简单电力系统暂态稳定性计算与仿真.

简单电力系统暂态稳定性计算与仿真.
简单电力系统暂态稳定性计算与仿真.

重庆大学网络教育学院

毕业设计(论文)题目简单电力系统的暂态稳定性计算与仿真

学生所在院校

批次层次专业

学号

学生

指导教师

起止日期2013.07.08-2013.09.15

简单电力系统的暂态稳定性计算与仿真

摘要

电力系统是一个复杂的动态系统,系统一旦出现稳定性问题,可能会在较短的时间内发生严重后果。随着电力工业的迅速发展,电力系统的规模日益庞大和复杂,出现的各种故障,会给发电厂以及用户和电厂内的多种动力设备的安全带来威胁,并有可能导致电力系统事故的扩大,尤其大区域联网背景下的电力系统故障将会给经济、社会造成重大损失,因此保证电力系统安全稳定运行是电力生产的首要任务。从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题,本文利用MATLAB的动态仿真软件Simulink搭建了单机无穷大电力系统的仿真模型,对其暂态稳定性进行仿真分析,仿真结果表明:故障切除时间越短,发电机阻尼越大,系统越容易稳定。

关键词:电力系统事故单机无穷大电力系统暂态稳定性 MATLAB 仿真模型

目录

摘要 (Ⅰ)

1引言 (1)

2电力系统的暂态稳定性简介 (1)

2.1 电力系统暂态稳定 (1)

2.2 电力系统暂态稳定研究的目的及意义 (2)

2.2.1 目的 (2)

2.2.2 意义 (2)

2.3 国内外现状及发展趋势 (2)

2.4 电力系统暂态稳定性探析 (6)

2.4.1 引起电力系统大扰动的主要原因 (6)

2.4.2 提高电力系统暂态稳定性的措施 (6)

2.4.3 系统在不同状态下发电机的功率特性 (6)

2.5 小结 (9)

3简单电力系统的暂态稳定性计算与仿真 (9)

3.1系统选定 (9)

3.2网络参数及运行参数计算 (10)

3.2.1各元件参数归算后的标幺值 (10)

3.2.2 运算参数的计算结果 (11)

3.3系统转移电抗和功率特性计算 (11)

3.4系统极限切除角计算 (12)

3.5 发电机摇摆曲线δ-t计算 (12)

3.6 Simulink模型及仿真结果 (16)

3.7 小结 (19)

4结论与展望 (19)

参考文献 (20)

1 引言

电力系统遭受大干扰后,由于发电机转子上机械转矩与电磁转矩不平衡,使同步电机转子间相对位置发生变化,即发电机电势间相对角度发生变化,从而引起系统中电流、电压和电磁功率的变化。电力系统暂态稳定就是研究电力系统在某一运行方式,遭受大干扰后,同步发电机及负荷是否仍能正常运行的问题。在各种大干扰中以短路故障最为严重,所以通常都以此来检验系统的暂态稳定性[1]。在电力系统规划、设计、运行等工作中都需要进行大量的暂态稳定分析,通过暂态稳定分析,还可以研究和考察各种稳定措施的效果以及稳定控制的性能。可见,电力系统暂态稳定分析对于提高系统运行的安全和稳定性具有重要意义。

目前,分析电力系统暂态稳定的现行方法主要有三类,即:时域仿真法[2](也可称为逐步积分法或数值解法、直接法[3]、人工智能法[4]。此外,不少学者将小波变换用于电力系统暂态稳定分析,并取得了一定成果。[5]本文将以单机无穷大系统线路某点发生两相接地短路为例,利用MATLAB的时域仿真法对简单电力系统暂态稳定性做一些仿真, 分析故障解除时间对系统稳定性的影响。

2 电力系统的暂态稳定性概述

2.1 电力系统暂态稳定

电力系统暂态稳定性,指的是正常运行的电力系统承受一定大小的、瞬时出现但又立即消失的扰动后恢复到近似它原有的运行状况的能力;或者,这种扰动虽不消失,但系统可以从原有的运行状况安全地过渡到新的运行状况的可能性。

本文以一个单机无穷大系统(如图2.1所示)为例,对该系统受外界干扰时的暂态稳定性进行分析,在模型中设置两相接地短路,通过同时断开故障线路两侧开关以提高电力系统暂态稳定性的这一有效措施对该系统进行仿真,并结合仿真图形分析故障解除时间不同对系统稳定性有何影响。

图2.1单机无穷大系统图

由于大扰动后发电机机械功率和电磁功率的差额(即加速功率Pm-Pe)是导致系

统暂态稳定破坏的主要原因,因此减少大扰动后发电机的加速功率是首先考虑的措施[6]。短路故障的类型和发生及切除时间可用三相短路模块(Three-Phase Fault)来进行设置。

2.2 电力系统暂态稳定研究的目的及意义

2.2.1 目的

加深对电力系统暂态稳定性基本概念的理解,通过计算与建模仿真,并能掌握其基本原理及提高在实际应用中分析、解决问题的能力。

2.2.2 意义

随着电力系统的不断发展,互联电力网络变得更加强大。人们在给电力系统给予繁多技术手段并获以更多经济效益的同时,也使得系统稳定性破坏事故所波及的范围更加广泛;同样,电力市场的逐渐开放也使电力系统运行方式越灵活多变,对系统稳定性的实时性判断要求就更高了。与此同时,由于受到环境和经济等因素的制约,区域间联网和远距离大容量输电系统的不断出现,系统运行更加接近极限状态,这使得电力系统暂态稳定问题日趋严重,电力系统一旦失去稳定,往往造成大范围、较长时间停电,在最严重的情况下,则可能使电力系统崩溃和瓦解。因此,准确、快速地分析电力系统在大扰动下的暂态稳定行为,必要时采取适当的控制措施,以保证系统对暂态稳定性的要求,是电力系统设计及运行人员最重要也是最复杂的任务之一。

2.3 国内外现状及发展趋势

电力系统的互联,为我们带来了显著的经济效益,同时随着电力系统的规模扩大,引起系统事故的可能性就越大,系统中任一元件发生故障都有可能引起事故扩大。电网结构是否强壮、安全自动装置是否健全,管理是否妥当等,稍有一个环节出现问题都有可能使系统陷入稳定危机,甚至造成大面积停电,乃至全网崩溃,将给国民经济造成重大损失。因此国内外大型电力系统的运行与规划都将电力系统的安全评定置于重要地位。

随着“西电东送、南北互供、全国联网”战略的全面实施,到2020年左右,我国将建成世界上罕见的跨区域和远距离传输巨大功率的超高压交、直流混合输电系统。其经济效益十分明显,不仅可以优化能源布局,充分利用西部地区丰富的水力资源,还可以减少备用容量,进行区域间的相互功率支援和实现错峰效益。另一方面,互联电网的缺点是,由于对事故的连锁反应,可能出现大面积停电。1996年7月2日和8月l0日美国西部大面积停电事故的关键特征是,解除一条线路后,其余线路

被迫承担被解列线路的负荷,而失去一条线路的网络进一步过载,从而引起连锁反应和导致系统崩溃。随着电力市场的发展,电力系统的重构和解除管制,在主网基础上建立起来的现代互联电网在区域间传输的功率将日益增长。这种需求进一步增加了输电系统的压力。因此,估计大面积停电事故的几率还将增长。稳定破坏是电网中较为严重的事故之一,大电力系统的稳定破坏事故,往往引起大面积停电,给国民经济造成重大损失。在我国,由于电网结构相对薄弱,重负荷长距离线路较多,因而稳定事故的发生较为频繁。据统计,1988-1990年全国电网稳定事故,平均每年有4.7次稳定事故,总损失电量为280.31万kWh,社会上由于停电造成的损失就更大了。

我国即将形成的大型互联混合输电系统在世界上是举世无双的,如何保证该系统的安全、稳定和经济运行是一个极其重大和迫切的研究课题。在电力系统中,随着偶然事故的发生,电力系统能否经受住随后发生的暂态过程并过渡到一个新的稳定状态,是电力系统安全评定的主要内容。用暂态分析方法去评定系统能否经受住这种过渡过程属于动态安全分析的范畴。国内外电力系统稳定破坏事故统计表明,暂态稳定破坏的事故率居于首位,从而暂态稳定分析组成动态安全评定的主体。

对于我国电网来说,其覆盖面积大,结构薄弱,负荷密度极不均匀,而电源又往往远离负荷中心,单位装机容量分摊到标准输电线长度比发达国家的少得多。三峡工程标志着全国性跨地区联网的开始,高效的远方大机组越来越重要,联络线的作用从紧急支援延伸到经济换电而接近稳定极限。人区电网互联在经济性和安全稳定性之间的最佳协调问题对有关算法的需求迫在眉睫。

