半导体物理考试重点 (1)

半导体物理考试重点 (1)
半导体物理考试重点 (1)

半导体物理考试重点

题型:名词解释3*10=30分;简答题4*5=20分;证明题10*2=20分;计算题15*2=30分

一.名词解释

1、施主杂志:在半导体中电离时,能够释放电子而产生导电电子并形成正电中心的杂质称为施主杂质。

2、受主杂志:在半导体中电离时,能够释放空穴而产生导电空穴并形成负电中心的杂质称为受主杂质。

3、本征半导体:完全不含缺陷且无晶格缺陷的纯净半导体称为本征半导体。实际半导体不可能绝对地纯净,本征半导体一般是指导电主要由本征激发决定的纯净半导体。

4、多子、少子

(1)少子:指少数载流子,是相对于多子而言的。如在半导体材料中某种载流子占少数,在导电中起到次要作用,则称它为少子。

(2)多子:指多数载流子,是相对于少子而言的。如在半导体材料中某种载流子占多数,在导电中起到主要作用,则称它为多子。

5、禁带、导带、价带

(1)禁带:能带结构中能量密度为0的能量区间。常用来表示导带与价带之间能量密度为0的能量区间。

(2)导带:对于被电子部分占满的能带,在外电场作用下,电子可以从外电场中吸收能量跃迁到未被电子占据的能级去,形成电流,起导电作用,常称这种能带为导带

(3)价带:电子占据了一个能带中的所有的状态,称该能带为满带,最上面的一个满带称为价带

6、杂质补偿

施主杂质和受主杂质有互相抵消的作用,通常称为杂质的补偿作用。

7、电离能:使多余的价电子挣脱束缚成为导电电子所需要的能量称为电离能

8、(1)费米能级:费米能级是绝对零度时电子的最高能级。

(2)受主能级:被受主杂质所束缚的空穴的能量状态称为受主能级

(3)施主能级:被施主杂质束缚的电子的能量状态称为施主能级

9、功函数:功函数是指真空电子能级E0 与半导体的费米能级EF 之差。

10、电子亲和能:真空的自由电子能级与导带底能级之间的能量差,也就是把导带底的电子拿出到真空去而变成自由电子所需要的能量。

11、直/间接复合

(1)直接复合:电子在导带和价带之间的直接跃迁,引起电子和空穴的复合,称为直接复合。

(2)间接复合:电子和空穴通过禁带的能级(复合中心)进行的复合方式称为间接复合。

12、(1)非平衡载流子:半导体中比热平衡时所多出的额外载流子。

(2)非平衡载流子的寿命:非平衡载流子的平均生存时间。

13、小注入条件:当注入半导体材料的非平衡载流子的浓度远小于平衡时多数载流子的浓度时,满足这个条件的注入称为小注入。

14、(1)载流子迁移率:单位电场强度下载流子所获得的平均漂移速率。

(2)载流子产生率:单位时间内载流子的产生数量

15、深/浅能级

(1)浅能级杂质:在半导体中,能够提供能量靠近导带的电子束缚态或能量接近价带的空穴束缚态的杂质称为浅能级杂质。

(2)深能级杂质:在半导体中,能够提供能量接近价带的电子束缚态或能量接近导带的空穴束缚态的杂质称为深能级杂质。

16、同/异质结

(1)同质结:由同一种半导体材料形成的结称之为同质结,包括pp结、nn结、pn结。

(2)异质结:由不同种半导体材料形成的结称之为异质结,包括pp结、nn结、pn结、np结。

17、表面态与表面态密度钉扎

(1)表面态:晶体的自由表面的存在,使得周期性势场在表面处发生中断,引起附加能级,电子被局域在表面附近,这种电子状态称为表面态,所对应的能级为表面能级。

(2)表面密度钉扎:在半导体表面,费米能级的位置由表面态决定,而与半导体掺杂浓度等因素无关的现象。

18、陷阱效应:杂质能级积累非平衡载流子的作用,被称为陷阱效应

19、欧姆接触:指金属与半导体的接触,其接触面的电阻远小于半导体本身的电阻,实现的主要措施是在半导体表面层进行高参杂或引入大量的复合中心。

20、镜像力:在金属-真空系统中,一个在金属外面的电子,要在金属表面感应出正电荷,电子也受到感应的正电荷的吸引如负电荷距离金属表面为x,则它与感应出的金属表面的正电荷之间的吸引力,相当于在-x处有个等量的正电荷之间的作用力,即镜像力

21、隧道(齐纳)击穿

隧道击穿是在强电场作用下,有隧道效应,使大量电子从价带穿过禁带而进入到导带所引起的一种击穿现象。因为最早是有齐纳提出来解释电解质击穿现象的,故叫齐纳击穿。

22、雪崩击穿

雪崩击穿是PN结反向电压增大到一数值时,在反向强电场下的碰撞电离, 使载流子倍增就像雪崩一样,增加得多而快。雪崩击穿一般发生在掺杂浓度较低、外加电压又较高的PN结中。

23、肖特基二极管

金属与半导体接触时,若二者功函不同,载流子会在金属与半导体之间流动,稳定时系统费米能级统一,在半导体表面一层形成表面势垒,是一个高阻区域,称为阻挡层。电子必须跨越的界面处势垒通常称为肖特基势垒。

29.扩散长度:非平衡载流子深入样品的平均距离。

30.有效质量:电子受到原子核的周期性势场(这个势场和晶格周期相同)以及其他电子势场综合作用的结果。

二.简答题

2、导体、半导体、绝缘体能带的差别

答:(1)在导体中,价带和导带是重叠的,它们之间没有禁带。价电子所在的能带只有部分电子被充满,其余部分是空的。因此即使在很低的温度下也会有大量的处于较高能级的价电子参与导电。

(2)半导体的价带充满了电子,而导带基本上是空的,在价带和导带之间有一个禁带。由于禁带宽度较窄,所以在一定温度下(如室温),也会有一定数量的电子从价带跃迁到导带上,从而在电场的作用下参与导电。

(3)绝缘体的能带结构和半导体类似,只是它的禁带宽度比半导体宽得多,在一般情况下,依靠热激发很难将电子激发到导带上。

3、热电子发射理论与扩散理论(以N型或P型半导体为例)

答:以N型半导体为例

(1)热电子发射理论:当n型阻挡层很薄,以至于电子平均自由程远大于势垒宽度时,电子在势垒区的碰撞可以忽略,因此,这时起决定作用的是势垒高度。半导体内部的电子只要有足够的能量越过势垒的顶点,就可以自由地通过阻挡层进入金属。同样,金属中能超越势垒顶的电子也都能到达半导体内。理论计算可以得出,这时的总电流密度Jst与外加电压无关,是一个更强烈地依赖于温度的函数。

(2)扩散理论:对于n型阻挡层,当势垒宽度比电子平均自由程大得多时,电子通过势垒区将发生多次碰撞,这样的阻挡层称为厚阻挡层。扩散理论正是适用于这样的厚阻挡层。此时,总电流密度Js D与外加电压有关。

4、MIS结构能带图与反型层的简单解释(考N型)(211页)

答:(1)MIS结构反型层能带图

(2)解释

对于N性半导体,当加于金属和半导体间的反向电压达到一定值时,表面势Vs为负值,表面处能带强烈地向上弯曲。这时表面处费米能级位置可能低于禁带中央能级Ei,也就是费米能级离价带顶比导带底还要更近一些,这意味着表面处空穴浓度将超过电子浓度,即形成与原来半导体衬底导电类型相反的一层,称作反型层。在这种情况下,半导体空间电荷层内的正电荷由两部分组成,一部分是耗尽层中已电离的施主负电荷,另一部分是反型层中的空穴,后者主要堆积在近表面区。

6、金半接触如何形成欧姆接触?

