航空发动机期末复习习题

航空发动机期末复习习题
航空发动机期末复习习题

一、填空题(请把正确答案写在试卷有下划线的空格处)

容易题目

1.推力是发动机所有部件上气体轴向力的代数和。

2.航空涡轮发动机的五大部件为进气装置;压气机;燃烧室;涡轮和排气装置;其中“三大核心”部件为:压气机;燃烧室和涡轮。

3.压气机的作用提高空气压力,分成轴流式、离心式和组合式三种

4.离心式压气机的组成:离心式叶轮,叶片式扩压器,压气机机匣

5.压气机增压比的定义是压气机出口压力与进口压力的比值,反映了气流在压气机内压力提高的程度。

6.压气机由转子和静子等组成,静子包括机匣和整流器

7.压气机转子可分为鼓式、盘式和鼓盘式。

8.转子(工作)叶片的部分组成:叶身、榫头、中间叶根

8.压气机的盘式转子可分为盘式和加强盘式。

9.压气机叶片的榫头联结形式有销钉式榫头;燕尾式榫头;和枞树形榫头。

10.压气机转子叶片通过燕尾形榫头与轮盘上燕尾形榫槽连接在轮盘。

11压气机静子的固定形式燕尾形榫头;柱形榫头和焊接在中间环或者机匣上。

12压气机进口整流罩的功用是减小流动损失。

13.压气机进口整流罩做成双层的目的是通加温热空气

14.轴流式压气机转子的组成盘;鼓(轴)和叶片。

15.压气机进口可变弯度导流叶片(或可调整流叶片)的作用是防止压气机喘振。

16.压气机是安装放气带或者放气活门的作用是防止压气机喘振

17.采用双转子压气机的作用是防止压气机喘振。

18压气机机匣的基本结构形式:整体式、分半式、分段式。

19压气机机匣的功用:提高压气机效率;承受和传递的负载;包容能力

20整流叶片与机匣联接的三种基本方法:榫头联接;焊接;环

21.多级轴流式压气机由前向后,转子叶片的长度的变化规律是逐渐缩短。

22.轴流式压气机叶栅通道形状是扩散形。

23.轴流式压气机级是由工作叶轮和整流环组成的。

24.在轴流式压气机的工作叶轮内,气流相对速度减小,压力、密度增加。

25.在轴流式压气机的整流环内,气流绝对速度减小,压力增力—

26.叶冠的作用:①可减少径向漏气而提高涡轮效率;②可抑制振动。

27.叶身凸台的作用:阻尼减振,避免发生共振或颤震,降低叶片根部的弯曲扭转应力(防止叶片振动)。

28.涡轮工作条件:燃气温度高,转速高,负荷高,功率大

29.涡轮的基本类型:轴流式涡轮,径向式涡轮

30.涡轮的功用是把高温、高压燃气的部分热能、压力能转变为旋转地机械功从而带动压气机和其他附件工作

31.涡轮的组成:转子;静子和冷却系统。

32.涡轮叶片的特点剖面厚:弯曲大;和内腔有冷却通道。

33.涡轮不可拆卸式盘轴联接的方案有径向销钉联接方案;盘、轴焊接联接方案和盘轴整体方案

34.加强的盘式转子是在盘式转子的基础上增加了定距环和将轴加粗。

35.鼓式转子的优点是抗弯刚性好,结构简单。

36..涡轮叶片一般通过枞树形榫头与轮盘上的榫槽连接到轮盘上。

37.为了冷却涡轮叶片,一般把叶片做成空心的,通冷却空气。

38..在两级涡轮中,一般第二级涡轮叶片更需要带冠。

39.空气一空气热交换器的功用是利用外涵道的空气给冷却涡轮的空气降温

40.燃气涡轮发动机附件机匣的作用是安装和传动附件

41.工作叶片受到负荷的类型:气动负荷:振动负荷;热负荷:离心力负荷

42.燃烧室的基本类型:分管燃烧室,环管燃烧室,环形燃烧室

43.环形燃烧室的基本类型:带单独头部的环形燃烧室;全环形燃烧室;折流式环形燃烧室;回流式环形燃烧室

44.燃烧室的组成部分:扩压器、壳体、火焰筒、燃油喷嘴、点火器

45加力燃烧室的喷嘴的类型:离心式喷嘴、射流式喷嘴

46.加力燃烧室的基本构件:扩压器、火焰稳定器、输油圈及燃油喷嘴、点火装置、加力燃烧室壳体等部分组成,在双涵道发动机中还包括混合器。

47.扩压器的三种结构形式:一级扩压的扩压器;二级扩压的扩压器;突然扩张的扩压器

48.火焰筒的组成:涡流器;筒体及传焰管(连焰管)

49.燃气涡轮发动机燃烧室的作用是燃油与空气混合并讲行燃烧,提高燃气的温度。

50.燃气涡轮发动机加力燃烧的作用是加力时,燃油与空气混合并进行燃烧,

提高喷管前燃气的温度

51.燃气涡轮发动机喷管的作用是燃气在其中膨胀加速,高速喷出。

52.外涵道是涡轮风扇发动机的附件。

53.影响喷气发动机推力的因素有空气流量和流过发动机的气流的速度增量。

54..气流M数的定义是某点气流速度与该点音速的比值,称为该点的气流M

55.在绝能条件下,要使亚音速气流加速,必须采用收敛形管道。

56.在绝能条件下,要使超音速气流加速,必须采用扩散形管道。

57.在绝能条件下,要使气流从亚音速加速到超速,必须采用先收敛后扩散的

58.在绝能条件下,要使亚音速气流减速,必须采用扩散形管道。

59.WP-7压气机气流通道:等外径设计;等内径设计;等中径设计

60等外径设计优点:能充分提高叶片切向速度,加大加工量;以减少压气机级数;切

向速度受到强度的限制等内径设计优点:提高末级叶片效率。缺点:对气体加功量

小,级数多。多在压气机前面几级使用

61.WP7转子叶片的连接形式:燕尾型榫头;叶片在榫槽中的槽向固定:销钉;卡环;

锁片

62.WP7发动机静子结构:分段机匣;分半机匣

63.WP7发动机盘--轴连接结构:径向销钉连接

64.环形稳定器WP7甲;径向稳定器WP7乙;沙丘稳定器WP7B

65.转子的连结形式:短螺栓;焊接;销钉;长螺栓。

66.叶片在轮盘槽内的固定:卡圈、锁片、锁板、销钉

选择题

1. 加力燃烧室前的气流参数不变,那么,发动机的推力是:

A.增大;

B. 减小; 2. 直通管气体力恒指 A 方向

A.收敛;

B. 扩散; 3. 卸荷使发动机推力B 。

A.

