2、矩阵的分解

矩阵分解在优化方法中的应用

矩阵分解以及矩阵范数在数值计算中的应用 张先垒 (自动化与电气工程学院 控制科学与工程 2012210186) 【摘要】矩阵的分解是将一个矩阵分解为较为简单的或具有某种特性的若干矩阵的和或 者乘积,这是矩阵理论及其应用中比较常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵的分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,它是应用于解最优化问题、特征值问题、最小二乘方问题的主要数学工具。 关键词 : 矩阵分解 对角化 逆矩阵 范数 条件数 1. 引言 矩阵分解在工程中的应用主要是在解线性方程组中,而这主要就是关系到储存和计算时间的问题上面,如何实现最小的储存和最少的计算时间是在工程计算中的头等问题。在这方年就牵涉到很多对矩阵进行怎样的分解,这篇文章介绍了基本的关于三角分解相关的内容以及关于界的稳定性的考虑。 2. 矩阵的三角分解求解线性方程组 数值求解线性方程组的方法中有一个主要是直接法,假设计算中没有舍入误差,经过有限次算术运算能够给出问题的精确解的数值方法。其中高斯消去法就是利用矩阵的分解实现的。矩阵论一种有效而且应用广泛的分解法就是三角分解法,将一个矩阵分解为一个酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积。(见课本P93例4.3)考虑一般的线性方程组,设其中的系数矩阵A 是可逆的, 1111 n m mn a a A a a ?? ? = ? ??? (1-1) 设矩阵A 的第一列中至少有一个是非零元素(否则A 就是奇异矩阵)不妨设为1i a 若一 般的记初等矩阵 [1] 如1-2式及矩阵论课本上的Givens 矩阵。

第3章 矩阵及其运算

第3章 矩阵及其运算 3.1 基本要求、重点难点 基本要求: 1.1.掌握矩阵的定义. 2.2.掌握矩阵的运算法则. 3.3.掌握伴随矩阵的概念及利用伴随矩阵求逆矩阵的方法. 4.4.掌握矩阵秩的概念及求矩阵秩的方法. 5.5. 掌握初等变换和初等矩阵的概念,能够利用初等变换计算矩阵的秩,求可逆矩阵的逆矩阵. 6.6.掌握线形方程组有解得判定定理及其初等变换解线形方程组的方法. 重点难点:重点是矩阵定义,矩阵乘法运算,逆矩阵的求法,矩阵的秩,初等 变换及线性方程组的解. 难点是矩阵乘法,求逆矩阵的伴随矩阵方法. 3.2 基本内容 3.2.1 3.2.1 重要定义 定义3.1 由n m ?个数)2,1;,2,1(n j m i a ij ==组成的m 行n 列的数表成为一个m 行n 列矩阵,记为 ????????????mn m m n n a a a a a a a a a 2122221 11211 简记为A n m ij a ?=)(,或A )(ij a =,n m A ?,mn A 注意行列式与矩阵的区别: (1) (1) 行列式是一个数,而矩阵是一个数表. (2) (2) 行列式的行数、列数一定相同,但矩阵的行数、列数不一定相 同. (3) (3) 一个数乘以行列式,等于这个数乘以行列式的某行(或列)的所有元素,而一个数乘以矩阵等于这个数乘以矩阵的所有元素. (4) (4) 两个行列式相等只要它们表示的数值相等即可,而两个矩阵相等则要求两个矩阵对应元素相等. (5) (5) 当0||≠A 时,||1A 有意义,而A 1 无意义.