答:在不考虑表面态的时候,重掺杂的pn结可以产生显著的隧道电流。金属和半导体接触时,如果半导体掺杂浓度很高,则势垒区宽度很薄,电子也要通过隧道效应贯穿势垒产生相当大的隧道电流,甚至超过热电子发射电流而成为电流的主要成分。当隧道电流占主导地位时,它的接触电阻可以很小,可以用作欧姆接触。所以,当半导体重掺杂时,它与金属的接触可以形成接近理想的欧姆接触。

7、试定性分析Si的电阻率与温度的变化关系

答:Si的电阻率与温度的变化关系可以分为三个阶段:

(1)温度很低时,电阻率随温度升高而降低。因为这时本征激发极弱,可以忽

略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。

(2)温度进一步增加(含室温),电阻率随温度升高而升高。在这一温度范围内,杂质已经全部电离,同时本征激发尚不明显,故载流子浓度基本没有变化。对散射起主要作用的是晶格散射,迁移率随温度升高而降低,导致电阻率随温度升高而升高。

(3)温度再进一步增加,电阻率随温度升高而降低。这时本征激发越来越多,虽然迁移率随温度升高而降低,但是本征载流子增加很快,其影响大大超过了迁移率降低对电阻率的影响,导致电阻率随温度升高而降低。当然,温度超过器件的最高工作温度时,器件已经不能正常工作了。

8.金属与半导体接触时扩散理论和热电子发射理论分别适用条件,以及外界电压和温度对其影响如何?

答:(1)适用范围:扩散理论:载流子平均自由程远大于势垒宽度,即阻挡层较薄时;热电子发射理论:势垒宽度远大于载流子平均自由程,即阻挡层较厚时(2)热电子发射电流与外加电压无关,但对温度敏感;扩散电流随外界电压变化,但对温度变化敏感不如热电子发射电流

9.电子有效质量的意义是什么?它与能带有什么关系?

答:有效质量概括了晶体中电子的质量以及内部周期势场对电子的作用,引入有

效质量后,晶体中电子的运动可用类似于自由电子运动来描述。 有效质量与电子所处的状态有关,与能带结构有关: (1)、有效质量反比于能谱曲线的曲率:

(2)、有效质量是k 的函数,在能带底附近为正值,能带顶附近为负值。 (3)、具有方向性——沿晶体不同方向的有效质量不同。只有当等能面是球面时,有效质量各向同性。

10.为什么肖特基势垒二极管电流偏离理想较大,与外加电压、掺杂浓度有什么关系?

三、证明题

1、证明:(1)对于某n 型半导体,试证明其费米能级在其本征半导体的费米能

级之上,即E Fn >E F 。

(2)对于某p 型半导体,试证明其费米能级在其本征半导体的费米能级之下,即E Fp >E F

2.证明同质pn 结接触电势差 ,并说明接触电势差

与半导体材料的掺杂浓度和能带隙宽度之间的关系。

9.pn 结光伏电池理论上的最大开路电压为多少,其最大理论开路电压主要受哪

2i D

A 0D ln n N N q T k V =

些因素影响?

答:Voc 并不随光照强度无限地增大,当开路电压Voc 增大到pn 结势垒消失时,即得到最大开路电压Vmax,因此Vmax 应等于pn 结势垒高度Vd,与材料掺杂程度和禁带宽度有关。

3、证明非平衡载流子的寿命满足()τ

t

e p t p -?=?0,并说明式中各项的物理意义。

证明:

()[]p

p

dt t p d τ?=?-

=非平衡载流子数而在单位时间内复合的子的减少数单位时间内非平衡载流

时刻撤除光照如果在0=t ,则在单位时间内减少的非平衡载流子数=在单位时间内复合的非平衡载流子数,即

()[]()1?→??=?-

p

p

dt t p d τ

在小注入条件下,τ为常数,解方程(1),得到

()()()20?→??=?-

p

t

e

p t p τ

式中,Δp (0)为t=0时刻的非平衡载流子浓度。此式表达了非平衡载流子随

时间呈指数衰减的规律。

4.非简并的非均匀半导体电子电流形式

5、(149)导出非简并载流子满足的爱因斯坦关系。

6、证明小信号条件下,本征半导体非平衡载流子的寿命最长。

四、计算题

2.(范题)施主浓度N D =1017

cm -3

的n-GaAs ,室温下功函数是多少?它

分别和Al ,Au 接触时形成阻挡层还是反阻挡层?室温下GaAs 的电子亲和能为4.07eV ,GaAs 导带有效状态密度为4.5×1017cm -3,W Al =4.25eV ,W Au =4.80eV 。 解:室温下杂质全电离,则:

解得En=0.04eV ,Ws=4.07+0.04=4.11eV

因为W Au >Ws 和W Al >Ws ,所以n-GaAs 和Al,Au 接触时均形成阻挡层。

3、(范题,第三章)Si 样品中施主浓度为4.5x1016cm 3-,试计算300K 时电子浓度和空穴浓度各为多少?

解:在300K 时,因为N D >10n i ,因此杂质全电离

n O =N D ≈4.5×1016cm -3

()()3

316

2

1002

0100.5105.4105.1-?=??==cm n n p i

答:300K 时样品中的的电子浓度和空穴浓度分别是4.5×1016cm -3和5.0×103cm -3。

5.室温下,若两块Si 样品中的电子浓度分别为2.25×1010cm -3和

6.8×1016cm -3,

试分别求出其中的空穴的浓度和费米能级的相对位置,并判断样品的导电类型。假如再在其中都掺入浓度为2.25×1016cm -3的受主杂质,这两块样品的导

17010

)exp()exp(==-=--=D n c F c c N kT

E N kT E E N n

电类型又将怎样? 解:由 2

00i n p n = 得

()()()()????????≈??==?=??=

=--33162

10022023101021001201103.3108.6105.1100.11025.2105.1cm n n p cm n n

p i

i

可见,

型半导体本征半导体n p n p n →>→≈02020101

又因为 T

k E E v v F e N p 00

--

=,则

??????

?+=???? ?????+=???? ???+=+≈????

?????+=???