当前的中国已步入大电网、高电压和大机组的时代。随着我国电力系统的日益发展和扩大,电力系统安全稳定问题己成为最重要的问题,越来越突出。解决好电力系统实时安全分析方法和安全稳定控制技术的研究和应用,已成为电力生产、运行、科研和制造部门的重要任务,不管在任何情况下,电力调度运行部门都要把电力系统安全稳定运行放在首位。国内外电力系统分析组成动态安全评定的主体,实现对电力系统的稳定分析有着重要的实际意义。

随着社会的进步和科技的发展,近年来世界各地也出现了一些大的电力系统,这些系统通常具有范围广、强非线性的特点。随着电力市场化和区域联网的不断推进,电网运行状态越发复杂多变且接近其极限水平,在运行中,由于某种破坏性的原因,有时会引起电力系统崩溃的问题,如发生在2003年8月14日的美加大停电,2012年7月30日的印度电网大停电。这都给我国的电网的运行带来了很多启示。

我们知道,美国的电网是错综复杂的,以前曾经认为电网越复杂就越安全,可是美加大停电告诉我们事实并非如此。实际上,美国电网的每段输电线比较短,这就导致了有很多节点;另外,美国是个资本主义国家,电网在运行的时候考虑的更多的是经济因素,所以在美国电网中存在有比较破旧的设备。诸多因素导致了美加大停电,其实这也不是偶然现象了,在此之前美国已经出现过两次规模较大的停电了。

印度电网,印度同中国一样都是大的发展中国家。印度的装机容量和电压水平发展的也很迅速,但和我国还有较大的差距。据BP发布的《世界能源统计回顾2013》统计,印度发电量世界排名第六,仅次于中国,美国,前苏联,日本和俄罗斯,但印度的电力供应严重不足。2012年7月印度两天之内连续发生大面积停电事故,是有史以来影响人口最多的电力系统事故,超过6.7亿人口受到了停电的影响。从事故前印度北方电网严重超载运行情况来看,线路跳闸前,电网已严重超过其稳定限额运行,从而导致大面积停电。

电力系统暂态稳定MATLAB仿真在国内外已经很成熟,但是,无论我们怎么考虑暂态稳定性都不为过。因为从全球来看,大面积停电并不罕见。所以电力系统的暂态稳定依然是个重要的课题。

电力系统的互联,可以带来显著的经济效益,但是长期以来,“分省平衡”的策略成为我国电力发展的重要弊端,严重地制约着我国电力资源的优化配置,全国联网的进程明显滞后。同时,电网的互联使得电力系统的规模变大,从而引起事故的可能性也越大。如果电网不够强壮,自动安全装置不够健全管理不得当,都有可能破坏系统的稳定,导致大面积停电,甚至全网崩溃。

以厂网分开为主要内容的电力体制改革实施后,我国电网建设的步伐明显加快,并且根据我国电网的特点和发展趋势,制定了“西电东送、南北互供、全国联网”的电网发展战略,大力推进跨区输电、跨区联网,其目标就是为了促进电力资源在更大范围内的优化配置。

截至到2006年,以三峡工程为核心,以华中电网为依托,向东南西北四个方向辐射联网的输电线路已基本建成。以北、中、南三大西电东送通道为主体南北网间多点互联、纵向通道联系较为紧密的全国电网互联的格局已基本形成。

“十一五”期间,除实施已经明确的三峡右岸至上海直流工程外,规划建设的主要工程还有西北至华北直流输电工程,西北与川渝联网工程,华中与华北背靠背联网工程,同时加大山西阳城送电华东的力度并实现华北与华东联网。“十一五”末期,

配合三峡地下电站开发,建设向华北送电的支流输电工程,南北之间将形成以三峡为支撑的主干通道。

根据《2012年电力建设行业统计分析报告》显示,截止2013年6月底,全国6000千瓦及以上电厂发电设备容量达到114211万千瓦。而据BP发布的《世界能源统计回顾2013》统计显示,我国2012年发电量高达52268.28亿千瓦时,居世界第一,即便如此,我国的发电量还是不足的。值得一提的是,水电建设方面,依托三峡工程,我国70万千瓦水轮机组实现国产化。2012年11月5日,世界首台单机容量80万千瓦的水轮发电机组在金沙江向家坝水电站投产,标志着我国水电技术走在世界前列。目前,我国尚未出现大面积的停电,但事实上我们的居民生活中时常停电,特别是夏天和冬天,但大多数情况下,是电力部门主动做的拉闸限电,而非事先出现了什么故障,也就是说这是由于发电量不足造成的,所以我国的发电量还有待于提高,相对地,电网的暂态稳定性的研究也是一个重大的课题。如此大规模的全国电网互联系统的形成将大大有利于电力资源在全国范围内的优化配置。但是由于我国电网的网架相对薄弱、负荷与发电中心地理位置较远联络线负载较重,局部故障的发生可能引发整个系统的安全稳定问题。因此,如何保证这样一个超大规模电力系统的安全、稳定和经济运行,成为摆在我们面前的一个巨大的难题。若能够实现对全国电力系统运行状态的实时甚至是超实时仿真,就能为在线预决策和电力系统稳定控制打下坚实的基础,对电力系统的安全、稳定运行无疑是一个巨大的保证,具有深远的现实意义。由于机电暂态仿真的计算量非常大,依据现有的条件,要对全国联网电力系统的机电暂态过程进行实时仿真目前还无法实现。而随着并行处理技术的不断发展,尤其是可扩展、高性价比的PC集群系统的出现,使这个目标实现的可能性越来越大。

电力系统暂态稳定性分析对于运行部门必不可少,对电力系统的规划设计部门选择方案也有重要的参考价值,是一个长久不衰的研究领域。目前,在电力系统中取得实际应用的暂态稳定分析方法主要有两类,即时域仿真法和直接法。时域仿真法出现较早,是分析电力系统动态稳定最成熟有效的方法。该方法最大的优点是直观、可靠,展示了电力系统的机电暂态过程,可以提供系统各种变量的时间响应,并且具有广泛的模型适应性。直接法出现于上世纪五十年代,是目前惟一基于稳定理论分析电力系统暂态稳定性的方法。由于该方法尚存在一些问题,现在只能作为电力系统暂态稳定性分析的辅助手段。鉴于它具有完善的理论基础并具有定量分析的优势,仍不失为电力系统暂态稳定性分析的重要工具[7]。

除此之外,国外还对模式识别法、专家系统法、神经网络法、灾变理论、混沌理论[8]、小波变换等在暂态稳定方面的应用进行了研究,但这些方法目前尚未到实用阶段。另外一种方法是采用并行计算的方法加快计算速度,这些方法也还在研究中。[5]时域仿真法(数值解法)是暂态稳定分析基本方法,它以稳态工况或潮流解为初值,对发电机转子运动方程组联立求解或交替求解,逐步求得状态量和代数量,并根据发电机的转子摇摆曲线来判定系统在扰动下能否保持同步。

本文采用了Matlab的时域仿真法对电力系统暂态稳定进行了仿真分析,运行于Simulink下的PSB(Power System Blockset)是针对电力系统的工具箱,从Matlab6.0开始它被重新命名为SPS(SimPowerSystems).该工具箱的研究领域是用微分方程刻画的电力系统动态过程,如电磁暂态与机电暂态分析以及电力电子设备的仿真。MATLAB/SPS提供了丰富的电力及电气系统元件模型,可以快速地组建仿真模型, 从而实现电力系统的仿真计算,效率高并且灵活方便。

2.4 电力系统暂态稳定性探析

2.4.1 引起电力系统大扰动的主要原因[9]

(1)切除或投入系统的主要元件,如发电机、变压器及线路等;

(2)负荷的突然变化,如投入或切除大容量的用户等;

(3)发生短路故障。

2.4.2 提高电力系统暂态稳定性的措施[10]

(1)快速切除故障和自动重合闸。

(2)强励或快速关闭气门。

(3)电气制动及变压器中性点经小电阻接地。

(4)采取单元接线方式。

(5)连锁切机及切除部分负荷。

(6)系统解列、异步运行和再同步。

2.4.3 系统在不同状态下发电机的功率特性[1][11]

如图2.2所示为一正常运行时的简单电力系统及其等值电路,发电机经过变压器和双回线路向无限大系统送电。发电机在正常运行、故障以及故障切除后3种状态下的功角特性曲线如图2.3所示。

图2.2 简单电力系统及其等值电路

a) 正常运行方式及其等值电路 b) 故障情况及其等值电路 c) 故障切除后及其等值电路

图2.3 简单系统正常运行、故障及故障切除后的功率特性

(1)正常运行时。发电机的功率特性曲线为P I,此时向无穷大系统输送的功率P0与原动机输出的机械功率P T相等(假设扰动后P T保持不变)。图2.3中的a点即为正常运行发电机的运行点,此时功角为δ