n m =的矩阵叫做阶方阵或m 阶方阵.一阶方阵在书写时不写括号,它在 运算中可看做一个数. 对角线以下(上)元素都是0的矩阵叫上(下)三角矩阵,既是上三角阵, 又是下三角的矩阵,也就是除对角线以外的元素全是0的矩阵叫对角矩阵.在对角矩阵中,对角线上元素全一样的矩阵叫数量矩阵;数量矩阵中,对角线元素全是1的n 阶矩阵叫n 阶单位矩阵,常记为n E (或n I ),简记为E (或I ),元素都是0的矩阵叫零矩阵,记为n m 0?,或简记为0. 行和列分别相等的两个矩阵叫做同型矩阵,两个同型矩阵的且对应位置上的 元素分别相等的矩阵叫做相等矩阵. 设有矩阵A =n m ij a ?)(,则A -n m ij a ?-=)(称为A 的负矩阵. 若A 是方阵,则保持相对元素不变而得到的行列式称为方针A 的行列式,记 为||A 或A Det . 将矩阵A 的行列式互换所得到的矩阵为A 的转置矩阵,记为T A 或A '. 若方阵A 满足A A T =,则称A 为对称矩阵,若方阵A 满足A A T -=,则称A 为反对称矩阵. 若矩阵的元素都是实数,则矩阵称为实矩阵.若矩阵的元素含有复数,则称矩 阵为复矩阵,若A =n m ij a ?)(是复矩阵,则称矩阵n m ij a ?)((其中ij a 为ij a 的共轭矩阵,记为A n m ij a ?=)(. 定义3.2 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==,则 称方阵A 可逆,B 称为A 的逆矩阵,记做1-=A B . 对于方阵A n m ij a ?=)(,设ij a 的代数余子式为ij A ,则矩阵 *A ????????????=nm n n n n A A A A A A A A A 2122212 12111 称为A 的伴随矩阵,要注意伴随矩阵中元素的位置. 定义3.3 设有矩阵A ,如果: (1) (1) 在A 中有一个r 阶子式D 不为零.

矩阵数值算法

计算实习报告 一 实习目的 (1)了解矩阵特征值与相应特征向量求解的意义,理解幂法和反幂法的原理, 能编制此算法的程序,并能求解实际问题。 (2)通过对比非线性方程的迭代法,理解线性方程组迭代解法的原理,学会编 写Jacobi 迭代法程序,并能求解中小型非线性方程组。初始点对收敛性质及收 敛速度的影响。 (3)理解 QR 法计算矩阵特征值与特征向量的原理,能编制此算法的程序,并 用于实际问题的求解。 二 问题定义及题目分析 1. 分别用幂法和幂法加速技术求矩阵 2.5 2.5 3.00.50.0 5.0 2.0 2.00.50.5 4.0 2.52.5 2.5 5.0 3.5-?? ?- ?= ?-- ?--?? A 的主特征值和特征向量. 2. 对于实对称矩阵n n ?∈A R ,用Jacobi 方法编写其程序,并用所编程序求下列矩阵的全部 特征值. 1515 4 1141144114114?-?? ?-- ? ?- ?= ? ?- ?-- ? ?-??A 3. 对于实矩阵n n ?∈A R ,用QR 方法编写其程序,并用所编程序求下列矩阵的全部特征值: 111 21 113,4,5,62311111n n n n n n ? ???? ?????==+? ????? ??+??A 三 概要设计 (1) 幂法用于求按模最大的特征值及其对应的特征向量的一种数值算法,

它要求矩阵 A 的特征值有如下关系: 12n ...λλλ>≥≥ ,对于相应 的特征向量。其算法如下: Step 0:初始化数据0,, 1.A z k = Step 1:计算1k k y A z +=。 Step 2:令 k k m y ∞=。 Step 3:令 k k k z y m = ;如果1k k m m +≈或1k k z z +≈,则 goto Step 4;否则 , k = k + 1 ,goto Step 1。 Step 4:输出结果 算法说明与要求 输入参数为实数矩阵、初始向量、误差限与最大迭代次数。输出 参数为特征值及相对应的特征向量。注意初始向量不能为“0”向量。 (2) 迭代法的原理 如果能将方程 Ax =b 改写成等价形式:x=Bx+f 。如果B 满足:ρ(B )<1,则对于任意初始向量 x (0) ,由迭代 x ( k + 1) = Bx (k ) + f 产生的序列均收敛到方程组的精确解。迭代法中两种最有名的迭代法就是Jacobi 迭代法,它的迭代矩阵 B 为: 1()J D L U -=-+,1 f D b -= 其中,D 为系数矩阵 A 的对角元所组成对角矩阵,L 为系数矩阵 A 的对角元下方所有元素所组成的下三角矩阵,U 为系数矩阵 A 的对角元上方所有元素所组成的上三角矩阵。 算法如下: Step 0:初始化数据 00,,,,k A b x δ=和ε。 Step 1:计算D,L,U,J 或G, 得到迭代矩阵B. Step 2::1k k =+ 0x B x f * =+ 0x x = 如果0x x δ-<或()f x ε≤,goto Step 3?否则 goto Step 2。 Step 3:输出结果。 程序说明与要求