? ???+=eV E E p N T k E E eV E E p N T k E E v v n v F v v v v F 331.0103.3101.1ln 026.0ln 234.0100.1101.1ln 026.0ln 3190202

10190101 假如再在其中都掺入浓度为2.25×1016cm -3

的受主杂质,那么将出现杂质补偿,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。

答:第一种半导体中的空穴的浓度为1.1x1010cm -3,费米能级在价带上方0.234eV 处;第一种半导体中的空穴的浓度为3.3x103cm -3,费米能级在价带上方0.331eV 处。掺入浓度为2.25×1016cm -3的受主杂质后,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。

6. 含受主浓度为8.0×106cm -3和施主浓度为

7.25×1017cm -3的Si 材料,试求温度分别为300K 和400K 时此材料的载流子浓度和费米能级的相对位置。

解:由于杂质基本全电离,杂质补偿之后,有效施主浓度

317*

1025.7-?≈-=cm N N N A D D

则300K 时,

电子浓度 ()3

1701025.7300-?=≈cm N K n D

空穴浓度 ()()()3217

2

10001011.31025.7105.1300-?≈??==cm n n K p i

费米能级

()

eV

E E p N T k E E v v v V

F 3896.01011.3100.1ln 026.0ln 21900+=???

??????+=?

??

?

???+=

在400K 时,根据电中性条件 *

00D N p n += 和 2

0i p n p n =

得到

()

()

()

()

()

()

???

?????=??==?≈?+?+?-=++-=--3

1782132

03

82

13

2

17172

2*010249.7103795.1100.1103795.12

100.141025.71025.724*cm p n n cm n N N p p i i D D

费米能级

()()

eV E E p K K K N T k E E v v p v v F 0819.01025.7300400101.1ln 026.0300400300ln 17

23

1923

0+=??????

???????????? ?????+=??

?

???

??????????? ????+=

答:300K 时此材料的电子浓度和空穴浓度分别为7.25 x1017cm -3和3.11x102cm -3,费米能级在价带上方0.3896eV 处;400 K 时此材料的电子浓度和空穴浓度分别近似为为7.248 x1017cm -3和1.3795x108cm -3,费米能级在价带上方0.08196eV 处。

9.Si 样品中的施主浓度为4.5×1016

cm -3

,试计算300K 时的电子浓度和空穴浓度各为多少?

解:在300K 时,因为N D >10n i ,因此杂质全电离

n 0=N D ≈4.5×1016cm -3

()()3

316

2

1002

0100.5105.4105.1-?=??==cm n n p i

答: 300K 时样品中的的电子浓度和空穴浓度分别是 4.5×1016cm -3和 5.0×103cm -3。

13.12kg 的Si 单晶掺有3.0×10-9kg 的Sb ,设杂质全部电离,试求出此材料的电导率。(Si 单晶的密度为2.33g/cm 3,Sb 的原子量为121.8) 解:

()

()()

()

31723

93

10881.2556.228.12110025.61000100.3502.5133

.21000

12.0--?≈????=∴=?=cm N cm V Si D 的体积

故材料的电导率为

()()()11191704.2452010602.110579.6---Ω=????==cm nq n μσ

答:此材料的电导率约为24.04Ω-1cm -1

14. 光均匀照射在6cm ?Ω的n 型Si 样品上,电子-空穴对的产生率为4×

1021cm -3s -1,样品寿命为8μs。试计算光照前后样品的电导率。

解:光照前

光照后 Δp=G τ=(4×1021)(8×10-6)=3.2×1017 cm -3 则()()()1119160051.3490106.1102.3167.1---?Ω=??+=???+=?+=cm q p p μσσσσ

答:光照前后样品的电导率分别为1.167Ω-1cm -1和3.51Ω-1cm -1。

16. 设有一半导体锗组成的突变pn 结,已知n 区施主浓度N D =1015/cm 3, p 区受主

浓度N A =1017/cm 3

, 试求室温(300K)下该pn 结的接触电势差V D 。 解:

?

??

?

??-=?

??

??-=-=kT E E n n kT E E n n E E qV i Fp i p i Fn i n Fp

Fn D exp exp 00 (4分)

两式相除取对数:

()1100167.16

11--?Ω≈==cm ρσ

()(

)

17

2

132031500010105.2/101

ln

?=≈

=≈-=

A i

p D n Fp Fn p n N n n cm N n E E kT n n

()

V n N N q kT n n q kT q

E E V i A D p n Fp

Fn D 32.0105.21010ln 106.1026

.0ln ln 21317

15

19200=???

?

?

????=???

? ??=???? ??=-=

-

4、(范题,70)含受主浓度为8.0x106cm 3-和施主浓度7.25x1017cm 3-的Si 材料,试求温度分别为300K 和400K 时此材料的载流子浓度和费米能级的相对位置。

5、若N D =5×1015,N A =5×1017,室温300K 下Si 的本征载流子浓度约为1.02×1010cm -3,求室温下Si 突变pn 结的V D ?

7、电阻率为10欧.厘米的n 型锗和金属接触形成的肖特基势垒高度为0.3eV 。求加上5V 反向电压时的空间电荷层厚度。

8、有一块施主浓度N D =1016cm -3的n 型锗材料,在它的(111) 面上与金

属接触制成肖特基势垒二极管。已知V D =0.4eV ,求加上0.3V 电压时的正向电流密度。

11.室温 (300K) 下,半导体锗(Ge )的本征电阻率为cm ?Ω47,已知其电子迁移率μn 和空穴迁移率μp 分别为3600 cm 2/V ?s 和1700 cm 2/V ?s ,试求半导体锗的本征载流子浓度n i 。若掺入百万分之一的磷(P )后,计算室温下电子浓度n 0和空穴浓度p 0和电阻率ρ。(假定迁移率不随掺杂而变化,杂质全部电离并忽略少子的贡献,锗的原子密度为4.4?1022/cm 3)

解:半导体锗的本征载流子浓度

i

n

3

1319

/105.2)

17003600(106.1471)(1)

(1

cm q n q n p n i p n i ?=+???=+=+=-μμρμμρ

电子浓度

n 约等于施主杂质磷原子的浓度D N

3

166220/104.410104.4cm N n D ?=??=≈- 空穴浓度

p

()

3

1016

2

130202

00/104.1104.4105.2cm

n n p n p n i i ?=??===

掺杂锗的电阻率ρ

)(1043600

106.1104.4112

19

160cm q n n ?Ω?=????==--μρ

12. 试求本征硅在室温(300K)时的电导率

i σ。

设电子迁移率n μ和空穴迁移率p

μ分别为()s V cm ?/13502和

()s V cm ?/5002

,本征载流子浓度3

10/105.1cm n i ?=。当掺入百万分之一的砷(As )后,电子迁移率降低为

()./8502s V cm ?,设杂质全部电离,忽略少子的贡献,计算其电导率σ,并

与本征电导率i

σ作比较。(硅的原子密度为3

22/105cm ?

解:本征硅在室温(300K)时的电导率

i

σ

)

/(104.4)5001350(106.1105.1)

(61915cm S q n p n i i --?=+????=+=μμσ

掺杂硅在室温(300K)时的电导率

i

σ

()cm S q n cm n n

As As /8.6850106.1105/1051010519163

16622=????==?=??=--μσ

两者比较:6

6105.1104.48.6?=?=-i σσ

即电导率增大了150万倍

补充1.常用数据

(1)硅中本征载流子浓度n

i =1.5×1010cm3-,介电常数ε

r

=11.9F/m

(2)真空介电常数ε

=8.85×1012-F/m

(3)玻尔兹曼常数k

=1.38×1023-/k

(4)常温时,k

T=0.026eV

2.名词解释

(4)本征激发:当有能量大于禁带宽度的光子照射到半导体表面时,满带中的电子吸收这个能量,跃迁到导带产生一个自由电子和自由空穴,这一过程称为本征激发。

4.半导体的导电性与哪些因素有关?