增大; B. 不变; 4. 涡桨发动机承受的总扭矩为 B 。

A.零;

B. 不为零; 5. 发动机转子所受的陀螺力矩是作用在

6.在恰当半径处C

A.

盘的变形大于鼓的变形;B.盘的变形小于鼓的变形;

C.

的变形等于.鼓的变形 7. 涡喷发动机防冰部位A 。

A. 进口导流叶片;

B.压气机转子叶片;

C.涡轮静子叶片

8. 涡轮叶片榫头和榫槽之间的配合是 B 。

A. 过渡配合;

B. 间隙配合;

C. 过盈配合 9. 首当其冲地承受燃烧室排出的高温燃气的部件是 A 。

A.

涡轮一级导向器;B.涡轮二级导向器; C.涡轮三级导向器 10. 加力燃烧室的功用是可以 C 。

A.节能;

B. 减小推力;

C. 增大推力 1 ?燃气涡轮发动机的核心机包括 C 。

A.压气机、燃烧室和加力燃室

B.燃烧室、涡轮和加力燃室

C.压气机、燃烧室和涡轮 D .燃烧室、加力燃室和喷管

2. ___________________________________ 下列发动机是涡轮喷气发动机的是 _D _______________________________________ 。

A.A 八一31 ① B .Q — 30 C . W — 6 D . W —13。

C. 不变 C. 直径 C. 减小 C.

与螺旋桨扭矩无关

A 。 A.静子上;

B. 转子上;

C. 飞机机体上

航空发动机隐身性之尾喷管技术分析

航空发动机隐身性之尾喷管技术分析 邱朝 (飞行器动力工程西安航空学院阎良10021) 摘要:随着航空科技的不断发展和未来战场的需求,对于飞机的各种性能也要求的越来越高,本文主要针对于航空发动机隐身方面的技术分析,通过对比国内外航空发动机隐身的原理和方法,从而对未来航空发动机隐身技术发展的方向做出了一个准确的推测。 Analysis of stealthy technology for aeroengine and exhuast nozzle Abstract:company with aero-technology constantly congress and fultural battlefield.It’s advanced require for a kind of airplane’s performance.The acticle mainly point the aspect in which stealthy technology analysis of aeroengine.Passed by comparing with home and abroad aeroengine stealthy priciple and method.Thus make a accurate prediction about aeroengine stealthy technology direction of development. 前言: 飞机隐身技术是指以减小飞机的电、光、声等可探测特征,来提高其突防和生存能力的一种技术。美国第一批采用隐身技术的B-1B战略轰炸机与老式B_52相比,速度提高两倍,载弹量增加5000,但其雷达反射面积仅为其100,不到1平方米。而随后研制的B-2轰炸机,其探测特性只有百万分之一的数量级,在雷达光屏上的反映,只相当于一个飞行中的蜂鸟,因而具有很强的突防、作战和生存能力。发展发动机隐身技术是实现飞机隐身的重要一环,其内容函盖减小发动机可观察部件的探测反射特征、降噪和红外抑制技术,而对于尾喷管的改造则能很大程度上改善整体发动机的隐身性能。 1尾喷管的作用和类型 在涡轮风扇发动机上,喷管的主要作用是使发动机排出的燃气继续膨胀,

先进航空发动机关键制造技术研究

ARTICLES 学术论文 引言 航空发动机的设计、材料与制造技术对于航空工业的发展起着关键性的作用,先进的航空动力是体现一个国家科技水平、军事实力和综合国力的重要标志之一。随着航空科技的迅速发展,面对不断提高的国防建设要求,航空发动机必须满足超高速、高空、长航时、超远航程的新一代飞机的需求。 近年来,航空工业发达国家都在研制高性能航空发动机上投入了大量的资金和人力,实施一系列技术开发和验证计划,如“先进战术战斗机发动机计划(ATFE )”、“综合高性能涡轮发动机技术(IHPTET )计划”及后续的VAATE 计划、英法合作军用发动机技术计划(AMET )等。在这些计划的支持下,美国的F119、欧洲的 EJ200、法国的M88和俄罗斯的AL-41F 等推重比10 一级发动机陆续问世。 为了提高发动机的可靠性和推力,先进高性能发动机采用了大量新材料,且结构越来越复杂,加工精度要求越来越高,对制造工艺提出了更高的要求。而且,在新一代航空发动机性能的提高中,制造技术与材料的贡献率为 50%~70%,在发动机减重方面,制造技术和材料的贡献率占70%~80%,这也充分表明先进的材料和工艺是航空发动机实现减重、增效、改善性能的关键。 1 航空发动机的材料、结构及工艺特点 在提高发动机可靠性和维护性的同时,为了提高发动机的推力和推重比,航空发动机普遍采用轻量化、整体化结构,如整体叶盘、叶环结构。钛合金、镍基高温合金,以及比强度高、比模量大、抗疲劳性能好的树脂基复合材 先进航空发动机关键制造技术研究 黄维,黄春峰,王永明,陈建民 (中国燃气涡轮研究院,四川 江油 621703) Key manufacturing technology research of advanced aero-engine HUANG Wei ,HUANG Chun-feng ,WANG Yong-ming ,CHEN Jian-min (China Gas Turbine Establishment ,Jiangyou 621703,China ) Abstract :This paper describes the features of aero-engine material ,structure and technology ,and then ,development status and trend of key manufacturing technology for advanced aero-engine was analyzed. Finally ,the development of advanced aero-engine manufacturing technology in China is introduced and some proposals are put forward. Key Words : aero-engine ,manufacturing ,summarization 作者简介: 黄维(1982—),男,四川仁寿人,中国燃气涡轮研究院助理工程师,主要从事工艺技术研究。E-mail :huangwei611@https://www.360docs.net/doc/bb2430230.html,

