% B.M基因的频率为0.66 C.N基因的频率为0.63 D.MN血型者占55.4% 7、( B )不是影响遗传平衡的因素。 A.群体的大小 B.群体中个体的寿命 C.群体中个体的大规模迁移 D.群体中选择性交配 8、在一个100人的群体中,AA为60%,Aa为20%,aa为20%,那么该群体中 D 。A.A基因的频率为0.3 B.a基因的频率为0.7 C.是一个遗传平衡群体 D.是一遗传不平衡群体 9、对于一种相对罕见的X连锁隐性遗传病,其男性发病率为q, A 。 A.女性发病率为q2 B.女性发病率是p2 C.男性患者是女性患者的两倍 D.女性患者是男性患者的两倍 10、下面哪种疾病属于线粒体遗传病( A )。 A、KSS B、Friedreich C、Fanconi贫血症 D、Bloom综合症 11、线粒体DNA无内含子,唯一的非编码区是约1000bp的( C )。 A 复制起始点 B 转录起始点 C D-环 D 蓬松区 12、每个二倍体细胞内α基因和β基因数量之比是( B ) 。 A 1:1 B 2:1 C 3:1 D 4: 13、α地中海贫血主要的发生机制是(A ) A 基因缺失 B 点突变 C 融合基因 D 单个碱基的置换 14、血友病A是由于血浆中缺乏( C )所致。

100篇英文经典文献

share with 各位会计、财务专业的同学... (P.S.读英文期刊绝对是体力活...开读前一定要吃好睡好...) 这些是会计学的基础文献,是所有其他文献的参考文献~~~ 经典文献(The 100 articles with the highest citation index-until 1996) 参考:Lawrence D. Brown, 1996, “Influential Accounting Articles, Individuals, Ph. D Granting Institutions and Faculties; A Citational Analysis”, Accounting, Organizations and Society, Vol.21, NO.7/8, P726-728 1. Ball, R. and Brown, P., 1968, “An Empirical Evaluation of Accounting Income Numbers”, journal of Accounting Research, Autumn, pp. 159-178 1. 2.Watts R.L., Zimmerman J., 1978, “Towards a Positive Theory of the Determination of Accounting Standards”, The Ac counting Review, pp. 112-134 2. 3.Healy P.M, 1985, “The Effect of Bonus Schemes on Accounting Decisions”, Journal of Accounting and Economics, April, 85-107 3.Hopwood A. G., “Towards an Organizational Perspective for the Study of Accounting and Information S ystems”, Accounting, Organizations and Society (No. 1, 1978) pp. 3-14 4.Collins, D. W., Kothari, S. P., 1989, “An Analysis of Intertemporal and Cross-Sectional Determinants of Earnings Response Coefficients”, journal of Accounting & Economics, pp. 143-181 5.EastonP.D, Zmijewski M.E, 1989, “Cross-Sectional Variation in the Stock Market Response to Accounting Earnings Announcements”, Journal of Accounting and Economics, 117-141 6.Beaver, W. H., 1968, “The Information Content of Annual Earnings Announcements”, jo urnal of Accounting Research, pp. 67-92 7.Holthausen R.W., Leftwich R.W., 1983, “The Economic Consequences of Accounting Choice: Implications of Costly Contracting and Monitoring”, journal of Accounting & Economics, August, pp77-117 8.Patell J.M, 1976, “Corp orate Forecasts of Earnings Per Share and Stock Price Behavior: Empirical Tests. Journal of Accounting Research, Autumn, 246-276 9.Brown L.D., Griffin P.A., Hagerman R.L., Zmijewski M.E, 1987, “An Evaluation of Alternative Proxies for the Market’s Assessment of Unexpected Earnings”, Journal of Accounting and Economics, 61-87 10.Ou J.A., Penman S.H., 1989, “Financial Statement Analysis and the Prediction of Stock Returns”, Journal of Ac counting and Economics, Nov., 295-329 11.William H. Beaver, Roger Clarke, William F. Wright, 1979, “The Association between Unsystematic Security Returns and the Magnitude of Earnings Forecast Errors,” Journal of Accounting Research, 17, 316-340.