答:跟温度和掺杂浓度有关

电子科技大学半导体物理期末考试试卷试题答案

电子科技大学二零零六至二零零七学年第一学期期末考试半导体物理课程考试题卷( 120分钟)考试形式:闭卷考试日期200 7年 1 月 14日 注:1、本试卷满分70分,平时成绩满分15分,实验成绩满分15分; 2.、本课程总成绩=试卷分数+平时成绩+实验成绩。 课程成绩构成:平时分,期中分,实验分,期末分 一、选择填空(含多选题)(2×20=40分) 1、锗的晶格结构和能带结构分别是( C )。 A. 金刚石型和直接禁带型 B. 闪锌矿型和直接禁带型 C. 金刚石型和间接禁带型 D. 闪锌矿型和间接禁带型 2、简并半导体是指( A )的半导体。 A、(E C -E F )或(E F -E V )≤0 B、(E C -E F )或(E F -E V )≥0 C、能使用玻耳兹曼近似计算载流子浓度 D、导带底和价带顶能容纳多个状态相同的电子 3、在某半导体掺入硼的浓度为1014cm-3, 磷为1015cm-3,则该半导体为( B )半导体;其有效杂质浓度约为( E )。 A. 本征, B. n型, C. p型, D. 1.1×1015cm-3, E. 9×1014cm-3 4、当半导体材料处于热平衡时,其电子浓度与空穴浓度的乘积为( B ),并且该乘积和(E、F )有关,而与( C、D )无关。 A、变化量; B、常数; C、杂质浓度; D、杂质类型; E、禁带宽度; F、温度 5、在一定温度下,对一非简并n型半导体材料,减少掺杂浓度,会使得( C )靠近中间能级E i ;如果增加掺杂浓度,有可能使得( C )进入( A ),实现重掺杂成为简并半导

体。 A 、E c ; B 、E v ; C 、E F ; D 、 E g ; E 、E i 。 67、如果温度升高,半导体中的电离杂质散射概率和晶格振动散射概率的变化分别是(C )。 A 、变大,变大 B 、变小,变小 C 、变小,变大 D 、变大,变小 8、最有效的复合中心能级的位置在(D )附近,最有利于陷阱作用的能级位置位于(C )附近,并且常见的是( E )陷阱。 A 、E A ; B 、E B ; C 、E F ; D 、 E i ; E 、少子; F 、多子。 9、一块半导体寿命τ=15μs ,光照在材料中会产生非平衡载流子,光照突然停止30μs 后,其中非平衡载流子将衰减到原来的( C )。 A 、1/4 B 、1/e C 、1/e 2 D 、1/2 10、半导体中载流子的扩散系数决定于该材料中的( A )。 A 、散射机构; B 、复合机构; C 、杂质浓度梯度; C 、表面复合速度。 11、下图是金属和n 型半导体接触能带图,图中半导体靠近金属的表面形成了(D )。 A 、n 型阻挡层 B 、p 型阻挡层 C 、p 型反阻挡层 D 、n 型反阻挡层 12、欧姆接触是指( D )的金属-半导体接触。 A 、W ms =0 B 、W ms <0 C 、W ms >0 D 、阻值较小并且有对称而线性的伏-安特性 13、MOS 器件中SiO 2层中的固定表面电荷主要是( B ),它能引起半导体表面层中的能带( C )弯曲,要恢复平带,必须在金属与半导体间加( F )。 A .钠离子; B 硅离子.;C.向下;D.向上;E. 正电压;F. 负电压 二、证明题:(8分) 由金属-SiO 2-P 型硅组成的MOS 结构,当外加的电压使得半导体表面载流子浓度n s 与内部多数载流子浓度P p0相等时作为临界强反型层条件,试证明:此时半导体的表面势为: 证明:设半导体的表面势为V S ,则表面的电子浓度为: 200exp()exp()S i S s p p qV n qV n n KT p KT == (2分) 当n s =p p0时,有:20exp( ),S p i qV p n KT = (1分)

西安电子科技大学2018考研大纲:半导体物理与器件物理.doc

西安电子科技大学2018考研大纲:半导体 物理与器件物 出国留学考研网为大家提供西安电子科技大学2018考研大纲:801半导体物理与器件物理基础,更多考研资讯请关注我们网站的更新! 西安电子科技大学2018考研大纲:801半导体物理与器件物理基础 “半导体物理与器件物理”(801) 一、 总体要求 “半导体物理与器件物理”(801)由半导体物理、半导体器件物理二部分组成,半导体物理占60%(90分)、器件物理占40%(60分)。 “半导体物理”要求学生熟练掌握半导体的相关基础理论,了解半导体性质以及受外界因素的影响及其变化规律。重点掌握半导体中的电子状态和带、半导体中的杂质和缺陷能级、半导体中载流子的统计分布、半导体的导电性、半导体中的非平衡载流子等相关知识、基本概念及相关理论,掌握半导体中载流子浓度计算、电阻(导)率计算以及运用连续性方程解决载流子浓度随时间或位置的变化及其分布规律等。 “器件物理”要求学生掌握MOSFET器件物理的基本理

论和基本的分析方法,使学生具备基本的器件分析、求解、应用能力。要求掌握MOS基本结构和电容电压特性;MESFET器件的基本工作原理;MOSFET器件的频率特性;MOSFET器件中的非理想效应;MOSFET器件按比例缩小理论;阈值电压的影响因素;MOSFET的击穿特性;掌握器件特性的基本分析方法。 “半导体物理与器件物理”(801)研究生入学考试是所学知识的总结性考试,考试水平应达到或超过本科专业相应的课程要求水平。 二、 各部分复习要点 ●“半导体物理”部分各章复习要点 (一)半导体中的电子状态 1.复习内容 半导体晶体结构与化学键性质,半导体中电子状态与能带,电子的运动与有效质量,空穴,回旋共振,元素半导体和典型化合物半导体的能带结构。 2.具体要求 半导体中的电子状态和能带 半导体中电子的运动和有效质量 本征半导体的导电机构