航空发动机机匣构件机械加工工艺优化

航空发动机机匣构件机械加工工艺优化 摘要:航空发动机是飞机的“心脏”也是一个国家加工制造技术的重要体现,在航 空发动机的加工制造过程中,航空发动机机匣构件是航空发动机加工制造的重点 也是难点之一,在航空发动机机匣构件的加工制造过程中由于其材料、机匣的机 构尺寸等的因素常常导致在航空发动机机匣构件加工完成后出现几何尺寸、形位 公差超差等的问题,严重影响了航空发动机机匣构件的加工质量,此外,航空发 动机机匣构件加工表面损伤会导致航空发动机机匣构件的使用寿命和使用强度等 都大打折扣,为提高航空发动机机匣构件的表面加工质量,需要在总结分析影响 航空发动机机匣构件表面完整性因素的基础上,做好对于航空发动机机匣构件加 工工艺的优化,提高航空发动机机匣构件加工后的表面完整性,确保航空发动机 机匣构件的加工质量。 关键词:航空发动机机匣构件;机械加工;加工工艺;优化 前言 航空发动机机匣构件是飞机发动机加工制造中的关键构件,由于其需要承受 极高的温度和负载力因此多使用钛合金、高温合金等的高强度合金作为其主要的 材质。现今在航空发动机机匣构件的机械加工中容易出现表面完整性损伤,从而 对航空发动机机匣构件的使用寿命造成较大的影响,因此,应当通过对航空发动 机机匣构件的加工工艺进行优化,找出航空发动机机匣构件机械加工过程中的应 力集中点,改善航空发动机机匣构件机械加工过程中的应力分布以确保航空发动 机机匣构件加工表面的完整性,提高航空发动机机匣构件的抗疲劳使用寿命。 1 问题的提出和依据 航空工艺设计成本高、周期长,这两个特点不仅增加了传统工艺设计的难度,而且是传统工艺无法根本解决的。因此,对发动机关键零部件传统工艺采用数字 化手段进行优化改造势在必行。数字化的工艺系统可以保证在技术层面上制定产 品制造工艺时随时地、充分地考虑企业的制造环境,作业调度,车间底层控制, 工装夹具的配套以及毛坯的设计制造等所有工艺信息,将有关信息及时反馈到设 计单位并及时得到响应,生成适应性加工工艺,使制造过程达到全局优化,这是 未来航空发动机工艺的重要发展方向之一。 2 机匣工序优化的原则和要求 2.1 加工工序划分的一般原则 在数控机床上特别是在加工中心上加工零件,相对于传统机械加工方法,可 以做到工序相对集中,许多零件只需在一次装夹中就能完成全部工序加工。但零 件的粗加工,特别是铸、锻零件的基准平面、定位面等部位的加工可先在普通机 床上完成,这样有利于发挥数控机床的特点、保持其精度、延长其使用寿命并降 低加工成本。 2.2 机匣工序优化的一些要求 工序相对集中是最有效的提高加工效率的措施,工序相对集中有利于发挥加 工中心的加工能力。机匣加工的绝大多数金属去除量采用数控手段去除,军工企 业新引大量进口加工中心设备。加工方案的确定可以说是由设计图纸的工艺性分 析和工序划分过程组成。首先,设计图纸的工艺性分析重点在于零件进行数控加 工的方便性和可能性分析两个方面进行。比如说,零件设计图制是否便于编制NC 程序,尺寸标注方面是否适应数控加工特点,以及尺寸要素提供是否充分,看是 否缺尺寸或给了封闭尺寸。分析零件的加工精度能否得到满足。其次分析零件各

航空发动机结构分析思考题答案

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2 2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静

子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子? 答:P40 图3.6 _c\d 8.工作叶片主要由哪两部分组成 答:叶身、榫头(有些有凸台) 9.风扇叶片叶身凸台的作用是什么? 答:减振凸台,通过摩擦减少振动,避免发生危险的共振或颤振。 10.叶片的榫头有哪几种基本形式?压气机常用哪一种?答: a)销钉式榫头; b)枞树型榫头;

航空发动机制造技术实训金工实习

航空发动机制造技术实 训金工实习 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

航空发动机制造技术实训 金工实习报告 院系: 专业:飞行器动力工程 班级: 学号: 姓名: 时间:2018.1.10-2018.1.20 一、水电维护 时间:1月11日~1月12日 学号: 姓名: 一月11日,水电维护实训开始,上午工厂的两个老师傅给我们讲了水电维护的主要工作,在这里学到的水电维护主要是设备电路的安装保养和维修。 师傅首先给我们讲了用电安全的知识,首先触电的有三种形式:单相触电、两相触电、跨步电压触电。其中单相触电是指人体接触三相导线中任意一根导线,电流从一根相线通过人体流入大地;两相触电是指人体有两点同时接触到三相电网中任意两根相线,电流就会从一根相线