矩阵的满秩分解

§4.3矩阵的满秩分解 本节讨论一个复矩阵可以分解为两个与的秩相同的矩阵之积的问题。定义4.3.1设复矩阵的秩为,如果存在两个与的秩相同的复矩阵与,使得,则称此式为复矩阵的满秩分解。 当是满秩矩阵时(行满秩或列满秩)可以分解为单位矩阵与自身的乘积,这个满秩分解叫做平凡分解。 定理4.3.1设复矩阵的秩为,则有满秩分解。 证:因为,对施行初等行变换,可得到阶梯形矩阵, 其中为矩阵,并且;因此存在着有限个阶初等矩阵之积, 记作,有,或者,将矩阵分块为,其中为矩阵,为矩阵,并且,。 则有,其中是列满秩矩阵,是行满秩矩阵。▌ 但是,矩阵的满秩分解不唯一。这是因为若取任意一个阶非奇异矩阵,则有 。 例1、求矩阵的满秩分解。 解:对矩阵进行初等行变换 其中所以,;而,其中 由此可见,所以有。 定义4.3.2设复矩阵的秩为,并且满足以下条件: 1)矩阵的前行中的每一行至少含有一个不为零的元素,并且第一个不为零的元素是1,而后行的元素均为零; 2)如果矩阵的第行的第一个不为零的元素1在第列, 则; 3)矩阵的列是单位矩阵的前列; 则称矩阵为Hermite标准形(最简型)。 由此定义可见,对于任意一个秩为的复矩阵,均可以经过初等行变换将其化为Hermite标准形,而且矩阵的前列元素组成的列向量组线性无关。 定义4.3.3以阶单位矩阵的个列向量为列构成的阶矩阵叫做置换矩阵。其中是的一个全排列。 定理4.3.2设复矩阵的秩为,矩阵的Hermite标准形为,则在矩阵的满秩分解中,可以取矩阵为的列构成的列矩阵,为的前行构成的列矩阵。例2、求矩阵的满秩分解。 解:先求出矩阵的Hermite标准形

矩阵的最大秩分解

矩阵的最大秩分解及其应用 黄爱梅(01数本26号) 摘要:本文给出矩阵m n C ?∈A 分解为两个与A 同秩的因子的积的具体方法,并讨论它的一些 相关应用。 关键词:满秩分解、列满秩、行满秩、初等变换 正文: 定理1:设m n r A C ?∈,则存在矩阵m r r B C ?∈,使得A BC =。 证:设()1112,A A A P =,其中11m r r A C ?∈,它由A 的r 个线性无关列组成,12A 为的其余n r -列所组成的矩阵。n n n P C ?∈为初等列变换矩阵之积。由于12A 的列均为11A 的列的线 性组合,故存在矩阵() r n r D C ?-∈,使得 1211A A D = 于是()()111111,,r A A A D P A I D P == 令()11,,r B A C I D P == 显然有m r r B C ?∈,r n r C C ?∈且A BC =。 矩阵的这种分解,称为最大秩分解(满秩分解) 定理的证明过程给出求B 、C 的方法,可归纳如下: 将A 进行初等变换,化为行标准型,即将A 变为如下形式的矩阵。 001**0**0**000001** 0**0001**000 0A ?? ?????? ?? ?? =?? ?? ?? ???? ???? r 个元素不全为零的行 其中“*”表示不一定为0的元素,在r A 中第个元素为1 外,其余的无素均为0(j r ∈)。于是A 中12,,,r k k k 列的元素组成的阶矩阵就是B 。而在r A 中除去下面的n r -个元素全为0行的外,所得的阶矩阵即为C 。