半导体物理学简答题及答案

第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同,原子中内层电子和外层电子参与共有化运动有何不同。答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念,用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量 3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么? 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同; 答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F作用下,电子的波失K不断改变,f=h(dk/dt),其变化率与外力成正比,因为电子的速度与k有关,既然k状态不断变化,则电子的速度必然不断变化。 7.以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系,为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度?答:沿不同的晶向,能量带隙不一样。因为电子要摆脱束缚就能从价带跃迁到导带,这个时候的能量就是最小能量,也就是禁带宽度。 1.为什么半导体满带中的少量空状态可以用具有正电荷和一定质量的空穴来描述? 答:空穴是一个假想带正电的粒子,在外加电场中,空穴在价带中的跃迁类比当水池中气泡从水池底部上升时,气泡上升相当于同体积的水随气泡的上升而下降。把气泡比作空穴,下降的水比作电子,因为在出现空穴的价带中,能量较低的电子经激发可以填充空穴,而填充了空穴的电子又留下了一个空穴。因此,空穴在电场中运动,实质是价带中多电子系统在电场中运动的另一种描述。因为人们发现,描述气泡上升比描述因气泡上升而水下降更为方便。所以在半导体的价带中,人们的注意力集中于空穴而不是电子。 2.有两块硅单晶,其中一块的重量是另一块重量的二倍.这两块晶体价带中的能级数是否相等,彼此有何联系? 答:相等,没任何关系 3.为什么极值附近的等能面是球面的半导体,当改变磁场方向时只能观察到一个共振吸收峰。答:各向同性。 5.典型半导体的带隙。 一般把禁带宽度等于或者大于2.3ev的半导体材料归类为宽禁带半导体,主要包括金刚石,SiC,GaN,金刚石等。26族禁带较宽,46族的比较小,如碲化铅,硒化铅(0.3ev),35族的砷化镓(1.4ev)。 第二章1.说明杂质能级以及电离能的物理意义。为什么受主、施主能级分别位于价带之上或导带之下,而且电离能的数值较小?答:被杂质束缚的电子或空穴的能量状态称为杂质能级,电子脱离杂质的原子的束缚成为导电电子的过程成为杂质电离,使这个多余的价电子挣脱束缚成为导电电子所需要的能量成为杂质电离能。杂质能级离价带或导带都很近,所以电离能数值小。 2.纯锗,硅中掺入III或Ⅴ族元素后,为什么使半导体电学性能有很大的改变?杂质半导体(p型或n型)应用很广,但为什么我们很强调对半导体材料的提纯?答:因为掺入III或Ⅴ族后,杂质产生了电离,使得到导带中得电子或价带中得空穴增多,增强了半导体的导电能力。极微量的杂质和缺陷,能够对半导体材料的物理性质和化学性质产生决定性的影响,,当然,也严重影响着半导体器件的质量。 4.何谓深能级杂质,它们电离以后有什么特点?答:杂质电离能大,施主能级远离导带底,受主能级远离价带顶。特点:能够产生多次电离,每一次电离相应的有一个能级。 5.为什么金元素在锗或硅中电离后可以引入多个施主或受主能级?答:因为金是深能级杂质,能够产生多次电离,

半导体物理器件期末考试试题(全)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 2015半导体物理器件期末考试试题(全) 半导体物理器件原理(期末试题大纲)指导老师:陈建萍一、简答题(共 6 题,每题 4 分)。 代表试卷已出的题目1、耗尽区:半导体内部净正电荷与净负电荷区域,因为它不存在任何可动的电荷,为耗尽区(空间电荷区的另一种称呼)。 2、势垒电容:由于耗尽区内的正负电荷在空间上分离而具有的电容充放电效应,即反偏 Fpn 结的电容。 3、Pn 结击穿:在特定的反偏电压下,反偏电流迅速增大的现象。 4、欧姆接触:金属半导体接触电阻很低,且在结两边都能形成电流的接触。 5、饱和电压:栅结耗尽层在漏端刚好夹断时所加的漏源电压。 6、阈值电压:达到阈值反型点所需的栅压。 7、基区宽度调制效应:随 C-E 结电压或 C-B 结电压的变化,中性基区宽度的变化。 8、截止频率:共发射极电流增益的幅值为 1 时的频率。 9、厄利效应:基带宽度调制的另一种称呼(晶体管有效基区宽度随集电结偏置电压的变化而变化的一种现象) 10、隧道效应:粒子穿透薄层势垒的量子力学现象。 11、爱因斯坦关系:扩散系数和迁移率的关系: 12、扩散电容:正偏 pn 结内由于少子的存储效应而形成的电容。 1/ 11

13、空间电荷区:冶金结两侧由于 n 区内施主电离和 p 区内受主电离

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 而形成的带净正电荷与净负电荷的区域。 14、单边突变结:冶金结的一侧的掺杂浓度远大于另一侧的掺杂浓度的 pn 结。 15、界面态:氧化层--半导体界面处禁带宽度中允许的电子能态。 16、平带电压:平带条件发生时所加的栅压,此时在氧化层下面的半导体中没有空间电荷区。 17、阈值反型点:反型电荷密度等于掺杂浓度时的情形。 18、表面散射:当载流子在源极和源漏极漂移时,氧化层--半导体界面处载流子的电场吸引作用和库伦排斥作用。 19、雪崩击穿:由雪崩倍增效应引起的反向电流的急剧增大,称为雪崩击穿。 20、内建电场:n 区和 p 区的净正电荷和负电荷在冶金结附近感生出的电场叫内建电场,方向由正电荷区指向负电荷区,就是由 n 区指向 p 区。 21、齐纳击穿:在重掺杂 pn 结内,反偏条件下结两侧的导带与价带离得非常近,以至于电子可以由 p 区的价带直接隧穿到 n 区的导带的现象。 22、大注入效应:大注入下,晶体管内产生三种物理现象,既三个效应,分别称为:(1)基区电导调制效应;(2)有效基区扩展效应; (3)发射结电流集边效应。 它们都将造成晶体管电流放大系数的下降。 3/ 11

半导体物理期末试卷含部分答案

一、填空题 1.纯净半导体Si 中掺V 族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载流子运动难易程度的物理量,联系两者的关系式是 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

半导体物理考试重点

半导体物理考试重点 题型:名词解释3*10=30分;简答题4*5=20分;证明题10*2=20分;计算题15*2=30分 一.名词解释 1、施主杂志:在半导体中电离时,能够释放电子而产生导电电子并形成正电中心的杂质称为施主杂质。 2、受主杂志:在半导体中电离时,能够释放空穴而产生导电空穴并形成负电中心的杂质称为受主杂质。 3、本征半导体:完全不含缺陷且无晶格缺陷的纯净半导体称为本征半导体。实际半导体不可能绝对地纯净,本征半导体一般是指导电主要由本征激发决定的纯净半导体。 4、多子、少子 (1)少子:指少数载流子,是相对于多子而言的。如在半导体材料中某种载流子占少数,在导电中起到次要作用,则称它为少子。 (2)多子:指多数载流子,是相对于少子而言的。如在半导体材料中某种载流子占多数,在导电中起到主要作用,则称它为多子。 5、禁带、导带、价带 (1)禁带:能带结构中能量密度为0的能量区间。常用来表示导带与价带之间能量密度为0的能量区间。 (2)导带:对于被电子部分占满的能带,在外电场作用下,电子可以从外电场中吸收能量跃迁到未被电子占据的能级去,形成电流,起导电作用,常称这种能带为导带 (3)价带:电子占据了一个能带中的所有的状态,称该能带为满带,最上面的一个满带称为价带 6、杂质补偿 施主杂质和受主杂质有互相抵消的作用,通常称为杂质的补偿作用。 7、电离能:使多余的价电子挣脱束缚成为导电电子所需要的能量称为电离能