(2)故障期间。发生短路后功率特性立即降为PⅡ,但由于发电机组转子机械运动

,发电机的运行点由a点跃降至短路时功角的惯性所致,功角δ不可能突变,仍为δ

特性曲线PⅡ上的b点,输出功率显著减少,而原动机机械功率P T不变,故产生较大的过剩功率。故障情况愈严重,PⅡ功率曲线幅值愈低( 三相短路时为零)。则过剩功率

愈大。在过剩转矩的作用下发电机转子将加速,其相对速度(相对于同步转速)和相对角度δ逐渐增大,使运行点由b点向c点移动。如果故障一直存在,则始终存在过剩转矩,发电机将不断加速,最终与无限大系统失去同步。

(3)故障及时切除后。实际上,短路故障后继电保护装置将迅速动作切除故障线路。假设在c点时将故障切除,则发电机的功率特性变为PⅢ,发电机的运行点从c点突然变至e点(同样由于δ不能突变)。这时,发电机的输出功率比原动机的机械功率大,使转子受到制动,转子速度逐渐减慢。但由于此时的速度已经大于同步转速,所以相对角度还要继续增大。假设制动过程延续到f点时转子转速才回到同步转速,则δ角不再增大。但是,在f点是不能持续运行的,因为这时机械功率和电磁功率仍不平衡,前者小于后者。转子将继续减速,δ开始减小,运行点沿功率特性PⅢ由f点向e、k点转移。在达到k点以前转子一直减速,转子速度低于同步速。在k点虽然机械功率与电磁功率平衡,但由于这时转子速度低于同步转速,δ继续减小。但越过k点以后机械功率开始大于电磁功率,转子又加速,因而δ一直减小到转速恢复同步转速后叉开始增大。此后运行点沿着PⅢ开始第二次振荡。如果振荡过程中没有任何能量损耗,则第二次δ又将增大至f点的对应角度δm,以后就一直沿着PⅢ往复不已的振荡。实际上,振荡过程中总有能量损耗,或者说总存在着阻尼作用,因而振荡逐渐衰减,发电机最后停留在一个新的运行点k上持续运行。k点即故障切除后功率特性PⅢ与P T的交点。图2.4画出了上述振荡过程中负的过剩功率,转子角速度ω和相对角度δ随时间变化的情形(图中考虑了阻尼作用)。

图2.4 振荡过程

(4)如果故障线路切除得过晚,如图2.5所示。这时在故障线路切除前转子加速已

比较严重,因此当故障线路切除后,在到达与图2.3中相应的f点时转子转速仍大于同步转速。甚至在到达h点时转速还未降至同步转速,因此δ就将越过h点对应的角度δh。而当运行点越过h点后,转子又立即承受加速转矩,转速又开始升高,而且加速度越来越大,δ将不断增大,发电机和无限大系统之间最终失去同步,失步过程如图2.6所示。

图2.5 故障切除过晚的情形图2.6 失步过程由上可见,快速切除故障是保证暂态稳定的有效措施。前面定性地叙述了简单系统发生短路故障后,两种暂态过程的结局,前者显然是暂态稳定的,后者是不稳定的。由两者的δ变化曲线可见,前者的δ第一次逐渐增大至δm (小于180°)后即开始减小,以后振荡逐渐衰减;后者的δ在接近180°(δh)时仍继续增大。因此,在第一个振荡周期即可判断系统稳定与否。

2.5 小结

综上所述,系统暂态稳定与否是和正常运行的情况(决定机械功率与电磁功率大小)以及扰动情况(发生什么故障、何时切除)紧密相关的。为了准确判断系统在某个运行方式下受到某种扰动后能否保持暂态稳定,必须通过定量的分析计算。

3 简单电力系统的暂态稳定性计算与仿真分析

3.1 系统选定

选取如图2.1所示的单机无穷大系统,分析在f点发生两相接地短路,通过线路两侧开关同时断开切除故障线路后,系统的暂态稳定性。参数条件如下:发电机的参数:S GN=352.5MVA, P GN=300MW,U GN=10.5kV,d轴同步电抗x d=1.0,d轴暂态电抗x d'=0.25,d轴次暂态电抗x d"=O.252,q轴同步电抗x q=O.6,q轴暂态电抗x q"

=O.243,漏抗x l =O .18,d 轴短路暂态时间常数T d '

=1.01,d 轴短路次暂态时间常数T d

"=O.053,q 轴开路次暂态时间常数T q0"

=O.1,定子电阻R s=0.0028, H(s)=4s ;惯性时

间常数T JN =7.8s ;负序电抗:x 2=0.2。

变压器T-l 的参数:S TN1=360MVA ,U ST1%=14,k T1=10.5/242;

变压器T-2的参数:S TN2=360MV A ,U ST2%=14,k T2=220/121。

线路的参数:l =250km ,U N =220kV ,x L =O.41Ω/km ,r L =0.07Ω/km ,线路的零

序电抗为正序电抗的5倍。

运行条件:Uo =115kV ,P o =250MW ,cos 0=0.95。

3.2 网络参数及运行参数计算

取S B =250MV A ,U B Ⅲ=115kV 。为使变压器不出现非标准变比,各段基准电压为U B Ⅱ=U B

Ⅲ×k T2=115×220121 kV=209.1kV ,U B Ⅰ= U B Ⅱ×k T1=209.1×10.5242 kV =9.07kV

3.2.1 各元件参数归算后的标么值[1][12]

X d =x d ×GN B S S ×2B 2

GN ⅠU U =1.0×

250352.5 ×22

07.95.10=0.95

X q =x q ×GN B S S ×2B 2

GN

ⅠU

U =1.0×

250352.5 ×22

07.95.10=0.57 X d '=x d '×GN B S S ×2B 2

GN ⅠU U =0.25×250352.5 ×22

07

.95.10=0.238

R L =r L l ×2B ⅡU S B =0.07×250×21

.209250=0.1

X T1=100%XT1U ×TN1B

S S ×2B 2TN1ⅡU U =0.14×

250360 ×22

1.209242

=0.13

X T2=100%XT2U ×TN2B S S ×2B 2

TN2ⅡU U =0.14×

250360 ×221.209220=0.108

X L =x L l ×2B ⅡU S B =0.41×250×21

.209250=0.586

X L0=5X L =2.93

X 2=x 2×GN B S S ×2B 2GN ⅠU U =0.2×250352.5 ×2

2

07.95.10=0.19

T J =T JN ×B GN S S =7.8×352.5250 =

10.998s

X TL =X T1+12 X L +X T2=0.13+12 ×0.586+0.108=0.531

X d Σ=X d +X TL =0.95+0.531=1.481

X q Σ=X q +X TL =0.57+0.531=1.101

X '

d Σ=X d '+X TL =0.238+0.531=0.769

3.2.2 运算参数的计算结果

Uo =ⅢB 0

U U =115115 =1;Po =B 0S P =250250

=1;Qo =Potan ?0=0.329 Eo =2

'2'X X ???? ??+???? ??+∑∑Uo Po Uo Qo Uo d d =(

)()22769.01769.0329.01?+?+=1.47

δo=arctan 769.0329.01769

.01?+?=31.54°

3.3 系统转移电抗和功率特性计算[1][6][9][10][11][12]

当f

点发生两相短路时的负序和零序等值网络如图3.1a 、b 所示。[5]

图3.1 序网及短路时的等值电路图

a)负序网络 b)零序网络 e)短路时的等值电路

X 2∑=()2122122121T L T T L T X X X X X X X X +++??? ??++=()108

.0586.02113.019.0108.0586.02113.019.0+?++?

?

?

??+?+=0.178

X 0∑=21212121T L T T L T X X X X X X ++??? ??+=108

.0586.021

13.0108.0586.

02113.0+?+???

??+?=0.12

两相接地时的短路附加电抗为

X △=∑

∑∑∑+2020X X X X

=0.072

短路时的等值电路如图3.1c 所示,系统的转移电抗和功率特性分别为

X Ⅱ='d X +X T1+L X 21

+X T2+()?

???

??++X X X X X T L T d 21'21=2.82[3]

P Ⅱ=Ⅱ

X U E 00sin δ=0.52sin δ[4]

故障切除后系统的转移电抗和功率特性分别为

X Ⅲ='d X +X T1+X L +X T2=1.062

P Ⅲ=Ⅲ

X U E 00sin δ=1.384sin δ

3.4 系统极限切除角计算[6][9]

应用等面积定则,可求得极限切除角δclim 为

δclim =arccos ()Ⅱ

ⅢⅡⅢm m m m cr P P P P P --+-0

cr 00cos cos δδδδ

=1.1102

式中,临界角δcr =π-arcsin Ⅲ

m P P

=2.334, 即由弧度换算为度数为:δclim =63.61°,

δcr =133.73°。

3.5 发电机摇摆曲线δ-t 计算[6][10][11][13][14]

在上述简单系统中,通过求解转子运动方程得出系统的运动轨线,进而判断系统的暂态稳定性。短路故障期间发电机摇摆曲线δ-t 即转子的运动方程为

()?????????

?

?