基于矩阵分解的协同过滤算法

万方数据

万方数据

万方数据

万方数据

基于矩阵分解的协同过滤算法 作者:李改, 李磊, LI Gai, LI Lei 作者单位:李改,LI Gai(顺德职业技术学院,广东顺德528333;中山大学信息科学与技术学院,广州510006;中山大学软件研究所,广州510275), 李磊,LI Lei(中山大学信息科学与技术学院,广州510006;中山大学软件研究 所,广州510275) 刊名: 计算机工程与应用 英文刊名:Computer Engineering and Applications 年,卷(期):2011,47(30) 被引用次数:1次 参考文献(18条) 1.Wu J L Collaborative filtering on the Nefifix prize dataset 2.Ricci F.Rokach L.Shapira B Recommender system handbook 2011 3.Adomavicius G.Tuzhilin A Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extenstions 2005(06) 4.Bell R.Koren Y.Volinsky C The bellkor 2008 solution to the Netflix prize 2007 5.Paterek A Improving regularized singular value decomposition for collaborative filtering 2007 6.Lee D D.Seung H S Leaming the parts of objects by non-negative matrix factorization[外文期刊] 7.徐翔.王煦法基于SVD的协同过滤算法的欺诈攻击行为分析[期刊论文]-计算机工程与应用 2009(20) 8.Pan R.Zhou Y.Cao B One-class collaborative filtering 2008 9.Pan R.Martin S Mind the Gaps:weighting the unknown in largescale one-class collaborative filtering 2009 https://www.360docs.net/doc/bb4527483.html,flix Netflix prize 11.罗辛.欧阳元新.熊璋通过相似度支持度优化基于K近邻的协同过滤算法[期刊论文]-计算机学报 2010(08) 12.汪静.印鉴.郑利荣基于共同评分和相似性权重的协同过滤推荐算法[期刊论文]-计算机科学 2010(02) 13.Hadoop[E B/OL] 14.Apache MapReduce Architecture 15.Wbite T.周敏.曾大聃.周傲英Hadoop权威指南 2010 16.Herlocker J.Konstan J.Borchers A An algorithmic framework for performing collaborative filtering 1999 17.Linden G.Smith B.York J https://www.360docs.net/doc/bb4527483.html, recommendations:Itemto-item collaborative filtering[外文期刊] 2003 18.Sarwar B.Karypis G.Konstan J ltem-based collaborative filtering recommendation algorithms 2001 引证文献(1条) 1.沈韦华.陈洪涛.沈锦丰基于最佳匹配算法的精密零件检测研究[期刊论文]-科技通报 2013(5) 本文链接:https://www.360docs.net/doc/bb4527483.html,/Periodical_jsjgcyyy201130002.aspx

矩阵分解的研究及应用

矩阵分解的研究及应用 摘要:将一矩阵分解为若干个矩阵的和或积,是解决某些线性问题的重要方法,其技巧性、实用性强。 本文首先分成四部分内容来阐述矩阵分解的形式及一些很常见的分解。最后举例说明矩阵分解的应用。 关键词:特征值分解 秩分解 三角分解 和分解 关于矩阵分解的形式的文献已有很多,但对于这个问题的分析各不相同。本文从四个方面来论述矩阵的分解的形式,并以一些具体的例子来说明矩阵分解在实际应用中的重要性。 一、特征值分解 性质1:任意n 阶矩阵A ,存在酉矩阵T ,使得1 10n A T T λλ-*?? ? = ? ??? ,其中1,,n λλ 为矩阵A 的 特征值。称形如这样的分解叫做矩阵A 的特征值分解。 性质1':任意n 阶矩阵A ,存在酉矩阵T ,使得11s J A T T J -?? ? = ? ??? ,其中 11i i i i i i n n J λλλ??? ? ?= ? ? ? ? ,1,2,,i s = 且1,,s λλ 为矩阵A 的特征值。 对于对称矩阵有如下结论: 定理1.1:若A 为n 阶实对称矩阵,则存在正交矩阵T ,使得11n A T T λλ-?? ? = ? ??? , 其中1,,n λλ 为矩阵A 的特征值。 证明 由性质1,知 存在酉矩阵T ,使得1 10n A T T λλ-*?? ? = ? ??? 又由于A 为n 阶实对称矩阵,因此 111 111000n n n A T T T T A T T λλλλλλ---'??**?????? ? ? ? ?'==== ? ? ? ? ? ? ? ?*??????? ? 从而,得 1 100n n λλλλ*???? ? ? = ? ? ? ?*???? 因此11n A T T λλ-?? ? = ? ??? 得证。