通过人体流到另一根相线;跨步电压触电是指当三相高压配电线的任一相导线断落接地时,则有电流流入大地,向四周流散,以电流入地点为圆心,在20米范围内的不同圆周上的电位是不同的,当人的两脚站在不同电位的圆周上时,就有电流通过人体。按照触电事故的构成方式,触电事故可分为电击和电伤。其中电击是指电流对人体内部组织的伤害,是最危险的一种伤害,绝大所数(约85%以上)的触电死亡事故都是由电击造成的。电击可分为直接触电电击和间接触电电击。电伤是指由电流的热效应、化学效应等对人体造成的伤害。通过对触电事故的学习认识,知道电路维护的危险性和重要性。 随后老师傅教我们做了一个控制电机转动的开关,他的主要功能是通过两个按钮控制电机的转动,这个装置理解起来非常简单,不过为了设备操作安全可靠,需要在里面加入保护器和漏电开关,这就让这个装置变动开始复杂起来,老师先给我们讲了操作原理,然后教我们按照工业标准给设备铺设线路,横平竖直,的一番操作还真的挺不好做,在队友的帮助下我成功的打了一次漂亮的辅助,完成了任务。 二、装配 时间:1月13日~1月14日 学号: 姓名:

航空发动机制造技术专业简介

航空发动机制造技术专业简介 专业代码560603 专业名称航空发动机制造技术 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握航空发动机制造技术、精密加工、特种加工和航空发动机工艺装备等基本知识,具备精密加工、超精加工、特种加工工艺参数选择和航空零部件工艺装备制造的能力,以及数控加工工艺规程的编制和数控加工程序的编制的能力,从事数控机床操作、数控电加工机床操作、数控编程、机械加工工艺等工作的高素质技术技能人才。 就业面向 主要面向航空发动机研发、制造企业,在数控机床操作、数控电加工机床操作、机械加工工艺等岗位群,从事工艺装备的制造、精密机床和特种加工设备的操作(包括电火花成型机床、线切割机床、电化学加工机床、激光加工机床和快速成型机床)等工作。 主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备航空零件识图能力和计算机绘图能力; 3.具备材料选用与热处理方法选择能力; 4.具备数控编程和操作数控机床加工航空零部件的能力; 5.具备对航空发动机零部件进行测绘的能力,具备 CAD/CAM 软件应用能力; 6.具备精密加工、超精加工、特种加工工艺参数选择能力; 7.具备操作数控电加工机床加工机械零件的能力。

核心课程与实习实训 1.核心课程 包括机械制造工艺与机床夹具、金属切削与机床、数控特种加工概述、数控电火花加工、数控电火花线切割加工、先进制造技术、航空发动机制造新技术等。 2.实习实训 在校内进行数控机床操作、数控电加工机床、UG 制图员培训、数控手工编程等实训。在航空发动机研发、制造企业进行实习。 职业资格证书举例 机修钳工制图员数控设备装调维修工数控线切割操作工数控电加工机床操作工 衔接中职专业举例 飞机维修机械加工技术 接续本科专业举例 无

西工大航空发动机结构分析课后作业答案

第六章加力燃烧室 1.加力燃烧室由哪些基本结构组成? 答:加力燃烧室由扩压器、预燃室、火焰稳定器、喷嘴和加力输油总管、加力燃烧室壳体等组成。 2.加力燃烧室(预燃)点火方式有哪几种类型?说明相应的预燃点火装置的组 成和特点。 答:①电嘴点火:WP6发动机采用这种点火方式,其预燃室由内外锥体,内外壁,点火电嘴,导流板和火焰喷口等组成。内外壁之间是助燃冷却的二股气流通道,内壁上两排交错的16个小孔使二股气流进入预燃室。当接通加力时,用专门的汽化器形成混合气,输入预燃室,经过内外锥体组成的环形气流通道后,截面突然扩张,在预燃室头部内锥体后的凹面内形成强烈的涡流:用电嘴点燃后,火舌从预燃室喷出,点燃后输油圈上两个喷嘴喷出的燃油,形成中心火焰稳定区,然后火焰经过V型支柱点燃环形状火焰稳定器迥流区的混合气。经过8.5~14秒后,在加力燃烧室内形成稳定的点火源,预燃室便自动停止工作。 ②火舌点火系统:当启动加力燃烧室时,由专门的附件将附加的燃油喷入主燃烧室中的某个火焰筒内,这股附加燃油形成的火焰穿过涡轮,点燃加力燃烧室的混合气。这种点火方式的优点是:点火能量大,高空性能好,迅速可靠,不能添加附加机构件,只要主燃烧室不熄火就总能点燃,缺点是:火舌传递路程远,流程复杂尤其在穿过多级涡轮时,受到强烈的扰动,在调试加力燃烧室时相应地要做大量的点火试验。 ③催化点火系统:利用铂能吸附氧气和氢气的特性,使点火用的混合气借助铂铑丝网的催化作用,在较低的温度下点燃。这种点火装置结构简单,重量轻,点火方便,但铂铑丝价格贵,易受污染而失效,影响其工作可靠性。 5.为什么加力燃烧室的输油圈常有主副之分? 答:加力燃烧室的供油为分圈分压式供油,当加力泵后的油压小于0.98MPa时,副油路供油,主油路关闭;加力泵后油压大于0.98MPa时,主、副油路同时供油。故一般有主副之分。 7.为什么说高温陶瓷适合于作未来加力燃烧室材料? 答:未来先进发动机燃烧室的单位推力将比F110高70%~80%,对所用的材料也提出了更高的要求。在推重比为15~20的发动机加力燃烧室中,火焰稳定器的工作温度是1200摄氏度左右,加力燃烧室的喷嘴也要在1530摄氏度以上的温度工作,高温陶瓷具有非常好的耐高温特性,是其他金属无可替代的。