??-=-=δω

ωωδsin 1d d 1d d '0ⅡX U E P T t t T J 3.5-1 已知上式两个一阶的非线性常微分方程的起始条件如下:

t =0;ω=1;δ=δ0=lM

T P P 1sin -。

当计算出故障期间的δ-t 曲线后,就可由曲线找到与极限切除角相应的极限切除时间。

如果问题是已知切除时间,而需要求出δ-t 曲线来判断系统的稳定性,则当δ-t 曲线计算到故障切除时,出于系统参数改变,以致发电机功率特性发生变化,必须开始求解故障切除后的微分方程,即

()?????????

?

? ??-

=-=δωωωδ

sin 1d d 1d d '

ⅢX U E P T t t T J 3.5-2

起始条件为:t =t c ;δ=δc ;ω=ωc 。其中,t c 为给定的切除时间,δc 、ωc 为与t c 时刻相对应的δ和ω,可由故障期间的δ-t 曲线和ω-t 曲线求得(δ和ω都是不能突变的)。这样,由3.5-2式可继续求得δ和ω随时间变化的曲线。一般讲,在计算几秒钟内的变化过程时,如果δ始终不超过180°,而且振荡幅值越来越小,则系统是暂态稳定的。

要求得以3.5-1,3.5-2式这样简单的两个非线性一阶微分方程的解析解是很困难的,在通常的电力系统分析教材中常应用分段计算法和常微分方程数值解法—改进欧拉法。本文给出利用Matlab 求解发电机摇摆曲线的例程,由于Matlab 在求常微分方程数值解的算法中没有改进欧拉法,因此在编程时采用了龙格-库塔(Runge-Kutta)法[15]结合内联函数(inline )求解方程。

以函数中全局变量传递参数ωo=2*pi*50,Tj=10.998,Po=1,Eo=1.47,Uo=l , X1=2.82。确立发电机转子摇摆曲线的微分方程为Yd=[(YY(2)-1)*ωo ;(Po-(Eo *Uo/ X Ⅱ)*sin (YY(1)))/Tj ],时间区间设为tspan=[0.0 0.5],即求解微分方程为

[t,YY]=ode45(Yd,tspan ,[δo*pi/180;1])。

建立发电机转子摇摆曲线微分方程程序3.5-1.m ,清单为

Yd=inline('[(YY(2)-1)*2*pi*50;(1-(1.47*1/2.82)*sin(YY(1)))/10.998]',' t','YY');

[t,YY]=ode45(Yd,0.5,[31.54*pi/180;1])

x=YY(:,1);

y=YY(:,2);

plot(t,x*180/pi);

title('系统故障期间的δ-t曲线');

xlabel('t/s'),ylabel('delta/deg')

grid on

运行程序3.5-1.m,求解式3.5-1的微分方程组,得到系统故障期间的δ-t曲线如图3.2所示。从图中(或从输出结果中)可查得对应极限切除角δclim=63.61°的极限切除时间为0.2387s。

图3.2 系统故障期间的δ-t曲线

如果巳知切除时间,利用δ-t曲线来判断系统的稳定性,则当δ-t曲线计算到故障切除时,出于系统参数改变,以致发电机功率特性发生变化,必须求解式3.5-2的微分方程组。如果切除时间为0.1s(由3.5-1式δ-t曲线查出对应δ为37.43),此时需要将程序3.5-1.m中修改系统的转移电抗和初始参数,即发电机转子摇摆曲线的微分方程为Yd=[(YY(2)-1)*ωo;(Po-(Eo*Uo/ XⅢ)*sin(YY(1)))/Tj],时间区间设为tspan=[0.0 0.5],即求解微分方程为[t,YY]=ode45(Yd,tspan,[δo*pi/180;1。0063])。建立发电机转子摇摆曲线微分方程程序3.5-2.m,清单为

Yd=inline('[(YY(2)-1)*2*pi*50;(1-(1.47*1/1.062)*sin(YY(1)))/10.998]',

't','YY');

[t,YY]=ode45(Yd,0.5,[37.43*pi/180;1.0063])

x=YY(:,1);

y=YY(:,2);

plot(t,x*180/pi);

title('故障切除后系统的δ-t曲线');

xlabel('t/s'),ylabel('delta/deg')

grid on

运行程序3.5-2.m,求解式3.5-2的微分方程组,得到故障切除后系统的δ-t曲线如图3.3所示。从图中可以看出,(0.4120至0.4135s间)达最大角度为δ=72.09°,到0.4135s时即开始减小,系统是稳定的。

图3.3 故障切除后系统的δ-t曲线

如果改变惯性时间常数Tj,故障切除后系统的δ-t曲线会有何变化。计及阻尼,分别增大和减小Tj的值,如将程序3.5-2.m中Tj值改为3s时,即程序3.5-2-1.m,其δ-t曲线如图3.4所示。从图中可以看出,Tj越小,功角越容易稳定。这是因为Tj是反映发电机转子机械惯性的重要参数,它表示当发电机空载时,原动机将额定转矩加到转子上,转子从静止状态启动到转速达额定值时所需的时间。Tj越小,角加速度值就越大,角速度和功角增长就越缓快,从而系统达到新的平衡点所需的时间也就越短。同时根据ω=ωN(Pm-Pe)/ Tj-D·Δω,Tj越小,D·Δω/Tj值就会越大,系统减速的速度会变快,一样可以得出Tj越大系统趋于稳定所需的时间就越长。[16][17]

图3.4 故障切除后改变Tj值为3s时系统的δ-t曲线

3.6 Simulink建模及仿真结果[1][15]

按如图2.1 所示的单机无穷大系统,从Matlab主界面Star工具菜单中选SimulinkSimPowerSistems单击Block Library选击工具栏中的View项目单击展开菜单中的Library Browser打开元件库,从中选取需要的元件搭建研究其暂态稳定性的Simulink仿真模型如图3.5所示。

图3.5 电力系统暂态稳定性Simulink仿真模型图

在仿真图中:发电机采用p.u.标准同步电机“Synchronous Machinepu Standard”模型;两台变压器T均采用“Three-phase transfonner (Two Windings)”模型,其参数按照给定设置如图3.6、3.7、3.8所示。

无穷大系统采用“Three-phase source”模型,其参数设置如图3.9所示。

图3.8 变压器T-2模块的参数设置图3.9 无穷大系统电源模块的参数设置

输电线路Ll、L2采用三相“∏”形等值线路“Three-Phase PI Section Line”

模块,参数设置如图3.10所示,由于在原始参数中没有给出线路电容值,故设置为一

个很小的数值。

故障点的故障类型等参数采用三相线路故障模块“Three- Phase FauIt”来设置,

由于故障后线路两侧的断路器应同时断开来切除线路,所以模型中的两个断路器

“Three-Phase Breaker”模块B1、B2的动作参数应与故障模块中的动作参数设置相

配合。如果在仿真开始后的O.ls发生故障,故障后O.ls切除线路,则两个断路器模块

电力系统暂态稳定性分析

============================================================ 电网互联技术可以合理利用能源资源,具有显著的经济效益,因而得到了十分迅速的发展,但它同时也带来了一些新的问题。 随着电力网络互联程度的不但提高,系统越来越庞大,运行方式越来越复杂,保证系统安全可靠运行的难度也越来越大,使电网的安全稳定问题越来越突出。在现代大电网中,各区域、各部分互相联系、密切相关、在运行过程中互相影响。如果电网结构不完善,缺少必要的安全措施,一个局部的小扰动或异常运行也可能引起全系统的连锁反应,甚至造成大面积的系统瓦解。 电力系统受干扰后,凭借系统本身固有能力和控制设备的作用,在有限的时 才会稳定,只要时间间隔略大,其解就会不稳定。目前很难去精确地去定义哪些微分方程是刚性方程,但是大体的想法是:这个方程的解包含有快速变化的部分。 目前,电力系统暂态稳定分析方法基本分为两种。 1、数值积分方法 又称间接法,其基本思想是用数值积分方法求出描述受扰运动微分方程组的时间解,然后用各发电机转子之间相对角度的变化判断系统的稳定性。数值积分法由于可以适应各种不同详细程度的元件数学模型,且分析结果准确、可靠,所以得到了广泛的实际应用,并一直作为一种标准方法来考察其他分析方法的正确性和精度。 2、直接法 不需要求解微分方程组,而是通过构造一个类似于“能量”的标量函数,即李雅普诺夫函数,并通过检查该函数的时变性来确定非线性系统的稳定性质,它是一种定性的方法。由于构造李雅普诺夫函数比较困难,因此目前电力系统暂态稳定分析的直接法仅限于比较简单的数学模型,或用暂态能量函数近似李雅普诺夫函数,其分析结果尚不能令人完全满意。 ?1、微分方程: 在暂态稳定计算程序中,一般对发电机、励磁系统、原动机、调速系统和感应电动机负荷等元件分别设置一些典型的数学模型。这些典型的数学模型既考虑类型的区别(例如汽轮机和水轮机的区别),又考虑不同的精度要求(例如考虑或不考虑阻尼绕组等)。 ?2、代数方程: 代数方程式的形成与所采用的计算方法有关。当采用交替求解法时,代数方程通常只含网络方程,其中各节点的注人电流由发电机定子电压平衡方程、负荷功率或感应电动机定子电流电压方程决定。