(完整word版)矩阵分解及其简单应用

对矩阵分解及其应用 矩阵分解是指将一个矩阵表示为结构简单或具有特殊性质若干矩阵之积或之和,大体分为三角分解、QR 分解、满秩分解和奇异值分解。矩阵的分解是很重要的一部分内容,在线性代数中时常用来解决各种复杂的问题,在各个不同的专业领域也有重要的作用。秩亏网平差是测量数据处理中的一个难点,不仅表现在原理方面,更表现在计算方面,而应用矩阵分解来得到未知数的估计数大大简化了求解过程和难度。 1. 矩阵的三角分解 如果方阵A可表示为一个下三角矩阵L和一个上三角矩阵U之积,即A=LU 则称A可作三角分解。矩阵三角分解是以Gauss消去法为根据导出的,因此矩阵可以进行三角分解的条件也与之相同,即矩阵A的前n-1个顺序主子式都不为0, 即?k工0.所以在对矩阵A进行三角分解的着手的第一步应该是判断是否满足这个前提条件,否则怎么分解都没有意义。矩阵的三角分解不是唯一的,但是在一定的前提下, A=LDU勺分解可以是唯一的,其中D是对角矩阵。矩阵还有其他不同的三角分解,比如Doolittle 分解和Crout 分解,它们用待定系数法来解求 A 的三角分解,当矩阵阶数较大的时候有其各自的优点,使算法更加简单方便。 矩阵的三角分解可以用来解线性方程组Ax=b。由于A=LU,所以Ax=b可以变换成LU x=b,即有如下方程组: Ly = b { {Ux = y 先由Ly = b依次递推求得y i, y2, ........ ,y n,再由方程Ux = y依次递推求得X n, x n-1 , ... ,X1 . 必须指出的是,当可逆矩阵A不满足?k工0时,应该用置换矩阵P左乘A以便使PA 的n个顺序主子式全不为零,此时有: Ly = pb { { Ux = y 这样,应用矩阵的三角分解,线性方程组的解求就可以简单很多了。 2. 矩阵的QF分解 矩阵的QR分解是指,如果实非奇异矩阵A可以表示为A=QR其中Q为正交矩阵,R为实非奇异上三角矩阵。QR分解的实际算法各种各样,有Schmidt正交方

矩阵分解及其简单应用

矩阵分解是指将一个矩阵表示为结构简单或具有特殊性质若干矩阵之积或之和,大体分为三角分解、分解、满秩分解和奇异值分解.矩阵地分解是很重要地一部分内容,在线性代数中时常用来解决各种复杂地问题,在各个不同地专业领域也有重要地作用.秩亏网平差是测量数据处理中地一个难点,不仅表现在原理方面,更表现在计算方面,而应用矩阵分解来得到未知数地估计数大大简化了求解过程和难度. 矩阵地三角分解 如果方阵可表示为一个下三角矩阵和一个上三角矩阵之积,即,则称可作三角分解.矩阵三角分解是以消去法为根据导出地,因此矩阵可以进行三角分解地条件也与之相同,即矩阵地前个顺序主子式都不为,即.所以在对矩阵进行三角分解地着手地第一步应该是判断是否满足这个前提条件,否则怎么分解都没有意义.矩阵地三角分解不是唯一地,但是在一定地前提下,地分解可以是唯一地,其中是对角矩阵.矩阵还有其他不同地三角分解,比如分解和分解,它们用待定系数法来解求地三角分解,当矩阵阶数较大地时候有其各自地优点,使算法更加简单方便.资料个人收集整理,勿做商业用途 矩阵地三角分解可以用来解线性方程组.由于,所以可以变换成,即有如下方程组:资料个人收集整理,勿做商业用途 先由依次递推求得,,……,,再由方程依次递推求得,,……,. 资料个人收集整理,勿做商业用途 必须指出地是,当可逆矩阵不满足时,应该用置换矩阵左乘以便使地个顺序主子式全不为零,此时有:资料个人收集整理,勿做商业用途 这样,应用矩阵地三角分解,线性方程组地解求就可以简单很多了. 矩阵地分解 矩阵地分解是指,如果实非奇异矩阵可以表示为,其中为正交矩阵,为实非奇异上三角矩阵.分解地实际算法各种各样,有正交方法、方法和方法,而且各有优点和不足.资料个人收集整理,勿做商业用途 .正交方法地分解 正交方法解求分解原理很简单,容易理解.步骤主要有:)把写成个列向量(,,……,),并进行正交化得(,,……,);) 单位化,并令(,,……,),(,,……,),其中;). 这种方法来进行分解,过程相对较为复杂,尤其是计算量大,尤其是阶数逐渐变大时,就显得更加不方便.资料个人收集整理,勿做商业用途 .方法地分解 方法求分解是利用旋转初等矩阵,即矩阵()来得到地,()是正交矩阵,并且(()).()地第行第列 和第行第列为,第行第列和第行第列分别为和,其他地都为.任何阶实非奇异矩阵可通过左连乘()矩阵(乘积为)化为上三角矩阵,另,就有.该方法最主要地是在把矩阵化为列向量地基础上找出和,然后由此把矩阵地一步步向上三角矩阵靠近.方法相对正交方法明显地原理要复杂得多,但是却计算量小得多,矩阵()固有地性质很特别可以使其在很多方面地应用更加灵活.资料个人收集整理,勿做商业用途 .方法地分解 方法分解矩阵是利用反射矩阵,即矩阵,其中是单位列向量,是正交矩阵,.可以证明,两个矩阵地乘积就是矩阵,并且任何实非奇异矩阵可通过连乘矩阵(乘积为)化为上三角矩阵,则.这种方法首要地就是寻找合适地单位列向量去构成矩阵,