本科医学遗传学复习题答案复习课程

遗传学复习题 一、名词解释 遗传病:指由于遗传物质结构或功能改变所导致的疾病。 核型:一个细胞内的全部染色体所构成的图像。 染色体显带:通过现带染色等处理,分辨出染色体更微细的特征,如带的位置、宽度和深浅等技术,常见有G带、Q带、C带和N带。 基因突变:指基因内的碱基组成或顺序发生了可遗传的改变,并且常能导致表型的改变。断裂基因:真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,启动子:位于转录起始点上游约100bp左右,是与RNA聚合酶特异结合使转录开始的DNA 序列。 系谱:指从先证者入手,追溯调查其所有家族成员(包括直系亲属和旁系亲属)某种遗传病(或性状)的分布等资料,将调查的资料按一定的格式绘制成的简图。 复等位基因:在同源染色体相对应的基因座位上存在两种以上不同形式的等位基因。 共显性:如果双亲的性状同时在F1个体上表现出来,即一对等位基因的两个成员在杂合体中都表达的遗传现象。 交叉遗传:男想X染色体(及其连锁基因)只能从母亲传来,并且必定传给女儿,不能传给儿子的这种遗传方式。 染色体畸变:在不同因素作用下产生的染色体数目及结构异常。 嵌合体:指具有两种或两种以上染色体组成的细胞系的个体。 易患性:一个个体在遗传基础和环境因素共同作用下患某种多基因病的风险。 遗传度:人体性状或者疾病由基因决定程度,一般用百分比表示。 二、问题 1. 遗传病有什么特点?可分为几类?对人类有何危害? 答:遗传病一般具有先天性、家族性、垂直传递等特点,在家族中的分布具有一定的比例;部分遗传病也可能因感染而发生。①先天性:许多遗传病的病症是生来就有的,如白化病是一种常染色体隐性遗传病,婴儿刚出生时就表现有“白化”症状;②家族性:许多遗传病具有家族聚集性,如Hutington舞蹈病患者往往具有阳性家族史。③垂直传递:具有亲代向子代垂直传递的特点,但不是所有遗传病的家系中都可以观察到这一现象,有的患者是家系中的首例,还有些遗传病患者未活到生育年龄或未育。 分类:单基因病、染色体病、体细胞遗传病。 危害:①遗传病是造成人类死亡的重要因素。资料显示,我国15岁以下死亡的儿童中,约40%是由遗传病和先天畸形所致,遗传病已经成为当前危害人类健康最为严重、病死率最高之一,而且有些肿瘤和心血管疾病也属于遗传病。 ②遗传病总数占人类疾病总数的四分之一,其中有很多属于常见病和多发病,一部分严重危害健康的常见病、多发病都与遗传病有关。 ③遗传病不仅影响患者本身的生活和生存,同时也给家庭及其他成员带来许多精神和经济负担,既影响家庭幸福,又给社会造成许多负面影响,并且还直接影响民族的健康素质和国家的兴旺发达。 2. 简述基因概念的沿革,基因的现代概念。 答:①.19世纪:生物性状——遗传因子 ②.20世纪初:染色体学说:基因位于染色体上,遗传功能单位、突变单位、交换单位 ③.20世纪中:基因是有遗传功能单位的DNA片段,由“一个基因,一种酶”发展到“一

医学遗传学试题及答案复习

医学遗传学复习思考题 1. 名词: 遗传病:由于遗传物质改变而引起的疾病 家族性疾病:指表现岀家族聚集现象的疾病 先天性疾病:临床上将婴儿岀生时就表现岀来的疾病。 2?遗传病有哪些主要特征?分为哪5类? 特征:基本特征:遗传物质改变 其他特征:垂直传递、先天性和终生性、家族聚集性、遗传病在亲代和子代中按一定比例岀现分类:单基因遗传病、多基因遗传病、染色体病、体细胞遗传病、线粒体遗传病 3、分离律,自由组合律应用 1. 名词:(第七章) 核型:一个体细胞的全部染色体所构成的图像称核型 核型分析:将待测细胞的全部染色体按照Denver (丹佛)体制经配对、排列,进行识别和判定的分析过程,成为核型分析 Denver体制:指1960年人类染色体研究者在美国丹佛市聚会制定的人类有丝分裂染色体标准命名系 统,Denver体制主要依据染色体大小和着丝粒位置等形态特点,将人类体细胞的46条染色体分为23对, 7组,其中22对为男女所共有,称常染色体,以长度递减和着丝粒位置依次编号为1~22号,另外一对与 性别有关,随性别而异,称性染色体。Xx代表女性,而xy代表男性。 2?莱昂假说 (1) 雌性哺乳动物间期体细胞核内仅有一条染色体有活性,其他的X染色体高度螺旋化而呈异固缩状态的x 染色质,在遗传上失去活性。 (2失活发生在胚胎发育的早期(人胚第16无;在此之前体细胞中所有的x染色体都具有活性。 (3)两条X染色体中哪一条失活是随机的,但是是恒定的。 3.染色质的基本结构 染色质的基本结构单位为核小体;主要化学成分D NA和组蛋白;分为常染色质、异染色质 1 ?名词: 基因:基因组中携带遗传信息的最基本的物理和功能单位。 基因组:一个体细胞所含的所有遗传物质的总和,包括核基因组和线粒体基因组基因家族:指位于不同染色体上的同源基因。 2. 断裂基因的结构特点,断裂基因如何进行转录 真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译岀由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因,一个断裂基因能够含有若干段编码序列,这些可以编码的序列称为外显子。在两个外显子之间被一段不编码的间隔序列隔开,这些间隔序列称为内含子。 转录:基因-hnRNA -剪接、戴帽、加尾-mRNA。 3. 基因突变的概念和方式和个方式特点。 基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。 方式:(1)碱基替换:是指一种碱基被另一种碱基多替换,它是DNA分子中单个碱基的改变,称为