8、(1)费米能级:费米能级是绝对零度时电子的最高能级。 (2)受主能级:被受主杂质所束缚的空穴的能量状态称为受主能级 (3)施主能级:被施主杂质束缚的电子的能量状态称为施主能级 9、功函数:功函数是指真空电子能级E0 与半导体的费米能级之差。 10、电子亲和能:真空的自由电子能级与导带底能级之间的能量差,也就是把导带底的电子拿出到真空去而变成自由电子所需要的能量。 11、直/间接复合 (1)直接复合:电子在导带和价带之间的直接跃迁,引起电子和空穴的复合,称为直接复合。 (2)间接复合:电子和空穴通过禁带的能级(复合中心)进行的复合方式称为间接复合。 12、(1)非平衡载流子:半导体中比热平衡时所多出的额外载流子。 (2)非平衡载流子的寿命:非平衡载流子的平均生存时间。 13、载流子热运动 14、小注入条件:当注入半导体材料的非平衡载流子的浓度远小于平衡时多数载流子的浓度时,满足这个条件的注入称为小注入。 15、(1)载流子迁移率:单位电场强度下载流子所获得的平均漂移速率。 (2)载流子产生率:单位时间内载流子的产生数量 16、深/浅能级 (1)浅能级杂质:在半导体中,能够提供能量靠近导带的电子束缚态或能量接近价带的空穴束缚态的杂质称为浅能级杂质。(2)深能级杂质:在半导体中,能够提供能量接近价带的电子束缚态或能量接近导带的空穴束缚态的杂质称为深能级杂质。17、同/异质结 (1)同质结:由同一种半导体材料形成的结称之为同质结,包括结、结、结。 (2)异质结:由不同种半导体材料形成的结称之为异质结,包括结、结、结、结。

半导体物理学试题库完整

一.填空题 1.能带中载流子的有效质量反比于能量函数对于波矢的_________.引入有效质量的意义在于其反映了晶体材料的_________的作用。(二阶导数.内部势场) 2.半导体导带中的电子浓度取决于导带的_________(即量子态按能量如何分布)和_________(即电子在不同能量的量子态上如何分布)。(状态密度.费米分布函数) 3.两种不同半导体接触后, 费米能级较高的半导体界面一侧带________电.达到热平衡后两者的费米能级________。(正.相等) 4.半导体硅的价带极大值位于空间第一布里渊区的中央.其导带极小值位于________方向上距布里渊区边界约0.85倍处.因此属于_________半导体。([100]. 间接带隙) 5.间隙原子和空位成对出现的点缺陷称为_________;形成原子空位而无间隙原子的点缺陷称为________。(弗仑克耳缺陷.肖特基缺陷) 6.在一定温度下.与费米能级持平的量子态上的电子占据概率为_________.高于费米能级2kT能级处的占据概率为_________。(1/2.1/1+exp(2)) 7.从能带角度来看.锗、硅属于_________半导体.而砷化稼属于_________半导体.后者有利于光子的吸收和发射。(间接带隙.直接带隙) 8.通常把服从_________的电子系统称为非简并性系统.服从_________的电子系统称为简并性系统。(玻尔兹曼分布.费米分布) 9. 对于同一种半导体材料其电子浓度和空穴浓度的乘积与_________有关.而对于不同的半导体材料其浓度积在一定的温度下将取决于_________的大小。(温度.禁带宽度) 10. 半导体的晶格结构式多种多样的.常见的Ge和Si材料.其原子均通过共价键四面体相互结合.属于________结构;与Ge和Si晶格结构类似.两种不同元素形成的化合物半导体通过共价键四面体还可以形成_________和纤锌矿等两种晶格结构。(金刚石.闪锌矿) 11.如果电子从价带顶跃迁到导带底时波矢k不发生变化.则具有这种能带结构的半导体称为_________禁带半导体.否则称为_________禁带半导体。(直接.间接) 12. 半导体载流子在输运过程中.会受到各种散射机构的散射.主要散射机构有_________、 _________ 、中性杂质散射、位错散射、载流子间的散射和等价能谷间散射。(电离杂质的散射.晶格振动的散射) 13. 半导体中的载流子复合可以有很多途径.主要有两大类:_________的直接复合和通过禁带内的_________进行复合。(电子和空穴.复合中心)

半导体物理试卷a答案

一、名词解释(本大题共5题每题4分,共20分) 1. 受主能级:通过受主掺杂在半导体的禁带中形成缺陷能级。正常情况下,此能级为空穴所占据,这个被受主杂质束缚的空穴的能量状态称为受主能级。 2. 直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合。 3. 空穴:当满带顶附近产生P0个空态时,其余大量电子在外电场作用下所产生的电流,可等效为P0个具有正电荷q和正有效质量m p,速度为v(k)的准经典粒子所产生的电流,这样的准经典粒子称为空穴。 4. 过剩载流子:在光注入、电注入、高能辐射注入等条件下,半导体材料中会产生高于热平衡时浓度的电子和空穴,超过热平衡浓度的电子△n=n-n0和空穴 △p=p-p0称为过剩载流子。 5.费米能级、化学势 答:费米能级与化学势:费米能级表示等系统处于热平衡状态,也不对外做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势。处于热平衡的系统有统一的化学势。这时的化学势等于系统的费米能级。费米能级和温度、材料的导电类型杂质含量、能级零点选取有关。费米能级标志了电子填充能级水平。费米能级位置越高,说明较多的能量较高的量子态上有电子。随之温度升高,电子占据能量小于费米能级的量子态的几率下降,而电子占据能量大于费米能级的量子态的几率增大。 二、选择题(本大题共5题每题3分,共15分) 1.对于大注入下的直接辐射复合,非平衡载流子的寿命与(D ) A. 平衡载流子浓度成正比 B. 非平衡载流子浓度成正比 C. 平衡载流子浓度成反比 D. 非平衡载流子浓度成反比 2.有3个硅样品,其掺杂情况分别是: 含铝1×10-15cm-3乙.含硼和磷各1×10-17cm-3丙.含镓1×10-17cm-3 室温下,这些样品的电阻率由高到低的顺序是(C ) 甲乙丙 B. 甲丙乙 C. 乙甲丙 D. 丙甲乙3.有效复合中心的能级必靠近( A ) 禁带中部 B.导带 C.价带 D.费米能级4.当一种n型半导体的少子寿命由直接辐射复合决定时,其小注入下的少子寿

半导体物理学复习提纲(重点)

第一章 半导体中的电子状态 §1.1 锗和硅的晶体结构特征 金刚石结构的基本特征 §1.2 半导体中的电子状态和能带 电子共有化运动概念 绝缘体、半导体和导体的能带特征。几种常用半导体的禁带宽度; 本征激发的概念 §1.3 半导体中电子的运动 有效质量 导带底和价带顶附近的E(k)~k 关系()()2 * 2n k E k E m 2h -0= ; 半导体中电子的平均速度dE v hdk = ; 有效质量的公式:2 2 2 * 11dk E d h m n = 。 §1.4本征半导体的导电机构 空穴 空穴的特征:带正电;p n m m ** =-;n p E E =-;p n k k =- §1.5 回旋共振 §1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴 第二章 半导体中杂质和缺陷能级 §2.1 硅、锗晶体中的杂质能级

基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。 §2.2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为 第三章 半导体中载流子的统计分布 热平衡载流子概念 §3.1状态密度 定义式:()/g E dz dE =; 导带底附近的状态密度:() () 3/2 * 1/2 3 2()4n c c m g E V E E h π=-; 价带顶附近的状态密度:() () 3/2 *1/2 3 2()4p v V m g E V E E h π=- §3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01 ()1exp /F f E E E k T = +-???? ; Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关。1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。费米能级位置较高,说明有较多的能量较高的量子态上有电子。 Boltzmann 分布函数:0()F E E k T B f E e --=; 导带底、价带顶载流子浓度表达式: 0()()c c E B c E n f E g E dE '= ?