电力系统暂态稳定实验

电力系统暂态稳定实验 一、实验目的 1 ?通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。 2?学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施 3?用数字式记忆示波器测出短路时短路电流的非周期分量波形图,并进行分析。 二、原理与说明 电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题。在各种扰动中以短路故障的扰动最为严重。 正常运行时发电机功率特性为:P1=( Eo x Uo)x sin S i/X1 ; 短路运行时发电机功率特性为:P2=( Eo x Uo)x sin S 2X2 ; 故障切除发电机功率特性为:P3 =( Eo x Uo)x sin S 3/X3 ; 对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。而系统保持稳定条件 是切除故障角S c小于S max S max可由等面积原则计算出来。本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,S max也不同,使对故障切除的时间要求也不同。 同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo增加,使S max增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重 合闸,使系统进入正常工作状态。这二种方法都有利于提高系统的稳定性。 三、实验项目与方法 (一)短路对电力系统暂态稳定的影响 1 ?短路类型对暂态稳定的影响 本实验台通过对操作台上的短路选择按钮的组合可进行单相接地短路,两相相间短路,两相接 地短路和三相短路试验。 固定短路地点,短路切除时间和系统运行条件,在发电机经双回线与“无穷大”电网联网运行时,某一回线发生某种类型短路,经一定时间切除故障成单回线运行。短路的切除时间在微机保护装置中设定,同时要设定重合闸是否投切。 在手动励磁方式下通过调速器的增 (减)速按钮调节发电机向电网的出力,测定不同短路运行时能保持系统稳定时发电机所能输出的最大功率,并进行比较,分析不同故障类型对暂态稳定的影响。将实验结果与理论分析结果进行分析比较。P max为系统可以稳定输出的极限,注意观察有功表 的读数,当系统出于振荡临界状态时,记录有功表读数,最大电流读数可以从YHB-川型微机保护 装置读出,具体显示为: GL- 三相过流值 GA- A相过流值

电力系统暂态稳定仿真研究

毕业论文题目电力系统暂态稳定仿真研究 学院信息与控制学院 专业电气工程与自动化

目录 1绪论 (1) 1.1背景介绍与研究意义 (1) 1.2国内外研究现状 (1) 2电力系统暂态稳定的研究内容 (1) 2.1电力系统暂态稳定概述 (1) 2.2简单系统的暂态稳定分析 (2) 2.2.1功——角特性变化 (2) 2.2.2大扰动后发电机转子的相对运动 (3) 2.2.3等面积定则 (4) 2.3分析电力系统暂态稳定的线性方法 (4) 2.4提高电力系统暂态稳定方法 (6) 3电力系统暂态稳定仿真 (7) 3.1单机无穷大系统建模 (7) 3.2采用的模块及其参数设置 (8) 3.3电力系统暂态稳定性仿真 (10) 3.3.1 变压器经小电阻接地 (10) 3.3.2快速切除故障 (10) 3.3.3投入自动重合闸 (12) 4仿真结果及分析 (12) 4.1系统不稳定 (12) 4.4自动重合闸 (16) 5总结 (17) 参考文献: (17) 致谢 (19)

电力系统暂态稳定仿真研究 严正风 南京信息工程大学信息与控制学院,江苏南京 210044 摘要:本文核心是对电力系统暂态稳定问题的探究。概述了电力系统暂态稳定,着重于保持电力系统暂态稳定的措施。并且通过MATLAB的应用平台组成了三种系统仿真模型,主要采用了快速切除故障、变压器中性点经小电阻接地以及投入重合闸这三种手段,分析各自对电力系统暂态稳定的帮助。通过对仿真结果分析,从而对核心问题作出诠释且得出更好解决问题的措施。 关键词:电力系统;暂态稳定;MATLAB

Study on Transient Stability Simulation of Power System YanZhengFeng School of Information and Control,NUIST, Nanjing 210044,China Abstract:The core of this paper is to investigate the transient stability of power system. The transient stability of power system is summarized, and the measures to maintain the transient stability of power system are summarized. And through the MATLAB application platform is composed of three kinds of system simulation model, mainly by the rapid removal of fault, three methods of transformer neutral grounding via low resistance and input reclosing, the respective analysis on transient stability of power system with the help of. Through the analysis of the simulation results, to interpret the core issues, and to get better solution to the problem. Key words: power system; transient stability; MATLAB

基于MATLAB的电力系统潮流计算

基于MATLAB的电力系统潮流计算 %简单潮流计算的小程序,相关的原始数据数据数据输入格式如下: %B1是支路参数矩阵,第一列和第二列是节点编号。节点编号由小到大编写%对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点%编号,将变压器的串联阻抗置于低压侧处理。 %第三列为支路的串列阻抗参数。 %第四列为支路的对地导纳参数。 %第五烈为含变压器支路的变压器的变比 %第六列为变压器是否是否含有变压器的参数,其中“1”为含有变压器,%“0”为不含有变压器。 %B2为节点参数矩阵,其中第一列为节点注入发电功率参数;第二列为节点%负荷功率参数;第三列为节点电压参数;第六列为节点类型参数,其中 %“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数。 %X为节点号和对地参数矩阵。其中第一列为节点编号,第二列为节点对地%参数。 n=input('请输入节点数:n='); n1=input('请输入支路数:n1='); isb=input('请输入平衡节点号:isb='); pr=input('请输入误差精度:pr='); B1=input('请输入支路参数:B1='); B2=input('请输入节点参数:B2='); X=input('节点号和对地参数:X='); Y=zeros(n); Times=1; %置迭代次数为初始值 %创建节点导纳矩阵 for i=1:n1 if B1(i,6)==0 %不含变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/B1(i,3); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4); Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4); else %含有变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/(B1(i,3)*B1(i,5)); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3);

电力系统暂态复习

电力系统暂态分析复习 概念: 第一章 1.电力系统故障分为横向故障(短路)和纵向故障(断线) 短路类型断线种类 2、变压器的容量越小,其电抗标么值越大。(√) 3、短路电流包含什么分量,是否衰减? 4、冲击电流作用:主要用于检验电气设备和载流导体的动稳定。 5、冲击系数取值:冲击系数的取值范围是1~2,短路回路只有电阻时冲击系数取1。 6、冲击电流以及最大有效值电流均出现在短路发生后约半个周期。 7、近似计算中,一般取变压器的变比为各电压级的平均额定电压之比。 8、无限大功率电源(或系统)的内阻抗为零,能保持电压和频率的恒定。 第二章 1、同步发电机突然三相短路后,定子绕组和转子绕组中各有哪些短路电流分量?其对应关系如何? 同步发电机在三相突然短路后,定子电流中包括基频周期分量、非周期分量、倍频分量。

转子绕组中的电流包含强制直流分量、自由非周期分量和基频交流自由分量。d轴阻尼绕组中包含非周期自由分量和基频交流自由分量,q轴阻尼绕组中仅含基频交流分量。定子绕组中基频周期分量电流与d轴阻尼绕组中的非周期分量电流相对应,并随着转子励磁绕组中非周期自由分量和d轴阻尼绕组中非周期自由分量的衰减而最终达到稳态值(与转子励磁绕组中的强制直流分量相对应);定子绕组中的非周期分量、倍频分量与转子绕组、阻尼绕组中的基频交流分量相对应,并随着定子绕组中的非周期分量、倍频分量衰减到零而衰减到零。 2、同步发电机的电抗x d>x q>x d’>x d”。 3、派克变换 4、用a、b、c坐标系统和用d、q、0坐标系统表示的电压或电流是交、直流互换的。5.在abc坐标制下,同步发电机的基本方程是时变系数的微分方程。 6、d、q坐标系是与转子同步旋转的坐标系。 7、励磁调节装置对短路电流的影响。 第三章 1、网络中某一电源和短路点之间直接相连的电抗称为转移电抗。 2、用运算曲线法计算短路电流 第四章