矩阵链算法

/************************ Matrix Chain Multiplication ***************************/ /************************ 作者:Hugo ***************************/ /************************ 最后修改日期:2015.09.10 ***************************/ /************************ 最后修改人:Hugo ***************************/ using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Text.RegularExpressions; using System.Collections; namespace Matrix { class Program { public static int nummulti = 0; static ArrayList list1 = new ArrayList();//定义计算式存储列表 static ArrayList listrow = new ArrayList();//定义矩阵行数存储列表 static ArrayList listcolumn = new ArrayList();//定义矩阵列数存储列表 static void Main(string[] args) { /****************************************************************************** *****************/ //从键盘上获取矩阵 int nummatrix = Int32.Parse(Console.ReadLine()); int countmat = 0; for (countmat = 0; countmat < nummatrix; countmat++) { string s = Console.ReadLine(); string[] str = s.Split(' ');//把输入的一行字符按空格拆分 listrow.Add(Int32.Parse(str[1]));//行数存储到矩阵行数存储列表 listcolumn.Add(Int32.Parse(str[2]));//列数存储到矩阵列数存储列表

矩阵分解及其应用

《线性代数与矩阵分析》课程小论文 矩阵分解及其应用 学生姓名:****** 专业:******* 学号:******* 指导教师:******** 2015年12月

Little Paper about the Course of "Linear Algebra and Matrix Analysis" Matrix Decomposition and its Application Candidate:****** Major:********* StudentID:****** Supervisor:****** 12,2015

中文摘要 将特定类型的矩阵拆解为几个矩阵的乘机称为矩阵的分解。本文主要介绍几种矩阵的分解方法,它们分别是矩阵的等价分解、三角分解、谱分解、奇异值分解和 Fitting 分解等。矩阵的分解理论和方法是矩阵分析中重要的部分,在求解矩阵的特征值、解线性方程组以及实际工程中有着广泛的运用。因此,本文将介绍矩阵等价分解、三角分解、奇异值分解的理论运用以及三角分解的工程运用。 关键词:等价分解,三角分解,奇异值分解,运用

Abstract Many particular types of matrix are split into the product of a matrix of several matrices, which is called decomposition of matrix. In this paper, we introduce some methods of matrix decomposition, which are equivalent decomposition, triangular decomposition, spectral decomposition, singular value decomposition, Fitting decomposition and so on. The decomposition theory and method of matrix is an important part of matrix analysis, which is widely used in solving the characteristic value, solving linear equations and the practical engineering. In this paper, we will introduce the theory of matrix equivalence decomposition, triangular decomposition, singular value decomposition and the engineering application of triangular decomposition. Key words:Equivalent Decomposition, Triangular Decomposition, Singular Value Decomposition, Application