2012半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。

1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。 1.4本征半导体 既无杂质又无缺陷的理想半导体材料。

半导体物理学期末复习试题及答案一

一、选择题 1.与绝缘体相比,半导体的价带电子激发到导带所需要的能量 ( B )。 A. 比绝缘体的大 B.比绝缘体的小 C. 和绝缘体的相同 2.受主杂质电离后向半导体提供( B ),施主杂质电离后向半 导体提供( C ),本征激发向半导体提供( A )。 A. 电子和空穴 B.空穴 C. 电子 3.对于一定的N型半导体材料,在温度一定时,减小掺杂浓度,费 米能级会( B )。 A.上移 B.下移 C.不变 4.在热平衡状态时,P型半导体中的电子浓度和空穴浓度的乘积为 常数,它和( B )有关 A.杂质浓度和温度 B.温度和禁带宽度 C.杂质浓度和禁带宽度 D.杂质类型和温度 5.· 6.MIS结构发生多子积累时,表面的导电类型与体材料的类型 ( B )。 A.相同 B.不同 C.无关 7.空穴是( B )。 A.带正电的质量为正的粒子 B.带正电的质量为正的准粒子 C.带正电的质量为负的准粒子 D.带负电的质量为负的准粒子 8.砷化稼的能带结构是( A )能隙结构。

A. 直接 B. 间接 9. 将Si 掺杂入GaAs 中,若Si 取代Ga 则起( A )杂质作 用,若Si 取代As 则起( B )杂质作用。 A. 施主 B. 受主 C. 陷阱 D. 复合中心 10. 在热力学温度零度时,能量比F E 小的量子态被电子占据的概率为 ( D ),当温度大于热力学温度零度时,能量比F E 小的量子态被电子占据的概率为( A )。 · A. 大于1/2 B. 小于1/2 C. 等于1/2 D. 等于1 E. 等于0 11. 如图所示的P 型半导体MIS 结构 的C-V 特性图中,AB 段代表 ( A ),CD 段代表(B )。 A. 多子积累 B. 多子耗尽 C. 少子反型 D. 平带状态 12. P 型半导体发生强反型的条件( B )。 A. ???? ??=i A S n N q T k V ln 0 B. ??? ? ??≥i A S n N q T k V ln 20 C. ???? ??= i D S n N q T k V ln 0 D. ???? ??≥i D S n N q T k V ln 20 13. - 14. 金属和半导体接触分为:( B )。 A. 整流的肖特基接触和整流的欧姆接触 B. 整流的肖特基接触和非整流的欧姆接触

电子科技大学半导体物理期末考试试卷试题答案

电子科技大学二零一零至二零一一学年第一学期期末考试 1.对于大注入下的直接辐射复合,非平衡载流子的寿命与(D ) A. 平衡载流子浓度成正比 B. 非平衡载流子浓度成正比 C. 平衡载流子浓度成反比 D. 非平衡载流子浓度成反比 2.有3个硅样品,其掺杂情况分别是: 甲.含铝1×10-15cm-3乙.含硼和磷各1×10-17cm-3丙.含镓1×10-17cm-3 室温下,这些样品的电阻率由高到低的顺序是(C ) A.甲乙丙 B. 甲丙乙 C. 乙甲丙 D. 丙甲乙 3.题2中样品的电子迁移率由高到低的顺序是( B ) 4.题2中费米能级由高到低的顺序是( C ) 5. 欧姆接触是指( D )的金属一半导体接触 A. W ms = 0 B. W ms < 0 C. W ms > 0 D. 阻值较小且具有对称而线性的伏安特性 6.有效复合中心的能级必靠近( A ) A.禁带中部 B.导带 C.价带 D.费米能级 7.当一种n型半导体的少子寿命由直接辐射复合决定时,其小注入下的少子寿命正比于(C ) A.1/n0 B.1/△n C.1/p0 D.1/△p 8.半导体中载流子的扩散系数决定于其中的( A ) A.散射机构 B. 复合机构 C.杂质浓变梯度 D.表面复合速度 9.MOS 器件绝缘层中的可动电荷是( C ) A. 电子 B. 空穴 C. 钠离子 D. 硅离子 10.以下4种半导体中最适合于制作高温器件的是( D ) A. Si B. Ge C. GaAs D. GaN 二、解释并区别下列术语的物理意义(30 分,7+7+8+8,共4 题) 1. 有效质量、纵向有效质量与横向有效质量(7 分) 答:有效质量:由于半导体中载流子既受到外场力作用,又受到半导体内部周期性势场作用。有效概括了半导体内部周期性势场的作用,使外场力和载流子加速度直接联系起来。在直接由实验测得的有效质量后,可以很方便的解决电子的运动规律。(3分) 纵向有效质量、横向有效质量:由于k空间等能面是椭球面,有效质量各向异性,在回旋共振实验中,当磁感应强度相对晶轴有不同取向时,可以得到为数不等的吸收峰。我们引入纵向有效质量跟横向有效质量表示旋转椭球等能面纵向有效质量和横向有效质量。(4分) 2. 扩散长度、牵引长度与德拜长度(7 分) 答:扩散长度:指的是非平衡载流子在复合前所能扩散深入样品的平均距离。由扩散系数

半导体物理试题总结

半导体物理学考题 A (2010年1月)解答 一、(20分)简述下列问题: 1.(5分)布洛赫定理。 解答:在周期性势场中运动的电子,若势函数V(x)具有晶格的周期性,即:)x (V )na x (V =+, 则晶体中电子的波函数具有如下形式:)x (u e )x (k ikx =ψ,其中,)x (u k 为具有晶格周期性的 函数,即:)x (u )na x (u k k =+ 2.(5分)说明费米能级的物理意义; 试画出N 型半导体的费米能级随温度的变化曲线。 解答: 费米能级E F 是反映电子在各个能级中分布情况的参数。 能量为E F 的量子态被电子占据的几率为1/2。 N 型半导体的费米能级随温度变化曲线如右图所示:(2分) 3、(5分)金属和N 型半导体紧密接触,接触前,二者的真空能级相等,S M W W <。试画出金属— 半导体接触的能带图,标明接触电势差、空间电荷区和内建电场方向。 解答: 4.(5分)比较说明施主能级、复合中心和陷阱在半导体中的作用及其区别。 解答: 施主能级:半导体中的杂质在禁带中产生的距离能带较近的能级。可以通过杂质电离过程向半导体导带提供电子,因而提高半导体的电导率;(1分) 复合中心:半导体中的一些杂质或缺陷,它们在禁带中引入离导带底和价带顶都比较远的局域化能级,非平衡载流子(电子和空穴)可以通过复合中心进行间接复合,因此复合中心很大程度上影响着非平衡载流子的寿命。(1分) 陷阱:是指杂质或缺陷能级对某一种非平衡载流子的显著积累作用,其所俘获的非平衡载流子数目可以与导带或价带中非平衡载流子数目相比拟。陷阱的作用可以显著增加光电导的灵敏度以及使光电导的衰减时间显著增长。(1分) 浅施主能级对载流子的俘获作用较弱;有效复合中心对电子和空穴的俘获系数相差不大,而且,其对非平衡载流子的俘获几率要大于载流子发射回能带的几率。一般说来,只有杂质的能级比费米能级离导带底或价带顶更远的深能级杂质,才能成为有效的复合中心。而有效的陷阱则要求其对电子和空穴的俘获几率必须有很大差别,如有效的电子陷阱,其对电子的俘获几率远大于对空穴的俘获几率,因此才能保持对 C v FN FM E i E ? C i d V