电力系统暂态稳定性

10 电力系统暂态稳定性 10. 1习题 1) 什么是电力系统暂态稳定性? 2)电力系统大扰动产生的原因是什么? 3)为什么正常、短路、短路切除三种状态各自的总电抗不同?对单机无限大供电系统为什么Ⅰ<Ⅲ<Ⅱ?PⅠ·max>PⅢ·max>PⅡ·max? 4)短路情况下Ⅱ如何计算? 5)什么是加速面积?什么是减速面积?什么是等面积定则? 6)单机无限大供电系统,设系统侧发生三相短路,试问短路时功率极限是多少? 7)什么是极限切除角? 8)若系统发生不对称短路,短路切除后最大可能减速面积大于短路切除前的加速面积,系统能否暂态稳定?若最大可能减速面积小于加速面积发生什么不稳定? 9)分段法中t=0时和故障切除时过剩功率如何确定? 10)写出分段法的计算步骤。 11)为什么说欧拉法是折线法?每段折线如何确定? 12)改进欧拉法在何处做了改进? 13)写出改进欧拉法的计算步骤。 14)用图解说明单相自动重合闸为什么可以提高暂态稳定性? 15)试说明快关汽轮机汽门、连锁切机有何相同与不同? 16)提高电力系统暂态稳定的具体措施有哪些种?原理是什么? 17)提高电力系统暂态稳定的措施在正常运行时是否投入运行? 18)解列点的选择应满足什么要求? 19)异步运行时为什么系统需要有充足的无功功率?什么是振荡中心? 设已知系统短路前、短路时、短路切除后三种情况的以标幺值表示的功角特性曲线:=2、=0.5、=1.5及输入发电机的机械功率=1。 求极限切除角。 20)供电系统如图10- 1所示,各元件参数: 发电机G:P N=240MW,U N=10.5kV,,,X2=0.44,T J =6S,发 电机G电势以E‘表示;变器T1的S N为300MVA,U N为10.5/242kV,X T1=0.14 T2的S N为 280MVA,U N为220/121kV,X T2=0.14电力线路长l=230km每回单位长度的正序电抗X1= 0.42Ω/km,零序电抗X0=4X1。 P=220MW

简单电力系统暂态稳定性计算与仿真

中南大学CENTRAL SOUTH UNIVERSITY 本科毕业论文(设计) 论文题目简单电力系统暂态稳定性计算与仿真 学生姓名李妞妞 指导老师 学院中南大学继续教育学院 专业班级电气工程及其自动化2014专升本 完成时间2016年5月1日

毕业论文(设计)任务书 函授站(点): 江西应用工程职业学院继续教育分院专业: 电气工程及其自动化 注:本任务书由指导教师填写并经审查后,一份由学生装订在毕业设计(论文)的封面之后,原件存函授站。

毕业设计(论文)成绩单

摘要 随着电力工业的迅速发展,电力系统的规模日益庞大和复杂,出现的各种故障,会给发电厂以及用户和电厂内的多种动力设备的安全带来威胁,并有可能导致电力系统事故的扩大,从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题,依据电网用电供电系统电路模型要求,因此,论文利用MATLAB 的动态仿真软件Simulink搭建了单机—无穷大电力系统的仿真模型,能够满足电网可能遇到的多种故障方面运行的需要。 论文以MATLAB R2009b电力系统工具箱为平台,通过SimPowerSyetem 搭建了电力系统运行中常见的单机—无穷大系统模型,设计得到了在该系统发生各种短路接地故障并故障切除的仿真结果。 本文做的主要工作有: (1)Simulink下单机—无穷大仿真系统的搭建 (2)系统故障仿真测试分析 通过实例说明,若将该方法应用到电力系统短路故障的诊断中,快速实现故障的自动诊断、检测,对于提高电力系统的稳定性具有十分重要的意义。 关键词:电力系统;暂态稳定;MATLAB;单机—无穷大;

简单电力系统暂态稳定性计算与仿真概述

重庆大学网络教育学院 毕业设计(论文)题目简单电力系统的暂态稳定性计算与仿真 学生所在院校 批次层次专业 学号 学生 指导教师 起止日期2013.07.08-2013.09.15

简单电力系统的暂态稳定性计算与仿真 摘要 电力系统是一个复杂的动态系统,系统一旦出现稳定性问题,可能会在较短的时间内发生严重后果。随着电力工业的迅速发展,电力系统的规模日益庞大和复杂,出现的各种故障,会给发电厂以及用户和电厂内的多种动力设备的安全带来威胁,并有可能导致电力系统事故的扩大,尤其大区域联网背景下的电力系统故障将会给经济、社会造成重大损失,因此保证电力系统安全稳定运行是电力生产的首要任务。从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题,本文利用MATLAB的动态仿真软件Simulink搭建了单机无穷大电力系统的仿真模型,对其暂态稳定性进行仿真分析,仿真结果表明:故障切除时间越短,发电机阻尼越大,系统越容易稳定。 关键词:电力系统事故单机无穷大电力系统暂态稳定性 MATLAB 仿真模型

目录 摘要 (Ⅰ) 1引言 (1) 2电力系统的暂态稳定性简介 (1) 2.1 电力系统暂态稳定 (1) 2.2 电力系统暂态稳定研究的目的及意义 (2) 2.2.1 目的 (2) 2.2.2 意义 (2) 2.3 国内外现状及发展趋势 (2) 2.4 电力系统暂态稳定性探析 (6) 2.4.1 引起电力系统大扰动的主要原因 (6) 2.4.2 提高电力系统暂态稳定性的措施 (6) 2.4.3 系统在不同状态下发电机的功率特性 (6) 2.5 小结 (9) 3简单电力系统的暂态稳定性计算与仿真 (9) 3.1系统选定 (9) 3.2网络参数及运行参数计算 (10) 3.2.1各元件参数归算后的标幺值 (10) 3.2.2 运算参数的计算结果 (11) 3.3系统转移电抗和功率特性计算 (11) 3.4系统极限切除角计算 (12) 3.5 发电机摇摆曲线δ-t计算 (12) 3.6 Simulink模型及仿真结果 (16) 3.7 小结 (19) 4结论与展望 (19) 参考文献 (20)

电力系统仿真软件介绍

电力系统仿真软件 电力系统仿真软件简介 一、PSAPAC 简介: 由美国EPRI开发,是一个全面分析电力系统静态和动态性能的软件工具。 功能:DYNRED(Dynamic Reduction Program):网络化简与系统的动态等值,保留需要的节点。 LOADSYN(Load Synthesis Program):模拟静态负荷模型和动态负荷模型。 IPFLOW(Interactive Power Flow Program):采用快速分解法和牛顿-拉夫逊法相结合的潮流分析方法,由电压稳态分析工具和不同负荷、事故及发电调度的潮流条件构成。 TLIM(Transfer Limit Program):快速计算电力潮流和各种负荷、事故及发电调度的输电线的传输极限。 DIRECT:直接法稳定分析软件弥补了传统时域仿真工作量大、费时的缺陷,并且提供了计算稳定裕度的方法,增强了时域仿真的能力。 LTSP(Long Term Stability Program):LTSP是时域仿真程序,用来模拟大型电力系统受到扰动后的长期动态过程。为了保证仿真的精确性,提供了详细的模型和方法。 VSTAB(Voltage Stability Program):该程序用来评价大型复杂电力系统的电压稳定性,给出接近于电压不稳定的信息和不稳定机理。为了估计电压不稳定状态,使用了一种增强的潮流程序,提供了一种接近不稳定的模式分析方法。 ETMSP(Extended Transient midterm Stability Program):EPRI为分析大型电力系统暂态和中期稳定性而开发的一种时域仿真程序。为了满足大型电力系统的仿真,程序采用了稀疏技术,解网络方程时为得到最合适的排序采用了网络拓扑关系并采用了显式积分和隐式积分等数值积分法。 SSSP(Small-signal Stability Program):该程序有助于局部电厂模式振荡和站间模式振荡的分析,由多区域小信号稳定程序(MASS)及大型系统特征值分析程序(PEALS)两个子程序组成。MASS程序采用了QR变换法计算矩阵的所有特征值,由于系统的所有模式都计算,它对控制的设计和协调是理想的工具;PEALS使用了两种技术:AESOPS算法和改进Arnoldi 方法,这两种算法高效、可靠,而且在满足大型复杂电力系统的小信号稳定性分析的要求上互为补充。 二、EMTP/ATP 简介: EMTP是加拿大H.W.Dommel教授首创的电磁暂态分析软件,它具有分析功能多、元件模型全和运算结果精确等优点,对于电网的稳态和暂态都可做仿真分析,它的典型应用是预测电力系统在某个扰动(如开关投切或故障)之后感兴趣的变量随时间变化的规律,将EMTP 的稳态分析和暂态分析相结合,可以作为电力系统谐波分析的有力工具。 ATP(The alternative Transients Program)是EMTP的免费独立版本,是目前世界上电磁暂态分析程序最广泛使用的一个版本, 它可以模拟复杂网络和任意结构的控制系统,数学模型广泛,除用于暂态计算,还有许多其它重要的特性。ATP程序正式诞生于1984年,由Drs.