第四章 矩阵分解

矩阵分析
第四章 矩阵分解
§4.1: 矩阵的满秩分解 §4.2: 矩阵的正交三角分解 §4.3: 矩阵的奇异值分解 §4.4: 矩阵的极分解 §4.5: 矩阵的谱分解
矩阵分解前言
矩阵分解定义: 将一个已知矩阵表示为另一些较为简单或 较为熟悉的矩阵的积(或和)的过程称为矩阵分解. 例:(1)对任意n阶正规矩阵A,存在酉阵U∈Un×n使 A=Udiag(λ1,…,λn)U*, 其中λ1,…,λn为A的所有特征值的任一排列. (2)对任意n阶正定矩阵A,存在可逆阵Q∈Cnn×n使A=Q*Q,或存 在唯一正定阵B使A=BB. 矩阵分解意义:有利于研究已知的矩阵. 例如,利用正定阵A的平方根B为正定阵可证: 对任意Hermite阵H,AH或HA都有实特征值.
1
( AH~(A1/2)-1AHA1/2=A1/2HA1/2∈Hn×n )
2
初等变换与初等矩阵(p73)
三类初等变换: (行(列)变换←→左(右)乘) (1)将矩阵A的两行互换等价于用第一类初等矩阵P(i,j)左 乘A; (2)将矩阵A的第i行乘以k≠0等价于用第二类初等矩阵 P(i(k))=diag(1,…,1,k,1,…,1)左乘A. (3)将矩阵A的第j行乘以k≠0后再加到第i行等价于左乘第 三类初等矩阵P(i,j(k)).
P (i , j ) =
?1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 1 1 1 0 1 1
初等变换与初等矩阵举例
?1 ?? 1 4 7 ? ? 1 4 7 ? ? 0 1 ?? 2 5 8 ? = ? 3 6 9 ? ; ? ?? ? ? ? ? 1 0 ?? 3 6 9 ? ? 2 5 8 ? ? ?? ? ? ? ?1 4 7??1 ? ? 1 7 4? ? 2 5 8?? 0 1? = ? 2 8 5? ? ?? ? ? ? ? 3 6 9?? 1 0? ? 3 9 6? ? ?? ? ? ?
?1 ??1 4 7? ? 1 4 7 ? ? ?? ? ? ? 0.2 ? ? 2 5 8 ? = ? 0.4 1 1.6 ? ; ? ? 1?? 3 6 9 ? ? 3 6 9 ? ? ?? ? ? ?
?1 4 7??1 ? ? 1 4 7 / 9? ? ?? ? ? ? ? 2 5 8?? 1 ? = ? 2 5 8/9? ? 3 6 9?? 1/ 9 ? ? 3 6 1 ? ? ?? ? ? ?
---- i ---- j
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1?
P (i , j ( k )) =
?1 ? ? ? ? ? ? ? ? ? ?
1
k 1
? ? ? ? ---? ? ? ---? ? ? 1?
i j
3
?1 ?? 1 2 3? ? 1 2 3 ? ? ?? ? ? ? ? ?4 1 ? ? 4 5 6 ? = ? 0 ?3 ?6 ? ; ? 1?? 7 8 9? ? 7 8 9 ? ? ?? ? ? ?
?3 ? ? 1 2 0 ? ? 1 2 3??1 ? ?? ? ? ? ? 4 5 6?? 1 ? = ? 4 5 ?6 ? ?7 8 9?? 1 ? ? 7 8 ?12 ? ? ?? ? ? ?
4
初等变换与初等矩阵的性质
3类初等矩阵都是可逆的(行列式不为0). 将A依次作初等矩阵P1,…,Pr对应的行(列)初等变换等价 于左(右)乘A以可逆矩阵Pr…P1(P1…Pr). 可适当选第一类初等矩阵的乘积P使PA(AP)的行(列)是A 的行(列)的任意排列; 可适当选第三类初等矩阵 P(i,j(k))中的k使P(i,j(k))A的(i,j)元变为0; 可适当选第二类初等矩阵P(i(k))中的k使P(i(k))A的非 零(i,i)元变为1. 存在初等矩阵的乘积P和Q,使PAQ= ,其中r=rankA.
初等变换与初等矩阵的性质续
命题:设A∈Crm×n前r列线性无关,则用初等行变换可把A变为
? Er ? ? 0 ?1 ? ? D? ? = ? ? 0 ? ? ? ? ? ? 1 1 * * * * *? ? *? *? ? *? ? ? ? ?
一般地,?A∈Crm×n都存在m,n阶可逆阵P和Q使PAQ=
5
证:因前r列线性无关,故用第一类初等矩阵左乘可使A的 (1,1)元≠0. 再用第二类初等矩阵左乘可使a11=1; 最后用若干第三类初等矩阵左乘可使A的第一列=e1. 因前2列线性无关,故新的第2列与e1线性无关且≠0, 故用第一类行变换可使(2,2)元≠0,…可使A的第2列=e2. ….可使A的第r列=er.此时空白处必为0元.
安徽大学 章权兵
1

2019机器学习中的数学 5 强大的矩阵奇异值分解 SVD.doc

机器学习中的数学 5 强大的矩阵奇异 值分解SVD 机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@https://www.360docs.net/doc/bb4527483.html, 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性。就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生就有着非常好的抽取重要特征的能力,让机器学会抽取重要的特征,SVD是一个重要的方法。 在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层次检索的LSI(Latent Semantic Indexing) 另外在这里抱怨一下,之前在百度里面搜索过SVD,出来的结果都是俄罗斯的一种狙击枪(AK47同时代的),是因为穿越火线这个游戏里面有一把狙击枪叫做SVD,而在Google上面搜索的时候,出来的都是奇异值分解(英文资料为主)。想玩玩战争游戏,玩玩COD不是非常好吗,玩山寨的CS有神马意思啊。