航天发动机尾喷管材料的简介

航天发动机尾喷管材料的简介 ————高温合金 摘要:随着航天航空的迅速发展,对耐高温材料有了更高的要求,但是随着高温材料的发展,它们的加工问题也越来越严峻,急需相应工艺的发展,对高温材料的有效加工必将是高温材料今后有效利用的关键。 关键词:加工工艺,高温合金,切削,应用,发展。 一、零件的材料 火箭发动机喷管是用于火箭发动机的一种(通常是渐缩渐阔喷管)推力喷管。它用于膨胀并加速由燃烧室燃烧推进产生的燃气,使之达到超高音速。 喷嘴的外形:钟罩形或锥形。在一个高膨胀比的渐缩渐阔喷嘴中,燃烧室产生的高温气体通过一个开孔(喷口)排出。如果给喷嘴提供足够高的压力(高于围压的2.5至3倍),就会形成喷嘴阻流和超音速射流,大部分热能转化为动能,由此增加排气的速度。在海平面,发动机排气速度达到音速的十倍并不少见。一部分火箭推力来自燃烧室内压力的不平衡,但主要还是来自挤压喷嘴内壁的压力。排出气体膨胀(绝热)时对内壁的压力使火箭朝向一个方向运动,而尾气向相反的方向。 当火箭发动机运转以后,从燃烧室中喷出极高的温度与压力的气体,需要经过尾喷管对高温高压气体调整方向,从而使火箭达到超高音速的要求,所以鉴于如此高温,高压的恶劣环境,则对尾喷管的材料提出很高的要求,这种材料不但需要有极好的耐高温性,需要经受住2000摄氏度到3500摄氏度的高温,还需要有极好的耐冲击性,灼热表面的超高速加热的热冲击,还有高热引起的热梯度应力,有较好的刚度,耐氧化性,耐热疲劳性。 在如此恶劣的工作环境下,我们需要一种满足以上要求的材料,儿高温合金的出现满足了这个要求。 二、高温合金的分类、性能等 760℃高温材料变形高温合金 变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。GH后第一位数字表示分类号即1、固溶强化型铁基合金 2、时效硬化型铁基合金 3、固溶强化型镍基合金 4、钴基合金 GH后,二,三,四位数字表示顺序号。

尾喷管

尾喷管 为了获得大的推力,排气必须具有很高的动能,这意味着具有很高的排气速度。喷管前后的落压比控制膨胀过程。当出口压力等于外界压力时,对于给定的发动机来说,就获得了最大得的推力。 尾喷管的功能可以概括如下: 2以最下小的总压损失把气流加速到很高的速度; 2使出口压力尽可能接近外界大气压力; 2允许加力燃烧室工作不影响主发动机工作,这就需要采用可调面积喷管; 2如果需要,可使涡扇发动机的核心气流与外涵气流混合; 2如果需要,可使推力反向和/或转向; 2如果需要,可抑制喷气噪声和红外辐射。 各种不同类型的尾喷管归结为两大类:一类为固定喷管,包括简单收敛喷管和高涵道比分开排气喷管;另一类为可调面积喷管,包括引射喷管、收敛-扩张喷管、塞式喷管以及各种不同类型的非轴对称喷管。 尾喷管类型的选择主要是根据发动机、飞机和任务的综合要求以及适当的权衡分析决定。 对尾喷管的研究主要集中在喷管的内特性和气动载荷两方面。在喷管的内特性方面所考虑的是喷管的推力系数和流量系数随喷管的流动损失、漏气量、冷却空气损失和气流分离损失的变化,供发动机性能计算用。在气动载荷研究方面,要估算作用在主喷管、副喷管调节和外鱼鳞片上的气动载荷,用于零件结构强度设计和作动系统设计。 在喷气发动机发展的初期,飞机大多是亚音速或低超音速的,此时一般采用固定的简单收敛喷管。70年代,高涵道比涡扇发动机采用了分开排气喷管。在早期的超音超音速飞机的涡喷发动机上采用引射喷管,允许不同流量的外部空气进入喷管,用以冷却,又使进气道与发动机流量匹配更好,底部阻力减小.随着飞行速度的提高,涡扇发动机装备了加力燃烧室,喷管落压比增大,研制出喉部和出口面积都可调的收敛-扩张喷管。这种喷管保证了加力燃烧室工作不影响主发动机工作,且在宽广的飞行范围内保持发动机性能最佳。普2惠公司F100加力式涡扇发动机上采用的平衡梁式收敛-扩张喷管是这类喷管的代表,它的主喷管调节鱼鳞片上的转轴由前端移到中部,在调节过程中可始终利用作用在鱼鳞片上