医学遗传学试题及答案(三)

郑州大学现代远程教育《医学遗传学》 1. DNA 损伤后的修复机制有哪些? 答:(1)光复活修复又称光逆转。这是在可见光(波长3000~6000 埃)照射下由光复活酶识别并作用于二聚体,利用光所提供的能量使 环丁酰环打开而完成的修复过程。 (2)切除修复。在 DNA 多聚酶的作用下以损伤处相对应的互补 链为模板合成新的 DNA 单链片断进行修复。 (3)重组修复。在重组蛋白的作用下母链和子链发生重组,重组后 原来母链中的缺口可以通过DNA 多聚酶的作用,以对侧子链为模板合 成单链DNA 片断来填补进行修复。 (4)SOS 修复。DNA 受到损伤或脱氧核糖核酸的复制受阻时的一种 诱导反应。 2. 下图为某个遗传病的系谱,根据系谱简要回答下列问题: 1)判断此病的遗传方式,写出先证者的基因型。 答: 此病的遗传方式常染色体隐性遗传。先证者的基因型为aa 。 2)患者的正常同胞是携带者的概率是多少? 答:患者的正常同胞是携带者的概率是2/3。 Ⅰ Ⅱ Ⅲ

3)如果人群中携带者的频率为1/100,问Ⅲ4随机婚配生下患者的 概率为多少? 答:如果人群中携带者的频率为1/100,问Ⅲ4随机婚配生下患者的概率为1/100*1/2*2/3*1/2=1/600。 3.简述多基因遗传假说的论点和遗传特点。 答:(1)多基因遗传假说的论点: ①数量性状的遗传基础也是基因,但是两对以上的等位基因; ②不同对基因之间没有显性隐形之分,都是共显性; ③每对基因对性状所起的左右都很微小,但是具有累加效应; ④数量性状的受遗传和环境双重因素的作用。 (2)多基因遗传特点: ①两个极端变异个体杂交后,子1代都是中间类型,也有一定变异范围;②两个子1代个体杂交后,子2代大部分也是中间类型,将形成更广范围的变异③在随机杂交群体中变异范围广泛,大多数个体接近中间类型,极端变异个体很少。 4.请写出先天性卵巢发育不全综合征的核型及主要临床表现。答:(1)先天性卵巢发育不全综合征又称先天性性腺发育不全综合征,其核型为45,XO。 (2)主要临床表现:表型为女性,身材较矮小,智力正常或稍低,原发闭经,后发际低,患者有颈蹼;二,患者具有女性的生殖系统,

医学遗传学期末试题单选版

第一章绪论 一、选择题 (一)单项选择题 *1.遗传病的最基本特征是: A. 家族性 B. 先天性 C. 终身性 D. 遗传物质的改变 E. 染色体畸变 2.根据遗传因素和环境因素在不同疾病发生中作用不同,对疾病分类下列哪项是错误的? A.完全由遗传因素决定发病B.基本由遗传因素决定发病C.遗传因素和环境因素对发病都有作用D.遗传因素和环境因素对发病作用同等 E. 完全由环境因素决定发病 *3.揭示生物性状的分离律和自由组合律的两个遗传学基本规律的科学家是 A.Mendel B. Morgan C.Garrod D.Hardy.Wenberg E.Watson,Crick 4. 关于人类遗传病的发病率,下列哪个说法是错误的? A. 人群中约有3%~5%的人受单基因病所累B.人群中约有0.5%~1%的人受染色体病所累C.人群中约有15%~20%的人受多基因病所累 D. 人群中约有20%~25%的人患有某种遗传病 E. 女性人群中红绿色盲的发病率约为5% *5.研究染色体的结构、行为及其与遗传效应关系的遗传学的一个重要支柱学科称为:A.细胞遗传学B.体细胞遗传学 C. 细胞病理学D.细胞形态学E.细胞生理学6.研究基因表达与蛋白质(酶)的合成,基因突变所致蛋白质(酶)合成异常与遗传病关系 的医学遗传学的一个支柱学科为: A. 人类细胞遗传学B.人类生化遗传学 C. 医学分子生物学 D. 医学分子遗传学E.医学生物化学 7.细胞遗传学的创始人是: A.Mendel B.Morgan C.Darwin D.Schleiden,Schwann E.Boveri,Sutton 8.在1944年首次证实DNA分子是遗传物质的学者是; A.Feulgen B.Morgan C.Watson,Crick D.Avery E.Garrod 9.1902年首次提出“先天性代谢缺陷”概念的学者是: A.Feulgen B.Morgan C.Watson,Crick D.Avery E.Garrod 10.1949年首先提出“分子病”概念的学者是: A.Mendel B.Morgan C.Darwin D.Paullng E.Boveri,Sutton *11.1956年首次证明人的体细胞染色体为46条的学者是: A. Feulgen B.Morgan C.蒋有兴(JH.Tjio)和Levan D.Avery E.Garrod 12.1966年编撰被誉为医学遗传学的“圣经”--《人类盂德尔遗传》一书的学者是:A.McKusick B.Morgan C.Darwin D.Schleiden,Schwann E.Boveri,Sutton *13.婴儿出生时就表现出来的疾病称为: A.遗传病B.先天性疾病 C. 先天畸形 D. 家族性疾病 E. 后天性疾病 *14.一个家庭中有两个以上成员罹患的疾病一般称为: A.遗传病B.先天性疾病C先天畸形 D.家族性疾病 E.后天性疾病 15.婴儿出生时正常,在以后的发育过程中逐渐形成的疾病称为: A.遗传病B.先天性疾病 C. 先天畸形 D. 家族性疾病 E. 后天性疾病 16. 人体细胞内的遗传物质发生突变所引起的一类疾病称为: A.遗传病B.先天性疾病 C. 先天畸形 D. 家族性疾病 E. 后天性疾病 *17.遗传病特指:

经典会计英文文献目录100篇

经典文献(The 100 articles with the highest citation index-until 1996) 以下所有文献按照:Lawrence D. Brown, 1996, “Influential Accounting Articles, Individuals, Ph. D Granting Institutions and Faculties; A Citational Analysis”, Accounting, Organizations and Society, V ol.21, NO.7/8, P726-728提供的资料 1.Ball, R. and Brown, P., 1968, “An Empirical Evaluation of Accounting Income Numbers”, journal of Accounting Research, Autumn, pp. 159-178 2.Watts R.L., Zimmerman J., 1978, “Towards a Positive Theory of the Dete rmination of Accounting Standards”, The Accounting Review, pp. 112-134 3.Healy P.M, 1985, “The Effect of Bonus Schemes on Accounting Decisions”, Journal of Accounting and Economics, April, 85-107 4.Hopwood A. G., “Towards an Organizational Pe rspective for the Study of Accounting and Information Systems”, Accounting, Organizations and Society (No. 1, 1978) pp. 3-14 5.Collins, D. W., Kothari, S. P., 1989, “An Analysis of Intertemporal and Cross-Sectional Determinants of Earnings Response Coefficients”, journal of Accounting & Economics, pp. 143-181 6.Easton P.D, Zmijewski M.E, 1989, “Cross-Sectional Variation in the Stock Market Response to Accounting Earnings Announcements”, Journal of Accounting and Economics, 117-141 7.Bea ver, W. H., 1968, “The Information Content of Annual Earnings Announcements”, journal of Accounting Research, pp. 67-92 8.Holthausen R.W., Leftwich R.W., 1983, “The Economic Consequences of Accounting Choice: Implications of Costly Contracting and Monitoring”, journal of Accounting & Economics, August, pp77-117 9.Patell J.M, 1976, “Corporate Forecasts of Earnings Per Share and Stock Price Behavior: Empirical Tests. Journal of Accounting Research, Autumn, 246-276 10.Brown L.D., Griffin P.A., Hagerman R.L., Zmijewski M.E, 1987, “An Evaluation of Alternative Proxies for the Market’s Assessment of Unexpected Earnings”, Journal of Accounting and Economics, 61-87 11.Ou J.A., Penman S.H., 1989, “Financial Statement Analysis and the Prediction o f Stock Returns”, Journal of Accounting and Economics, Nov., 295-329 12.William H. Beaver, Roger Clarke, William F. Wright, 1979, “The Association between Unsystematic Security Returns and the Magnitude of Earnings Forecast Errors,” Journal of Accounting Research, 17, 316-340. 13.Burchell S., Clubb C., Hopwood, A., Hughes J., Nahapiet J., 1980, “The Roles of Accounting in Organizations and Society”, Accounting, Organizations and Society, No.1, pp. 5-28

医学遗传学试题及答案大全(一)