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

矩阵的满秩分解

§矩阵的满秩分解 本节讨论一个n m ?复矩阵A 可以分解为两个与A 的秩相同的矩阵之积的问题。 定义设n m ?复矩阵A 的秩为r ,如果存在两个与A 的秩相同的复矩阵F 与G ,使得FG A =,则称此式为复矩阵A 的满秩分解。 当A 是满秩矩阵时(行满秩或列满秩)A 可以分解为单位矩阵与A 自身的乘积,这个满秩分解叫做平凡分解。 定理设n m ?复矩阵A 的秩为r 0>,则A 有满秩分解。 证:因为0>=r rankA ,对A 施行初等行变换,可得到阶梯形矩阵???? ??=0G B , 其中G 为n r ?矩阵,并且0>=r rankG ;因此存在着有限个m 阶初等矩阵之积, 记作P ,有B PA =,或者B P A 1-=,将矩阵1-P 分块为()S F P =-1 ,其中F 为r m ?矩阵,S 为)(r n m -?矩阵,并且r rankF =,r n rankS -=。 则有()FG G S F B P A =??? ? ??==-01 ,其中F 是列满秩矩阵,S 是行满秩矩阵。 ▌ 但是,矩阵A 的满秩分解不唯一。这是因为若取任意一个r 阶非奇异矩阵D ,则有 G F G D FD FG A ~~))((1===-。 例1、 求矩阵???? ? ??----=122211212101A 的满秩分解。 解:对矩阵A 进行初等行变换

()???? ??==???? ? ??--→????? ??----=0111000001130200012101100122201011210012101G B I A 其中???? ??-=30202101G 所以????? ??-=000030202101B ,???? ? ??-=111011001P ;而()S F P =????? ??--=-1120110011 ,其中???? ? ??--=121101F 由此可见,所以有()???? ? ??--==???? ??==-12110101FG G S F B P A ???? ??-30202101。 定义设n m ?复矩阵H 的秩为r ()0>r ,并且满足以下条件: 1)矩阵H 的前r 行中的每一行至少含有一个不为零的元素,并且第一个不为零的元素是1,而后r m -行的元素均为零; 2)如果矩阵H 的第i 行的第一个不为零的元素1在第i j 列()r i ,,2,1 =, 则r j j j <<< 21; 3)矩阵H 的r j j j ,,,21 列是单位矩阵m I 的前r 列; 则称矩阵H 为Hermite 标准形(最简型)。 由此定义可见,对于任意一个秩为r 的n m ?复矩阵A ,均可以经过初等行变换将其化为Hermite 标准形H ,而且矩阵H 的前r 列元素组成的列向量组线性无关。 定义以n 阶单位矩阵n I 的n 个列向量n e e e ,,,21 为列构成的n 阶矩阵() n j j j e e e P ,,,21 =叫做置换矩阵。其中n j j j ,,,21 是n ,,2,1 的一个全排列。 定理设n m ?复矩阵A 的秩为r ()0>r ,矩阵A 的Hermite 标准形为H ,则在矩阵A 的满秩分解FG A =中,可以取矩阵F 为A 的r j j j ,,,21 列构成的

矩阵的奇异值分解及其应用

矩阵的奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于https://www.360docs.net/doc/bb4527483.html,, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@https://www.360docs.net/doc/bb4527483.html, 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性。就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生就有着非常好的抽取重要特征的能力,让机器学会抽取重要的特征,SVD是一个重要的方法。 在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层次检索的LSI(Latent Sem antic Indexing) 另外在这里抱怨一下,之前在百度里面搜索过SVD,出来的结果都是俄罗斯的一种狙击枪(AK47同时代的),是因为穿越火线这个游戏里面有一把狙击枪叫做SVD,而在Google上面搜索的时候,出来的都是奇异值分解(英文资料为主)。想玩玩战争游戏,玩玩COD不是非常好吗,玩山寨的CS有神马意思啊。国内的网页中的话语权也被这些没有太多营养的帖子所占据。真心希望国内的气氛能够更浓一点,搞游戏的人真正是喜欢制作游戏,搞Data Mining的人是真正喜欢挖数据的,都不是仅仅为了混口饭吃,这样谈超越别人才有意义,中文文章中,能踏踏实实谈谈技术的太少了,改变这个状况,从我自己做起吧。 前面说了这么多,本文主要关注奇异值的一些特性,另外还会稍稍提及奇异值的计算,不过本文不准备在如何计算奇异值上展开太多。另外,本文里面有部分不算太深的线性代数的知识,如果完全忘记了线性代数,看本文可能会有些困难。 一、奇异值与特征值基础知识: 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧: 1)特征值: 如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式:

相关文档
最新文档