超临界二氧化碳布雷顿循环研究综述

2019年第2期2019年2月 0引言 超临界二氧化碳(以下简称“S-CO 2”)布雷顿循环是一种可实现高效热电转化的动力循环,它以CO 2为工质,利用布雷顿循环完成能量转化,在整个循环过程中始终保持CO 2为超临界状态。该循环可利用的热源温度范围广(400℃~700℃)、效率高(40%~50%),适用于太阳能、核能、分布式能源、船舶动力、燃料电池等多个领域[1],被认为是当前最具有发展前景的能量转换系统之一[2]。 1S-CO 2布雷顿循环介绍 S-CO 2布雷顿循环的工作原理如图1所示,该循环 为典型的布雷顿循环,包括压缩过程、回热过程、加热过程、膨胀过程、预冷过程五个热力过程,如图1a)所示,其主要由压缩机、回热器、涡轮机、预冷器和热源构成;如图1b)所示,其循环过程为:a)S-CO 2工质经压缩机升压后,利用换热器将S-CO 2工质等压加热到高温;b)高压高温的S-CO 2工质进入涡轮机,推动涡轮做功并带动发电机发电;c)工质进入冷却器恢复到初始状态,在此进入压气机形成闭式循环,S-CO 2的压力和体积变化情况如图1a)中的1-2-3-4-5-6-1循环[3]。 与其他动力循环(蒸汽朗肯循环、有机朗肯循环) 相比,S-CO 2循环具有如下特点:a)S-CO 2工质的特点。当CO 2的压力达到7.377MPa ,温度达到304.128K 时,变为超临界状态,其临界温度和压力远低于水的临界点(22.064MPa ,647.096K ),易于达到;S-CO 2具 收稿日期:2018-12-18 基金项目:中核集团自主研发项目(2017-568) 第一作者简介:冯岩,1988年生,男,河南民权人,2012年毕业于北京理工大学机械制造及其自动化专业,工程师。 超临界二氧化碳布雷顿循环研究综述 冯 岩,王绩德 (中国中原对外工程有限公司,北京100044) 摘要:超临界二氧化碳(S-CO 2)布雷顿循环是当前最具有发展前景的能量转换系统之一,适用于核能、太阳能、分 布式能源、船舶动力、燃料电池等多个领域。阐述了S-CO 2布雷顿循环原理及特点,综述可应用于核电领域的S-CO 2简单布雷顿循环典型结构布局、不同布局下循环性能参数以及优缺点,分析结果能够为相关发电领域S-CO 2布雷顿循环系统设计与应用提供参考。 关键词:超临界二氧化碳布雷顿循环;再压缩循环;部分冷却循环;循环效率中图分类号:TK14文献标识码:A 文章编号:2095-0802-(2019)02-0097-04 Review of Supercritical Carbon Dioxide Brayton Cycle Research FENG Yan,WANG Jide (China Zhongyuan Engineering Corp.,Beijing 100044,China) Abstract:Supercritical carbon dioxide(S-CO 2)Brayton cycle is one of the most promising energy conversion systems,suitable for nuclear energy,solar energy,distributed energy,marine power,fuel cells and other fields.This paper expounded the principle and characteristics of S-CO 2Brayton cycle and summarized the typical structure layout,cycle performance parameters under different layouts,advantages and disadvantages of S-CO 2Brayton cycle in nuclear power field.The analysis results can provide reference for the design and prototype experimental research of S-CO 2Brayton cycle system in related power generation fields.Key words:supercritical carbon dioxide Brayton cycle;recompression cycle;partial cooling cycle;cycle efficiency (总第161期)技术研究 涡轮机 压缩机 发电机回热器 预 冷器 热源2 1 45 6 3 b)循环简单结构图 1.压缩机入口; 2.压缩机出口; 3.回热器冷侧流体出口; 4.涡轮机入 口;5.涡轮机出口;6.回热器热侧流体出口。图1S-CO 2布雷顿循环的工作原理示意图 a)热力循环T-S 图 43 2 6 熵s /(J ·mol -1·K -1) 1 5 97··

航空发动机叶片材料及制造技术现状

航空发动机叶片材料及制造技术现状 在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志【007】。 航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因而国外自7O年代以来纷纷开始研制新型高温合金,先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料;单晶高温合金已经发展到了第3代。8O年代,又开始研制了陶瓷叶片材料,在叶片上开始采用防腐、隔热涂层等技术。 1 航空发动机原理简介 航空发动机主要分民用和军用两种。图1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理示意图;图3是飞机涡轮发动机内的温度、气流速度和压力分布;图4是罗尔斯-罗伊斯喷气发动机内温度和材料分布;图5为航空发动机用不同材料用量的发展变化情况。 图1 普惠公司民用涡轮发动机主要构件 图2 EJ200军用飞机涡轮发动机的工作原理

图3 商用涡轮发动机内的温度、气流速度和压力分布 图4 罗尔斯-罗伊斯喷气发动机内温度和材料分布 图5 航空发动机用不同材料用量的变化情况

1变形高温合金叶片 1.1 叶片材料 变形高温合金发展有50多年的历史,国内飞机发动机叶片常用变形高温合金如表1所示。高温合金中随着铝、钛和钨、钼含量增加,材料性能持续提高,但热加工性能下降;加入昂贵的合金元素钴之后,可以改善材料的综合性能和提高高温组织的稳定性。 1.2 制造技术 生产工艺。变形高温合金叶片的生产是将热轧棒经过模锻或辊压成形的。模锻叶片主要工艺如下: (1)镦锻榫头部位; (2)换模具,模锻叶身。通常分粗锻、精锻两道工序;模锻时,一般要在模腔内壁喷涂硫化钼,减少模具与材料接触面之阻力,以利于金属变 形流动; (3)精锻件,机加工成成品; (4)成品零件消应力退火处理; (5)表面抛光处理。分电解抛光、机械抛光两种。 常见问题。模锻叶片生产中常见问题如下: (1)钢锭头部切头余量不足,中心亮条缺陷贯穿整个叶片; (2) GH4049合金模锻易出现锻造裂纹; (3)叶片电解抛光中,发生电解损伤,形成晶界腐蚀; (4) GH4220合金生产的叶片,在试车中容易发生“掉晶”现象;这是在热应力反复作用下,导致晶粒松动,直至剥落。 发展趋势。叶片是航空发动机关键零件.它的制造量占整机制造量的三分之一左右。航空发动机叶片属于薄壁易变形零件。如何控制其变形并高效、高质量地加工是目前叶片制造行业研究的重要课题之一。

(整理)西北工业大学航空发动机结构分析课后答案第2章典型发动机

第二章典型发动机 1、根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡轮喷气、涡轮风扇、军用涡扇发动机的性能特征。 涡轮喷气发动机、涡轮风扇发动机、军用涡扇发动机对比如下,以典型的三代发动机的性能指标加以对比,如下表所示: 通过分析比较,涡喷发动机随着技术的更新,新一代的发动机比上一代的发动机拥有高的增压比,推重比,涡轮燃气温度也有较大幅度的提高,特别是第三代发动机,整体性能有了大幅度的提升。 民用涡扇发动机的涵道比进一步增大,涡轮燃气温度也进一步升高,在不影响整体性能的情况下,采用了一系列措施降低了耗油率。