《医学遗传学》答案 第1章绪论 一、填空题 1、染色体病单基因遗传病多基因遗传病线粒体遗传病体细胞遗传病 2、突变基因遗传素质环境因素细胞质 二、名词解释 1、遗传因素而罹患的疾病成为遗传性疾病或遗传病,遗传因素可以是生殖细胞或受精卵 内遗传物质结构和功能的改变,也可以是体细胞内遗传物质结构和功能的改变。 2、主要受一对等位基因所控制的疾病,即由于一对染色体(同源染色体)上单个基因或 一对等位基因发生突变所引起的疾病。呈孟德尔式遗传。 3、染色体数目或结构异常(畸变)所导致的疾病。 4、在体细胞中遗传物质的改变(体细胞突变)所引起的疾病。 第2章遗传的分子基础 一、填空题 1、碱基替换同义突变错义突变无义突变 2、核苷酸切除修复 二、选择题1、A 三、简答题 1、⑴分离律 生殖细胞形成过程中,同源染色体分离,每个生殖细胞中只有亲代成对的同源染 色体中的一条;位于同源染色体上的等位基因也随之分离,生殖细胞中只含有两 个等位基因中的一个;对于亲代,其某一遗传性状在子代中有分离现象;这就是 分离律。 ⑵自由组合律 生殖细胞形成过程中,非同源染色体之间是完全独立的分和随机,即自由组合 定律。 ⑶连锁和交换律 同一条染色体上的基因彼此间连锁在一起的,构成一个连锁群;同源染色体上 的基因连锁群并非固定不变,在生殖细胞形成过程中,同源染色体在配对联会 时发生交换,使基因连锁群发生重新组合;这就是连锁和交换律。 第3章单基因遗传病

一、填空题: 1、常染色体显性遗传、常染色体隐性遗传、X连锁隐性遗传、X连锁显性遗传 2、系谱分析法 3、具有某种性状、患有某种疾病、家族的正常成员 4、高 5、常染色体、无关 6、1/4、2/3、正常、1/2 7、半合子 8、Y伴性遗传9、环境因素10、基因多效性 11、发病年龄提前、病情严重程度增加12、表现型、基因型 二、选择题——A型题 1、B 2、A 3、C 4、D 5、D 6、A 7、D 8、B B型题 1、A 2、D 3、B 4、C 5、D 6、C 7、B 8、C 三、名词解释: 1、所谓系谱(或系谱图)是从先证者入手,追溯调查其所有家族成员(直系亲属和 旁系亲属)的数目、亲属关系及某种遗传病(或性状)的分布资料绘制而成的图解。 2、先证者是指某个家族中第一个被医生或遗传学研究者发现的罹患某种遗传病的患 者或具有某种性状的成员。 3、表现度是基因在个体中的表现程度,或者说具有同一基因型的不同个体或同一个体 的不同部位,由于各自遗传背景的不同,所表现的程度可有显著的差异。 4、外显率是某一显性基因(在杂合状态下)或纯合隐性基因在一个群体中得以表现的 百分率。 5、由于环境因素的作用使个体的表型恰好与某一特定基因所产生的表型相同或相似, 这种由于环境因素引起的表型称为拟表型。 6、遗传异质性指一种性状可由多个不同的基因控制。 7、一个个体的同源染色体(或相应的一对等位基因)因分别来自其父放或母方,而表 现出功能上的差异,因此所形成的表型也有不同,这种现象称为遗传印记或基因组印记、亲代印记。 8、杂合子在生命的早期,因致病基因并不表达或虽表达但尚不足以引起明显的临床症 状,只有达到一定年龄后才才表现出疾病,这一显性形式称为延迟显性。 9、也称为半显性遗传,指杂合子Dd的表现介于显性纯合子和隐性纯合子dd的表现 型之间,即在杂合子Dd中显性基因D和隐性基因d的作用均得到一定程度的表现。

医学遗传学试题

医学遗传学试题。() 医学遗传学试题。(2)2011-02-1321:32■为何嫡亲婚配中,子代AR病发病风险明明增高? 近亲立室是指3~4代以内有共同先人的个体之间的婚配,由于他们之间可能从共同先人传来某一基因,以是他们基因不异的可能性较常人要高很多,如堂兄妹间基因沟通的可能性为1/8,假如某AR的发病率为1/10000,那末堂兄妹间婚配子代的发病风险是1/50×1/8×1/4=1/1600,而随机婚配则是1/50×1/50×1/4=1/10000,近亲婚配的风险峻超出跨越6.25倍。 ■一对佳耦皆是聋哑却生出两个一般孩子,这是甚么缘由? 这是遗传异质性的缘故原由。虽然配偶两边是先本性聋哑,但他们多是由分歧的遗传根本而至。 ■临床上看到的常染色体隐性遗传病患儿在其同胞中所占比例要高于1/4,这是为何? 当一对夫妇都是某种隐性遗传病的携带者,他们又只生一个孩子。孩子无病时,不会救治,不会列入医生的统计中;假如孩子患病,他们迁就诊,所以在一个家庭中医生能看到子女隐性遗传病的比例将为100%,当一对夫妇都是隐性遗传病携带者时,他们生两个孩子时,这两个孩子都出有病的机率为3/4×3/4=9/16,在这种情形下,他