半导体物理期末考试试卷A参考答案与评分标准

电子科技大学二零零 七 至二零零 八 学年第 一 学期期 末 考试 一、选择填空(22分) 1、在硅和锗的能带结构中,在布里渊中心存在两个极大值重合的价带,外面的能带( B ), 对应的有效质量( C ),称该能带中的空穴为( E )。 A. 曲率大; B. 曲率小; C. 大; D. 小; E. 重空穴; F. 轻空穴 2、如果杂质既有施主的作用又有受主的作用,则这种杂质称为( F )。 A. 施主 B. 受主 C.复合中心 D.陷阱 F. 两性杂质 3、在通常情况下,GaN 呈( A )型结构,具有( C ),它是( F )半导体材料。 A. 纤锌矿型; B. 闪锌矿型; C. 六方对称性; D. 立方对称性; E.间接带隙; F. 直接带隙。 4、同一种施主杂质掺入甲、乙两种半导体,如果甲的相对介电常数εr 是乙的3/4, m n */m 0值是乙的2倍,那么用类氢模型计算结果是( D )。 A.甲的施主杂质电离能是乙的8/3,弱束缚电子基态轨道半径为乙的3/4 B.甲的施主杂质电离能是乙的3/2,弱束缚电子基态轨道半径为乙的32/9 C.甲的施主杂质电离能是乙的16/3,弱束缚电子基态轨道半径为乙的8/3 D.甲的施主杂质电离能是乙的32/9,的弱束缚电子基态轨道半径为乙的3/8 5、.一块半导体寿命τ=15μs ,光照在材料中会产生非平衡载流子,光照突然停止30μs 后,其中非平衡载流子将衰减到原来的( C )。 A.1/4 ; B.1/e ; C.1/e 2 ; D.1/2 6、对于同时存在一种施主杂质和一种受主杂质的均匀掺杂的非简并半导体,在温度足够高、n i >> /N D -N A / 时,半导体具有 ( B ) 半导体的导电特性。 A. 非本征 B.本征 7、在室温下,非简并Si 中电子扩散系数D n与ND有如下图 (C ) 所示的最恰当的依赖关系: Dn Dn Dn Dn A B C D 8、在纯的半导体硅中掺入硼,在一定的温度下,当掺入的浓度增加时,费米能级向( A )移动;当掺 ND ND ND ND

2011东南大学半导体物理试卷

共 10 页 第 1 页 东 南 大 学 考 试 卷(卷) 课程名称 半导体物理 考试学期 11-12-2 得分 适用专业 电子科学与技术 考试形式 闭卷 考试时间长度 120分钟 室温下,硅的相关系数:10300.026, 1.510,i k T eV n cm -==? 1932.810c N cm -=? 1931.110v N cm -=?,电子电量191.610e C -=?。 一、 填空题(每空1分,共35分) 1. 半导体中的载流子主要受到两种散射,对于较纯净的半导体 散射起主要作 用,对于杂质含量较多的半导体,温度很低时,______________散射起主要作用。 2.非平衡载流子的复合率 ,t N 代表__________,t E 代表__________,当2i np n -为___________时,半导体存在净复合,当2i np n -_______时,半导体处于热平衡状态。杂质能级位于___________位置时,为最有效复合中心,此杂质称为____________杂质。 3.纯净的硅半导体掺入浓度为17 3 10/cm 的磷,当杂质电离时能产生导电________,此时杂质为_________杂质,相应的半导体为________型。如果再掺入浓度为16 3 10/cm 的硼,半导体是_______型。假定有掺入浓度为15 3 10/cm 的金,则金原子带电状态为__________。 4.当PN 结施加反向偏压,并增到某一数值时,反向电流密度突然__________开始的现象称为击穿,击穿分为___________和___________。温度升高时,________击穿的击穿电压阈值变大。 5. 当半导体中载流子浓度存在_________时,载流子将做扩散运动,扩散流密度与_______成正比,比例系数称为_________;半导体存在电势差时,载流子将做 运动,其运动速度正比于 ,比例系数称为 。 6. GaAs 样品两端加电压使内部产生电场,在某一个电场强度区域,电流密度随电场强度的增大而减小,这区域称为________________,这是由GaAs 的_____________结构决定的。 20() 2t i t i i N C np n U E E n p n ch k T -= ?? -++ ? ??

华工半导体物理考试大纲(标重点)

912半导体物理考试大纲 考试内容 1、半导体晶体结构和半导体的结合性质(1-1主要的几种结构); 2、半导体中的电子状态: (1)半导体能带的形成(1-2共有化运动), (2)Ge、Si、GaAs能带结构(1-6,1-7,主要是导带和价带的结构),(3)有效质量、空穴(1-3,1-4定义要求) (4)杂质和缺陷能级(2-1施主杂质,施主能级,受主杂质,受主能级,杂质的补偿,深能级和浅能级杂质); 3、热平衡下半导体载流子的统计分布: (1)状态密度、费米能级、(3-1,3-2理解定义) (2)本征半导体(3-3)和杂质半导体的载流子浓度(3-4浓度与温度的关系图),(3)简并半导体和重掺杂效应(3-6定义要求); 注意:计算主要在这一章 4、半导体的导电性: (1)半导体导电原理(载流子的漂移和扩散运动), (2)载流子的漂移运动、迁移率、散射机构(4-1,4-2定义要求), (3)半导体电阻率(电导率)随温度和杂质浓度的变化规律(关系图), (4)强电场效应、热载流子,负阻效应(4-6,4-7定义要求); 5、非平衡载流子: (1)非平衡载流子与准费米能级,非平衡载流子注入与复合(5-1,5-2,5-3定义要求) (2)复合理论(5-4复合的分类) (3)非平衡载流子寿命,爱因斯坦关系,载流子漂移、扩散运动(5-6,5-7定义要求), (4)缺陷效应(定义要求5-5), (5)连续性方程(5-8计算题可能); 6、pn结: (1)平衡与非平衡pn结特点及其能带图(6-1能带图和载流子的分布图), (2)pn结的I-V特性(6-2J-V曲线,反向饱和电流的定义) (3)电容特性(6-3势垒电容和扩散电容的定义) (4)开关特性(单向导电性) (5)击穿特性(6-4雪崩击穿,隧道击穿和热击穿); 7、金属和半导体接触: (1)半导体表面态(了解)

半导体物理期末试卷(含部分答案

一、填空题 1.纯净半导体Si 中掺错误!未找到引用源。族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

相关文档
最新文档