军用涡轮风扇发动机每一代的性能提高十分迅速,增压比,推重比,涡轮前燃气温度都有大幅度提高,而涵道比降低,耗油率也有较明显的下降。对于军用发动机来说,推重比的大幅提高提高了战机的机动性能,耗油率降低也相应的增大了载弹量,这些性能的提高均有利于空中作战. 2、АЛ—31Ф发动机的主要特点是什么?在该机上采用了哪些先进技术? 主要特点: АЛ—31Ф发动机是苏—27的动力装置,其主要部件有低压压气机、中介机匣、高压压气机、环形燃烧室、双转子涡轮、射流式加力燃烧室、全状态可调拉瓦尔喷管和附件传动机匣等。其中压气机有13级,低压压气机4级,高压压气机9级;涡轮为双转子流反应式,高、低压涡轮各1级。高压转子为刚性连接,支承在两个支点上;打压转子由部分组成,各个部分之间用销钉连接,支撑在4个支点上。 先进技术: 进气匣为全钛结构,有23个可变弯度的进口导流叶片; 风扇和高压压气机才、广泛采用钛合金结构,转子的级间采用了电子束焊; 高压压气机有三级可调静子叶片,所有9级工作叶片均为环形燕尾形榫头; 环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴; 高压压气机不带冠,榫头处带有减震器,低压涡轮叶片带冠; 涡轮冷却系统采用了设置在外涵道中的空气—空气换热器,可使冷却空气降温125~210℃,加强了冷却效果; 加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障; 收敛—扩张喷管有亚音速、超音速调节片及密封片各16片组成; 排气方式为内、外涵道混合排气; 燃油控制系统为监控型电子控制,模拟式电子控制装置—综合调节器提供超限保护,提高了控制精度;发动机全流程几何通道控制系统和防喘系统使发动机稳定工作范围扩大,工作可靠性提高; 附件传动装置中游恒速传动装置。 3、ALF502发动机是什么类型的发动机?它有哪些优点? ALF502发动机是为商用短程及支线客机发展的小推力级别高涵道比双子涡轮风扇发动机。 优点: 该发动机采用单元体设计,整台发动机由4个单元体组成,每个单元体在出厂前都经过平衡,可以直

超燃冲压发动机原理与技术分析

本科毕业论文(设计) 题目:超燃冲压发动机原理与技术分析 学院:机电工程学院 专业:热能与动力工程系2010级热能2班 姓名:王俊 指导教师:刘世俭 2014年 5 月28 日

超燃冲压发动机原理与技术分析 The Principle and Technical Analysis of Scramjet Engine

摘要 通过对超燃冲压发动机的基本原理与特点的介绍,比较了世界主要国家在超燃冲压理论研究与工程实际中的一些成果;结合高超音速空气动力学以及流体力学的一些基本原理,阐述进气道、隔离段、燃烧室、尾喷管的设计并进行性能分析;列举目前投入应用的几种主流构型及其选择依据;分析主要参数对超燃冲压发动机的影响;最后综合阐述超燃冲压发动机的发展趋势以及用途。 关键词:超燃冲压发动机性能分析一体化设计热循环分析

Abstract: Introduction the basic principle and features of scramjet engine, comparison of major powerful countries’ theoretical researches and practical achievements on this project. Expound and analyses the design and property programmes of air inlet、isolator、combustion chamber、tailpipe nozzle with theories of hypersonic aerodynamics and hydrodynamics; Its application in several mainstream configuration and its choice; analysis of the effect of main parameters on the scramjet. Finally, the developing trend of integrated scramjet paper and uses Key words: scramjet engine property analysis integrating design Thermal cycle analys

航空发动机控制系统浅析

航空发动机控制系统浅析 【摘要】航空发动机控制系统是一个多变量、时变、非线性、多功能的复杂系统,其性能的优劣直接影响发动机及飞机的性能。本文主要论述了航空发动机控制系统的发展历程、相关技术及其技术优缺点,并预测了国际发动机控制技术的未来发展。 【关键词】航空发动机控制系统;机械液压;FADEC;分布式;综合控制 1.概述 发动机的工作过程是极其复杂的气动热力过程,在其工作范围内随着发动机的工作条件和工作状态(如巡航、加速及减速等)的变化,它的气动热力过程将发生很大的变化,对于这样一个复杂而且多变的过程如果不加以控制,可以想象系统不但达不到设计的性能要求,而且根本无法正常工作。所以,航空发动机控制系统的目的就是使其在允许的环境条件和工作状态下都能稳定、可靠地运行,充分发挥其性能效益。 2.发展历程 随着航空发动机技术的不断进步和性能不断提高,其控制系统也由简单到复杂。航空发动机控制系统发展阶段的分类方法有很多种,目前,按发动机控制技术的发展和应用阶段大致分为以下4种,作简要介绍:(1)机械液压控制;(2)数字电子式控制;(3)分布式控制;(4)综合控制。 2.1 机械液压控制系统 机械液压控制系统:是使用基于开环控制或单输入单输出(SISO)闭环反馈控制等经典控制理论,采用由凸轮和机械液压装置组成的机械液压控制器即可成功地对发动机进行控制。 机械液压控制系统典型应用的机种:最典型的就是俄罗斯AN-*系列飞机。 这种简单的单输入单输出控制系统优点:(1)方法简单;(2)易于实现;(3)能保证发动机在一定使用范围内具有较好的性能。因此这种控制方法目前仍然应用于许多发动机的控制中。目前,国内运输机飞机上,发动机控制仍然用的是凸轮和机械液压装置组成的机械液压控制器。 随着发动机控制功能的增加,控制系统的复杂度也越来越大。这种简单的液压机械控制系统的缺点就显现了出来:(1)仅适用于:飞行速度比较小、飞行高度比较低、发动机的推力不大的飞机。(2)机械液压流量控制和伺服部件变得越来越大、越来越重、越来越昂贵。