们不会找医生救治,所以,也不会列进大夫的统计中。两个孩子有一个孩子发病的机率为1/4×3/4×3/4×1/4=6/16;两个孩子都发病的机率为1/4×1/4=1/16,因而,总的估计,在其生两个孩子的家庭中,子女患AR病的比例不是1/4,而是近于1/2。在生育子女数量较多的家庭中亦存在这种偏偏倚 ■假肥大型肌营养不良(DMD)是一种X连锁隐性遗传病,一个女性的弟弟和娘舅都患DMD,试问这个家庭中DMD基因是不是由遗传仍是突变而来?谁是一定的携带者?谁是可能的携带者?这位女性婚后所生儿子中,遗传DMD的风险如何? 由遗传而去的。该女性的外祖母及母亲是必定的携带者,该女性是可能的携带者,可能性为1/2,其所生儿子中有1/4可能患DMD。■一对夫妇听力正常,生养1个先天聋哑的孩子;另外一对夫妇皆为先天聋哑,他们所生3个孩子都正常。为什么呈现两种遗传征象? 一对夫妇听力正常却生了一个先天聋哑的孩子,是由于这对夫妇都是统一聋哑基因a的携带者,Aa×Aa→3/4正常(AA、Aa)、1/4聋哑(aa),是以这样的婚配方式子女有1/4的患病风险。另一对夫妇皆为聋哑而子女都不聋哑,这是遗传分歧性而至,双亲的基因型分别设为Aabb、aaBB,Aabb×aaBB→AaBb,子女为致病基因a、b的携带者,但表型正常 ■试比力常染色体显性遗传病和X连锁显性遗传病的遗传特性,X连锁隐性遗传病和Y连锁遗传病的遗传特点。 常染色体显性遗传病和X连锁显性遗传病对照:常染色体显性遗传病

(完整版)【重庆医科大学】《医学遗传学》试题库

第一部分:名词解释和思考题 第八章肿瘤遗传学 一、名词解释 1、癌家族(cancer family)、家族性癌(familiar carcinoma) 癌家族:指恶性肿瘤特别是腺癌发病率高的家族。 家族性癌:指一个家族中多个成员均患有的那种恶性肿瘤。 2、遗传性肿瘤(hereditary tumor) 指按AD方式遗传给下一代且符合孟德尔规律的单基因肿瘤。通常来源于神经或胚胎组织3、肿瘤遗传易感性 指某些遗传性缺陷或疾病具有容易发生肿瘤的倾向性,而这种倾向性是由遗传决定的,故称为肿瘤的遗传易感性。 4、干系(stem line)、旁系(side line)、众数(model number) 干系:指在一个肿瘤内细胞生长占优势的细胞系或细胞的数量在整个肿瘤中所占的比例最大的细胞系。 旁系:指除干系外,肿瘤中具有其他核型且生长处于劣势的细胞系。 众数:指干系细胞的染色体数目,或者说该肿瘤最常见的染色体的数目。 5、标记染色体(marker chromosome)、特异性标记染色体、非特异性标记染色体 标记染色体:指肿瘤的大多数细胞中都具有的某种特定类型的畸变染色体。 特异性标记染色体:指某一类型的肿瘤所特有的标记染色体。 非特异性标记染色体:指那些可以出现在多种肿瘤细胞中的标记染色体,它们并不为某种肿瘤所特有 6、癌基因(oncogene)、病毒癌基因(viral oncogene,v-onc)、细胞癌基因(cellular oncogene,c-onc) 癌基因:指正常人体和动物细胞内以及致癌病毒体内所固有的能引起细胞恶性转化的核苷酸顺序(DNA或RNA片段)。 病毒癌基因:指位于逆转录病毒基因组内的一段核苷酸序列。属于非间断基因。 细胞癌基因:指脊椎动物和人类的正常细胞中所具有的与病毒癌基因同源的DNA顺序。属于间断基因。 7、肿瘤抑制基因(tumor-suppressor gene)、杂合性丢失(loss of heterozygosity,LOH) 肿瘤抑制基因:又称抑癌基因(anti-oncogene),是指存在于核基因组内的一类能抑制细胞生长并促进细胞分化的核苷酸顺序或DNA片段。 杂合性丢失:抑癌基因一般是处于杂合子状态,当抑癌基因的杂合子(如Rb/rb)再发生一次突变成为隐性纯合子(如rb/rb)以后才会发生细胞的恶性转化,此既肿瘤抑制基因的杂合性丢失(LOH),它是细胞癌变的关键。 8、肿瘤转移基因(metastatic gene 或metastatogene)、转移抑制基因(metastasis suppressor gene) 肿瘤转移基因:简称转移基因,是指一类基因的表达和改变能够促进和导致肿瘤细胞发生转移的基因。 转移抑制基因:指一类肿瘤转移过程中起阻碍作用且能抑制肿瘤转移形成的基因。 二、思考题 1、癌家族的特点有哪些? 答:癌家族的定义。癌家族常具有以下特点:①恶性肿瘤特别是腺癌发病率高;②主要