第三章简单电力系统的潮流计算汇总

第一章 简单电力系统的分析和计算 一、 基本要求 掌握电力线路中的电压降落和功率损耗的计算、变压器中的电压降落和功率损耗的计 算;掌握辐射形网络的潮流分布计算;掌握简单环形网络的潮流分布计算;了解电力网络的简化。 二、 重点内容 1、电力线路中的电压降落和功率损耗 图3-1中,设线路末端电压为2U 、末端功率为222~jQ P S +=,则 (1)计算电力线路中的功率损耗 ① 线路末端导纳支路的功率损耗: 222 2* 222~U B j U Y S Y -=?? ? ??=? ……………(3-1) 则阻抗支路末端的功率为: 222~~~Y S S S ?+=' ② 线路阻抗支路中的功率损耗: ()jX R U Q P Z I S Z +'+'==?2 2 22222 ~ ……(3-2) 则阻抗支路始端的功率为: Z S S S ~ ~~21?+'=' ③ 线路始端导纳支路的功率损耗: 2121* 122~U B j U Y S Y -=?? ? ??=? …………(3-3) 则线路始端的功率为: 111~ ~~Y S S S ?+'= ~~~图3-3 变压器的电压和功率 ~2 ? U (2)计算电力线路中的电压降落 选取2U 为参考向量,如图3-2。线路始端电压 U j U U U δ+?+=2 1 其中 2 2 2U X Q R P U '+'= ? ; 222U R Q X P U '-'=δ ……………(3-4) 则线路始端电压的大小: ()()2 221U U U U δ+?+= ………………(3-5) 一般可采用近似计算: 2 2 2221U X Q R P U U U U '+'+ =?+≈ ………………(3-6)

电力系统暂态分析要点总结

第一章 1.短路的概念和类型 概念:指一切不正常的相与相与地(对于中性点接地的系统)之间发生通路或同一绕组之间的匝间非 正常连通的情况。类型:三相短路、两相短路、两相接地短路、单相接地短路。 2.电力系统发生短路故障会对系统本身造成什么危害? 1)短路故障是短路点附近的支路中出现比正常值大许多倍的电流,由于短路电流的电动力效应,导体间将产生巨大的机械应力,可能破坏导体和它们的支架。 2)比设备额定电流大许多倍的短路电流通过设备,会使设备发热增加,可能烧毁设备。 3)短路电流在短路点可能产生电弧,引发火灾。 4)短路时系统电压大幅度下降,对用户造成很大影响。严重时会导致系统电压崩溃,造成电网大面积停电。 5)短路故障可能造成并列运行的发电机失去同步,破坏系统稳定,造成大面积停电。这是短路故障的最严重后果。 6)发生不对称短路时,不平衡电流可能产生较大的磁通在邻近的电路内感应出很大的电动势,干扰附近的通信线路和信号系统,危及设备和人身安全。 7)不对称短路产生的负序电流和电压会对发电机造成损坏,破坏发电机的安全,缩短发电机的使用寿命。3.同步发电机三相短路时为什么进行派克变换? 目的是将同步发电机的变系数微分方程式转化为常系数微分方程式,从而为研究同步发电机的运行问 题提供了一种简捷、准确的方法。 4.同步发电机磁链方程的电感系数矩阵中为什么会有变数、常数或零? 变数:因为定子绕组的自感系数、互感系数以及定子绕组和转子绕组间的互感系数与定子绕组和转子绕 组的相对位置θ角有关,变化周期前两者为π,后者为2π。根本原因是在静止的定子空间有旋转的转子。 常数:转子绕组随转子旋转,对于其电流产生的磁通,其此路的磁阻总不便,因此转子各绕组自感系数 为常数,同理转子各绕组间的互感系数也为常数,两个直轴绕组互感系数也为常数。 零:因为无论转子的位置如何,转子的直轴绕组和交轴绕组永远互相垂直,因此它们之间的互感系数 为零。 5.同步发电机三相短路后,短路电流包含哪些分量?各按什么时间常数衰减? 1)定子短路电流包含二倍频分量、直流分量和交流分量;励磁绕组的包含交流分量和直流分量;D轴 阻尼绕组的包含交流分量和直流分量;Q轴阻尼包含交流分量。 2)定子绕组基频交流分量、励磁绕组直流分量和阻尼绕组直流分量在次暂态时按Td’’和Tq’’衰减,在暂 态情况下按Td’衰减;定子绕组的直流分量、二倍频分量和励磁绕组交流分量按Ta衰减。 6.用物理过程分析同步发电机三相短路后各绕组短路电流包含哪些分量? 短路前,定子电流为iwo,转子电流为ifo;三相短路时,定子由于外接阻抗减小,引起一个强制交流 分量△iw,定子绕组电流增大,相应电枢反应磁链增大。励磁绕组为保持磁链守恒,将增加一个直流分 量△ifɑ,其切割定子使定子产生交流分量△iw’。 定子绕组中iwo,iw,iw’不能守恒,所以必产生一个脉动直流,可将其分解为恒定直流分量和二倍频 交流分量。由于励磁绕组切割定子绕组磁场,因此励磁绕组与定子中脉动直流感应出一个交变电流△ifw。 又因为D轴阻尼与励磁回路平行,所以同样含有交流分量和直流分量。 由于假设定子回路电阻为零,定子基频交流只有直轴方向电枢反应因此Q轴绕组中只有基频交流分量 而没有直流分量。 第四章 1.额定转速同为3000转/分的汽轮发电机和水轮发电机,哪一个启动比较快? 水轮发电机启动较快。 2.水轮机的转动惯量比汽轮机大好几倍,为什么惯性时间常数Tj比汽轮机小? 水轮机极对数多于汽轮机的极对数,由n=60f/p得水轮机的额定转速小于汽轮机的转速,又因为惯性时 间常数为Tj=2.74GD2n2/(1000S B),所以T正比于n2,所以水轮机的Tj比汽轮机小。 3.什么是电力系统稳定性?什么是电力系统静态稳定、暂态稳定?区别? (1)电力系统稳定性:指当电力系统在某一运行状态下突然受到某种干扰后,能否经过一定时间后又

电力系统潮流计算课程设计(终极版)

目录 摘要................................................. - 1 - 1.设计意义与要求..................................... - 2 - 1.1设计意义 ...................................... - 2 - 1.2设计要求(具体题目)........................... - 2 - 2.题目解析........................................... - 3 - 2.1设计思路 ...................................... - 3 - 2.2详细设计 ...................................... - 4 - 2.2.1节点类型.................................. - 4 - 2.2.2待求量 ................................... - 4 - 2.2.3导纳矩阵.................................. - 4 - 2.2.4潮流方程.................................. - 5 - 2.2.5牛顿—拉夫逊算法.......................... - 6 - 2.2.5.1牛顿算法数学原理:................... - 6 - 2.2.5.2修正方程............................. - 7 - 2.2.5.3收敛条件............................. - 9 - 3.结果分析.......................................... - 10 - 4.小结.............................................. - 11 - 参考文献............................................ - 12 -

电力系统暂态分析复习题(终)

暂态分析练习题 一、概念题 1. 简述短路的概念和类型? 2. 电力系统发生短路故障会对系统本身造成什么危害? 3. 同步发电机三相短路时为什么要进行派克变换? 4. 同步发电机磁链方程的电感系数矩阵中为什么会有变数、常数或零? 5. 试从发电机短路后磁路的变化方面和表达式方面分析说明电抗''',,d d d x x x 的大小。 6. 试比较E q E q ′E q 〞及X d X d ′X d 〞X σ的大小。 7. 同步发电机三相短路后,短路电流包含哪些分量?各按什么时间常数衰减? 8. 额定转速(电角速度)同为3000转/分的汽轮发电机和水轮发电机,哪一个启动比较快? 9. 为什么采用分裂导线可以提高系统静态稳定性?简要叙述理由。 10. 什么是电力系统稳定问题?静态稳定和暂态稳定有什么区别? 11. 什么是摇摆曲线,有什么用途? 12. 利用等面积定则分析采用三相重合闸提高系统暂态稳定性的原理? 13. 试列出三种提高暂态稳定的措施,并简要说明其原理。 14. 为什么减小元件电抗可以提高系统的静态稳定性?说出三种减小电抗的措施。 15. 简述电气制动提高系统暂态稳定性的原理? 16. 为什么变压器中性点加小电阻可以提高电力系统的暂态稳定性? 电力系统某处装设了“三相短路故障联锁切机” 安全自动装置,请用等面积定则说明该装置对提高 稳定性的作用。18. 用等面积定则简要分析为什么快速切除故障可以提高电力系统的暂态稳定性? 19. 电力系统采用分裂导线的作用?简述原理。 20. 电力系统采用串联电容的作用?简述原理。 二、已知同步发电机的参数为x x x d q d =='==100603085.,.,.,cos .?滞后。试求额定运行时的空载电势E q 、虚构电势E Q 、暂态电势'E q 和'E , 并作电流电压相量图 三、已知隐极同步发电机的参数为 8.0cos ,3.0,0.1=='=?d d x x 滞后。试求额定运行时的空载电势E q 、暂态电势'E q , 并作电流电压相量图 四、已知发电机的暂态电抗,0.1,2.0' ==q d x x 负载的电压? ? ∠=300.1U 电流? ? -∠=158.0I 。试计算暂态电 势? ' q E ,并作电流电压相量图。 五、电力系统接线如图所示,元件参数标于图中,用标么值的近似计算法计算各元件电抗标么值