航空发动机构造

航空发动机构造 课堂测试-1 1.航空发动机的研究和发展工作具有那些特点? 技术难度大;周期长;费用高 2.简述航空燃气涡轮发动机的作用。 是现代飞机与直升机的主要动力(少数轻型、小型飞机和直升机采用航空活塞式发动机),为飞机提供推进力,为直升机提供转动旋翼的功率。 3.航空燃气涡轮发动机包括哪几类?民航发动机主要采用哪种? 涡喷、涡桨、涡扇、涡轴、桨扇、齿扇等;涡扇。 4.高涵道比民用涡扇发动机的涵道比范围是多少? 5-12 课堂测试-2 1.发动机吊舱包括(进气道)、(整流罩)和(尾喷管)等。 2.对于民用飞机来说,动力装置的安装位置应该考虑到以下几点: 不影响进气道的效率;排气远离机身;容易接近,便于维护 3.在现代民用飞机上,发动机在飞机上的安装布局常见的有(翼下安装)、(翼下吊装和垂直尾翼安装)和(机身尾部安装)。 4.发动机安装节分两种:(主安装节)与(辅助安装节)。前者传递轴向力、径向力、扭矩,后者传递径向力、扭矩。一般主安装节装于(温度较低,靠近转子止推轴承处的压气机或风扇机匣上)上,辅助安装节装于(涡轮或喷管的外壳上)上。 5.涡轮喷气发动机的进气道可分为(亚音速)进气道和(超音速)进气道两大类。我国民航主要使用亚音速飞机,其发动机的进气道大多采用(亚音速)进气道。 6.通常在涡轮喷气和涡轮风扇发动机上采用(热空气)防冰的方式,在涡轮螺旋桨发动机上采用(电加热)防冰,或是两种结合的方式。 7.对于涡轮螺旋桨发动机来说,需要防冰的部位有(进气道)、(桨叶)和(进气锥)。 8.为了对吊舱进行通风冷却,一般把吊舱分成不同区域,各区之间靠(防火墙)隔开,以阻挡火焰的传播。9.发动机防火系统包括(火情探测)、(火情警告)和(灭火)三部分。 课堂测试-3 1.现代涡轮喷气发动机由(进气道)、(压气机)、(燃烧室)、(涡轮)、(尾喷管)五大部件和附件传动装置 与附属系统所组成。 2.发动机工作时,在所有的零部件上都作用着各种负荷。根据这些负荷的性质可以分为(气动)、(质量) 和(温度)三种。 3.航空燃气涡轮发动机主轴承均采用(滚动)轴承,其中(滚棒轴承)仅承受径向载荷,(滚珠轴承)可承 受径向载荷与轴向载荷。 4.转子上的止推支点除承受转子的(轴向)负荷、(径向)负荷外,还决定了转子相对于机匣的(轴向)位 置。因此每个转子有(一)个止推支点,一般置于温度较(低)的地方。 5.压气机转子轴和涡轮转子轴由(联轴器)连接形成发动机转子,分为(柔性联轴器)和(刚性联轴器)。 其中(柔性联轴器)允许涡轮转子相对压气机转子轴线有一定的偏斜角。 6.结合图3.9,简述发动机的减荷措施有哪些?这些措施是否会减少发动机推力? 减荷措施:

先进航空发动机关键制造技术发展现状与趋势

先进航空发动机关键制造技术发展现状与趋势 一、轻量化、整体化新型冷却结构件制造技术1 整体叶盘制造技术整体叶盘是新一代航空发动机实现结构创新与 技术跨越的关键部件,通过将传统结构的叶片和轮盘设计成整体结构,省去传统连接方式采用的榫头、榫槽和锁紧装置,结构重量减轻、零件数减少,避免了榫头的气流损失,使发动机整体结构大为简化,推重比和可靠性明显提高。在第四代战斗机的动力装置推重比10 发动机F119 和EJ200上,风扇、压气机和涡轮采用整体叶盘结构,使发动机重量减轻20%~30%,效率提高5%~10%,零件数量减少50% 以上。目前,整体叶盘的制造方法主要有:电子束焊接法;扩散连接法;线性摩擦焊接法;五坐标数控铣削加工或电解加工法;锻接法;热等静压法等。在未来推重比15~20 的高性能发动机上,如欧洲未来推重比15~20 的发动机和美国的IHPTET 计划中的推重比20的发动机,将采用效果更好的SiC 陶瓷基复合材料或抗氧化的C/C 复合材料制造整体涡轮叶盘。2 整体叶环(无盘转子)制造技术如果将整体叶盘中的轮盘部分去掉,就成为整体叶环,零件的重量将进一步降低。在推重比15~20 高性能发动机上的压气机拟采用整体叶环,由于采用密度较小的复合材料制造,叶片减轻,可以直接固定在承力环上,从而取消了轮盘,使结构质量减轻70%。目前正

在研制的整体叶环是用连续单根碳化硅长纤维增强的钛基复合材料制造的。推重比15~20 高性能发动机,如美国XTX16/1A 变循环发动机的核心机第3、4 级压气机为整体叶环转子结构。该整体叶环转子及其间的隔环采用TiMC 金属基复合材料制造。英、法、德研制了TiMMC 叶环,用于改进EJ200的3级风扇、高压压气机和涡轮。3 大小叶片转子制造技术大小叶片转子技术是整体叶盘的特例,即在整体叶盘全弦长叶片通道后部中间增加一组分流小叶片,此分流小叶片具有大大提高轴流压气机叶片级增压比和减少气流引起的振动等特点,是使轴流压气机级增压比达到3 或3 以上的有发展潜力的技术。4 发动机机匣制造技术在新一代航空发动机上有很多机匣,如进气道机匣、外涵机匣、风扇机匣、压气机机匣、燃烧室机匣、涡轮机匣等,由于各机匣在发动机上的部位不同,其工作温度差别很大,各机匣的选材也不同,分别为树脂基复合材料、铁合金、高温合金。树脂基复合材料已广泛用于高性能发动机的低温部件,如F119 发动机的进气道机匣、外涵道筒体、中介机匣。至今成功应用的树脂基复合材料有PMR-15(热固性聚酰亚胺)及其发展型、Avimid(热固性聚酰亚胺)AFR700 等,最高耐热温度为290℃~371℃,2020 年前的目标是研制出在425℃温度下仍具有热稳定性的新型树脂基复合材料。树脂基复合材料构件的制造技术是集自动铺带技术(ATL)、自动纤维铺放

相关文档
最新文档