如何看英文文献的方法-----总结

(从Ph.D到现在工作半年,发了12 篇paper, 7 篇first author.)我现在每天还保持读至少2-3 篇的文献的习惯.读文献有不同的读法.但最重要的自己总结概括这篇文献到底说了什么,否则就是白读,读的时候好像什么都明白,一合上就什么都不知道,这是读文献的大忌,既浪费时间,最重要的是,没有养成良好的习惯,导致以后不愿意读文献. 1. 每次读完文献(不管是细读还是粗读), 合上文献后,想想看,文章最重要的take home message 是什么, 如果不知道,就从abstract,conclusion 里找, 并且从discuss 里最好确认一下. 这样一来, 一篇文章就过关了. take home message 其实都不会很多, 基本上是一些concepts, 如果你发现你需要记得很多,那往往是没有读到重点. 2. 扩充知识面的读法, 重点读introduction, 看人家提出的问题,以及目前的进展类似的文章, 每天读一两篇,一个月内就基本上对这个领域的某个方向有个大概的了解.读好的review 也行, 但这样人容易懒惰. 3. 为了写文章的读法, 读文章的时候, 尤其是看discussion 的时候,看到好的英文句型, 最好有意识的记一下,看一下作者是谁,哪篇文章,哪个期刊, 这样以后照猫画虎写的时候,效率高些.比自己在那里半天琢磨出一个句子强的多. 当然,读的多,写的多,你需要记得句型就越少.其实很简单,有意识的去总结和记亿, 就不容易忘记. 科研牛人二告诉研究生怎么看文献,怎么写论文 一、先看综述 先读综述,可以更好地认识课题,知道已经做出什么,自己要做什么,,还有什么问题没有解决。对于国内文献一般批评的声音很多.但它是你迅速了解你的研究领域的入口,在此之后,你再 看外文文献会比一开始直接看外文文献理解的快得多。而国外的综述多为本学科的资深人士撰写,涉及范围广,可以让人事半功倍。 二、有针对地选择文献 针对你自己的方向,找相近的论文来读,从中理解文章中回答什么问题,通过哪些技术手段来 证明,有哪些结论?从这些文章中,了解研究思路,逻辑推论,学习技术方法. 1.关键词、主题词检索: 关键词、主题词一定要选好,这样,才能保证你所要的内容的全面。因为,换个主题词,可以有新的内容出现。 2. 检索某个学者: 查SCI,知道了某个在这个领域有建树的学者,找他近期发表的文章。 3. 参考综述检索: 如果有与自己课题相关或有切入点的综述,可以根据相应的参考文献找到那些原始的研究论文。 4. 注意文章的参考价值: 刊物的影响因子、文章的被引次数能反映文章的参考价值。但要注意引用这篇文章的其它文章是如何评价这篇文章的 三、如何阅读文献 1.注重摘要:摘要可以说是一个论文的窗口。多数文章看摘要,少数文章看全文。真正有用的全文并不多,过分追求全文是浪费,不可走极端。当然只看摘要也是不对的。多数文章题目、摘要简单浏览后,直接把几个Figure 及Title 与legend 一看,一般能掌握大部分。 2.通读全文:读第一遍的时候一定要认真,争取明白每句的大意,能不查字典最好先不查字典。因为读论文的目的并不是学英语,而是获取信息,查了字典以后思维会非常混乱,往往读完全文不知所谓。可以在读的过程中将生字标记,待通读全文后再查找其意思。

医学遗传学题库汇总

精品文档 绪论 一、单5选1 [分值单位:1] 1.遗传病特指 A.先天性疾病B.家族性疾病C.遗传物质改变引起的疾病 D.不可医治的疾病E.既是先天的,也是家族性的疾病 答案:C [分值单位:1] 2.环境因素诱导发病的单基因病为 A.Huntington舞蹈病B.蚕豆病C.白化病D.血友病A E.镰状细胞贫血 答案:B [分值单位:1] 3.传染病发病 A.仅受遗传因素控制 B.主要受遗传因素影响,但需要环境因素的调节 C.以遗传因素影响为主和环境因素为辅 D.以环境因素影响为主和遗传因素为辅 E.仅受环境因素影响 答案:D [分值单位:1] 4.提出分子病概念的学者为 A.Pauling B.Garrod C.Beadle D.Ford E.Landsteiner 答案:A [分值单位:1] 5.Down综合征是 A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病答案:C [分值单位:1] 6.脆性X综合征是 A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病答案:C [分值单位:1] 7.Leber视神经病是 A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病答案:D [分值单位:1] 8.高血压是 A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病答案:B