实验报告2:电力系统暂态稳定性仿真

《电力系统暂态分析》课程实验报告 姓名:学号: 一、实验目的 1、掌握PSS/E软件的使用,能够熟练地在仿真环境中建立仿真模型, 并导入数据; 2、掌握暂态仿真步骤和故障设置方法; 3、能够分析仿真数据,利用等面积定则原理总结故障切除时间对暂态稳 定的影响。 二、实验内容及步骤 1.在PSS/E软件中搭建如图1所示仿真模型。其详细数据见文件 1mach1bus.raw。 图1 仿真模型示意图 2.导入数据文件。打开PSS/E程序,加载数据文件1mach1bus.raw; 3.计算潮流。点击Power flow→Solution→Solve(……),点击Solve按钮, Close退出; 4.显示潮流结果。点击Power flow→Reports→Bus based reports,点击Go 按钮,Close退出;潮流结果截图如图2所示。

图2 潮流计算结果 5.转换发电机类型。点击Power flow→Convert loads and generators,选择 Generators,再选Use Zsorce,点击Convert按钮即可,Close退出; 6.导入动态数据。点击File→Open,导入1mach1bus.dyr,点击OK退出; 7.设置仿真步长。点击Dynamics→Simulation→Solution parameters,在 Simulation parameters下面的Delta中填写步长为0.01,在Freq. filter 中填写频率增量最大值为0.02,点击OK即可; 8.设置要输出的变量。点击Dynamics→Define simulation output(CHAN) →Machine quantity,选择母线1和4上发电机的相应Angle变量即可; 9.选择输出文件,初始化并且运行到故障起始时刻。点击Dynamics→ Simulation→Perform simulation(STRT/RUN),在Channel output file中选择要输出到的out文件,比如选择a20(默认为a20.out)。在Run to 框中填写故障起始时刻,通常为0。再点击Initialize,然后点击Run,即可完成,Close退出。初始化结果截图如图3所示。 图3 初始化结果 10.设置故障。点击Disturbance设置,比如选择Line fault,在From bus 框中填写2,在to bus框中3,在Admittance的R框中填写2E9,在X

电力系统暂态稳定性研究

摘要 随着电力工业的迅速发展,电力系统的规模日益庞大和复杂,出现的各种故障,会给发电厂以及用户和电厂内的多种动力设备的安全带来威胁,并有可能导致电力系统事故的扩大,从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题,依据电网用电供电系统电路模型要求,因此,论文利用MATLAB的动态仿真软件Simulink搭建了单机—无穷大电力系统的仿真模型,能够满足电网可能遇到的多种故障方面运行的需要。 论文以MATLAB R2009b电力系统工具箱为平台,通过SimPowerSyetem 搭建了电力系统运行中常见的单机—无穷大系统模型,设计得到了在该系统发生各种短路接地故障并故障切除的仿真结果。 本文做的主要工作有: (1)Simulink下单机—无穷大仿真系统的搭建 (2)系统故障仿真测试分析 通过实例说明,若将该方法应用到电力系统短路故障的诊断中,快速实现故障的自动诊断、检测,对于提高电力系统的稳定性具有十分重要的意义。 关键词电力系统;暂态稳定;MATLAB;单机—无穷大;

Abstract With the rapid development of power industry, the scale of power system is increasingly large and complex, all kinds of fault, to power plants and power plants and users in a variety of power equipment safety threat, and is likely to lead to the expansion of power system accident, from the technical and safety considering direct electricity experiment was carried out on the possibility is very small, urge electric power simulation are used to solve these problems, according to the power supply system of power grid power circuit model, as a result, paper use MATLAB dynamic simulation software Simulink has set up a simulation model for the single - infinite power system, can satisfy the needs of the running of a fault may encounter a variety of ways. Paper R2009b with MATLAB toolbox power system as a platform, through SimPowerSyetem set up power system in the operation of the common single - infinity system model, design the various kinds of short-circuit ground fault occurs in the system and simulation results of fault removed. The main work is : (1) Building this simulation system of single - infinite under Simulink (2) Fault simulation test analysis of system Through examples, if this method to the power system fault diagnosis, fast fault detection and diagnosis, automatic for improving the stability of power system has important significance. keywords:Single—infinite;SimPowerSyetem;Short circuit faults;Wavelet transform

matlab实验电力系统暂态稳定分析

实验三 电力系统暂态稳定分析 电力系统暂态稳定计算实际上就是求解发电机转子运动方程的初值问题,从而得出δ-t 和ω-t 的关系曲线。每台发电机的转子运动方程是两个一阶非线性的常微分方程。因此,首先介绍常微分方程的初值问题的数值解法。 一、 常微分方程的初值问题 (一)问题及求解公式的构造方法 我们讨论形如式(3-1)的一阶微分方程的初值问题 ?? ?=≤≤='00 )(),,()(y x y b x a y x f x y (3-1) 设初值问题(3-1)的解为)(x y ,为了求其数值解而采取离散化方法,在求解区间[b a ,]上取一组节点 b x x x x x a n i i =<<<<<<=+ 110 称i i i x x h -=+1(1,,1,0-=n i )为步长。在等步长的情况下,步长为 n a b h -= 用i y 表示在节点i x 处解的准确值)(i x y 的近似值。 设法构造序列{}i y 所满足的一个方程(称为差分方程) ),,(1h y x h y y i i i i ??+=+ (3-2) 作为求解公式,这是一个递推公式,从(0x ,0y )出发,采用步进方式,自左相右逐步算出)(x y 在所有节点i x 上的近似值i y (n i ,,2,1 =)。 在公式(3-2)中,为求1+i y 只用到前面一步的值i y ,这种方法称为单步法。在公式(3-2)中的1+i y 由i y 明显表示出,称为显式公式。而形如(3-3) ),,,(11h y y x h y y i i i i i ++?+=ψ (3-3) 的公式称为隐式公式,因为其右端ψ中还包括1+i y 。 如果由公式求1+i y 时,不止用到前一个节点的值,则称为多步法。 由式(3-1)可得 dy =dx y x f ),( (3-4) 两边在[i x ,1+i x ]上积分,得

基于MATLAB的电力系统暂态稳定仿真分析

MATLAB电气应用训练 2014年3月07日

目录 1 任务和要求 (1) 2 总体方案设计与选择 (1) 2.1题目剖析及分析 (1) 2.2暂态稳定仿真流程 (2) 3 单机—无穷大暂态稳定仿真分析 (2) 3.1复杂电力系统暂态稳定性分析 (2) 3.2单机—无穷大系统原理 (3) 4 Simulink下SimPowerSystem模型应用 (4) 4.1 Simulink仿真模型仿真模型的搭建 (4) 4.2各种提高暂态稳定性措施的运行效果仿真 (6) 5 设计总结 (8) 参考文献 (10)

1任务和要求 (1)任务:本次仿真以单机—无穷大系统或两极系统为对象进行仿真。分析了运行故障对稳态的干扰,对实际电力系统暂态稳定具有参考价值,仿真实践表明,MATLAB 是电力系统机电暂态稳定分析的有力工具。 (2)基本要求 ?Simulink下单机—无穷大仿真系统的搭建。 ?系统故障仿真测试分析。 ?通过实例说明,若将该方法应用到电力系统短路故障的诊断中,快速实现故障的自动诊断、检测。 2 总体方案设计与选择 2.1题目剖析及分析 随着电力工业的迅速发展,电力系统的规模日益庞大和复杂,出现的各种故障,会给发电厂以及用户和电厂内的多种动力设备的安全带来威胁,并有可能导致电力系统事故的扩大,从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题依据电网用电供电系统电路模型要求,因此,论文利用MATLAB的动态仿真软件Simulink搭建了单机—无穷大电力系统的仿真模型,能够满足电网在其可能遇到的多种故障方面运行的需要。 论文以MATLAB R2009a电力系统工具箱为平台,通过SimPowerSyetem 搭建了电力系统运行中常见的单机—无穷大系统模型,实验得到了在该系统发生各种短路接地故障并由断路器自动跳闸隔离故障的仿真结果。并利用小波分析具有很强的信号特征提取能力,尤其对暂态突变信号或微弱变化信号的处理变现出明显的优势,达到了仿真的目的。 MATLAB环境下的Simulink 是用于对复杂动态系统进行建模和仿真的图形化交互式平台。运行于Simulink下的PSB(Power System Blockset)是针对电力系统的工具箱,从Matlab 6.0开始它被重新命名为SPS(SimPowerSystem)。SimPowerSystem是以Hydro-Quebec'研究中心的专家为主的MATLAB的开发的工具箱,主要用于电力系统电力,电子电路的仿真。随着MATLAB的不断升级,SimPowerSystem也得到了很大的发展。现在,从MATLAB13版的开始,SimPowerSystem和SimMechanies一起作为现实模型产品族的成员,结合Simulink的使用,可以仿真电气,机械以及控制系统。使用SimPowerSystem,不需要学习复杂的软件命令,编写软件代码,用户可以专注于物理模型本身,通过与实际电路图非常相似的符号,表示复杂的电网,这有助于大大提高仿真的效率。

相关文档
最新文档