[分值单位:1] 9.遗传病最基本的特征是() A.先天性B.家族性C.遗传物质改变D.罕见性E.不治之症 答案:C [分值单位:1] 10.下列哪种疾病不属于遗传病() . 精品文档 A.单基因病B.多因子病C.体细胞遗传病D.传染病E.染色体病 答案:D [分值单位:1] 11. 提出分离律定律的科学家是 A. Morgan B. Mendel C. Pauling D. Garrod E. Ingram 答案:B [分值单位:1] 12. 提出自由组合律定律的科学家是 A. Morgan B. Mendel C. Pauling D. Garrod E. Ingram 答案:B [分值单位:1] 13.提出连锁互换定律的科学家是 A. Morgan B. Mendel C. Pauling D. Garrod E. Ingram 答案:A [分值单位:1] 14. 在研究尿黑酸尿症的基础上,提出先天性代谢缺陷概念的是 A. Morgan B. Mendel C. Pauling D. Garrod E. Ingram 答案:D [分值单位:1] 15. 对镰状细胞贫血病患者血红蛋白(HbS)电泳分析后,推论其泳动异常是HbS分子结构改变所致,从而提出分子病的概念,提出分子病概念的科学家是 A. Morgan B. Mendel C. Pauling D. Garrod E. Ingram 答案:C [分值单位:1] 16. ______于1953年提出DNA双螺旋结构,标志分子遗传学的开始。 A. Avery 和McLeod B. Watson 和Crick C. Jacob 和Monod D. Khorana 和Holley E. Arber和 Smith 答案:B [分值单位:1] 遗传的细胞与分子基础 一、单5选1 [分值单位:1]

英文文献免费下载网站地址集锦

1.香港科技大学图书馆Dspace 包括香港科技大学的学术论文、学位论文、研究报告等内容,均可免费获取全文。 Openj-gate 提供4350种开放获取的期刊的数百万期刊全文文献。 加利福尼亚大学国际和区域数字馆藏 加利福尼亚大学国际和区域数字馆藏研究项目。eScholarshipRepository主要提供已出版的期刊论文、未出版的研究手稿、会议文献以及其他连接出版物上的文章1万多篇,均可免费阅读。 剑桥大学机构知识库 由Cambridge University Library和University Computing Service维护,提供剑桥大学相关的期刊、学术论文、学位论文等电子资源。 发展中国家联合期刊库 非营利的电子出版物服务机构,提供来自发展中国家(如巴西、古巴、印度、印尼、肯尼亚、南非、乌干达、津巴布韦等)的开放获取的多种期刊的全文。

美国密西根大学论文库 美国密西根大学论文库2万多篇期刊论文、技术报告、评论等文献全文。包含艺术学、生物学、社会科学、资源环境学等学科的相关论文,另还有博硕士论文。标识为OPEN的可以打开全文。 jfg CERN Document Server 主要覆盖物理学(particle physics)及相关学科,提供360,000多篇全文文献,包括预印文献、期刊论文、图书、图片、学位论文等等。 kl ArXiv ArXiv是属于Cornell University的非盈利教育机构,面向物理学、数学、非线性科学、计算机科学和定量生物学等学科提供16种免费电子期刊的访问。 NASA Technical Reports Server 主要是关于航空航天领域研究的科技报告和会议论文。 National Service Center for Environmental Publications

几个免费英文文献的网站

几个免费英文文献的网站 【推荐】几个免费英文文献的网站 2007-06-14 9:48(Update: 2011-06-26) ①:学术英文资料NCBI(美国国家生物技术中心) 网址:简介:生物、医学、药学等 友情提示1:PMC搜索入口(在Search下拉列表中找到),可以找到全文的免费文献 友情提示2:其它入口也有部分文献可查看全文,如PubMed,右上角会有“Full-Text Article” HighWire Press 网址:简介:综合类。斯坦福大学下属的出版机构。 友情提示:部分免费,标识有“This article is FREE”。 Science 网址:简介:《科学》杂志官方网站 友情提示:免费注册后,可以下载1997年以前的全文。注册有点繁琐,但是内容都可以随意填写,不过,一定要记住自己先前大致的填写内容,否则通不过最后的一个验证。Nature 网址:简介:《自然》杂志官方网站,有一些Full Text的在线

发表的论文。ScienceDirect 网址:简介:综合期刊、论文。 友情提示:仅带绿框的文章可全文浏览。 沃顿知识在线 网址:简介:商业,金融经济类为主。分中、英文两个版本。Marxists 网址:简介:文史类。有中文版。 友情提示:一切与马克思主义挨边的资料(人、事件、国家),都可以在这儿找。比如可以找到列宁、毛泽东、鲁迅等的生平和著作,还有法国大革命、古巴导弹危机……。 literature 网址:简介:综合类。类似于一个文献搜索的搜索引擎。 友情提示:“Free Full Text”一栏值得关注,提供了一些全文免费文献的搜索入口。 ②:普通英文资料 Wikipedia(维基百科) 网址:简介:英文大百科全书。查单个词条十分方便。 友情提示1:适合于查找资料性的东西,比如,电冰箱的诞生史、微软的概况、《红楼梦》的简评和人物分析等 友情提示2:无法访问该网站的解决方法:①:找IP代理; ②:利用Google的网页快照。比如:滑雪。就这样:先输

相关文档
最新文档