金属中的电子气的理论

合集下载

第十六讲金属中自由电子气模型

第十六讲金属中自由电子气模型

- - -( 7)
3(z L) = 3(z)
用 通 解 的 前 一 种 表 示 , 分 别 假 定 波 沿 x,y,z 负 方 向 传 播 , 可 得
波矢:
kx =
2n x L
ky
=
2n y L
kz
=
2n z L
( 8)






(n :ψ
x, (x
ny, ,y,z
n )
z
为正 = 1(
负整
x ) 2 (
此时费密-狄喇克统计分布为 (见图 p112 图 6.3)
1
lim T 0
f ( E ,T ) 0
E (0) E (0)
其 中 μ (0)为 绝 对 零 度 时 的 化 学 势 。
- - (17)
电 子 气 基 态 :能 量 在 μ (0)以 下 的 状 态 全 被 电 子 占 满 ,能 量超 过 μ (0)
第十六讲 金属中自由电子气模型
第六章 金属电子论 问题:对金属中相互作用、运动着的大量电子,怎样进行理论处理?
如何从理论上说明电子对金属优良的电导、热导和比热的贡献? 如何从电子的运动状态解释电子热发射、光电效应和场电子发 射等重要现象? 本章用 量子的电子气体模型: 金属中的价电子组成电子气体(就象气体分
见 p112 图 6.3 f(E,T) ~ E 曲线
T > 0,

kBT
f
(,T
)
1 2
范围内,f (E,T )从 1下降到 0
由能态密度公式(13)
g(E) CE1/ 2
和公式(14)
C 4 ( 2m)3/ 2
h2

电子工程物理基础v1.0(3)

电子工程物理基础v1.0(3)
k E 2m 2 2 2 2 kx k y kz 2m
2 2


2 2 2 2 nx n y nz 2m L
2
2

2n y 2nx 2nz kx , ky , kz L L L
考虑了边界条件的 限制,波矢k是由一组量
子数(nx,ny,nz)给定的.
在k-空间,每个许可
的k可由一个点代表.这
些点是均匀分布的.
二. 电子的统计分布
1. 能态密度
2k 2 E 2m 2 2 2 kx k y k z2 2m


2 2 2 2 2 nx n y nz 2m L
唐洁影
东南大学电子科学与工程学院
第3章 晶体中的电子状态
3.1 金属中的电子 3.2 晶体中的电子-普遍解 3.3 晶体中的电子-具体解
3.4 外界作用下的电子
3.1 金属中的电子
一. 金属电子气
基本思想:假设金属中的电子是不受任何外力、
彼此之间也无相互作用的自由电子。于是,可用 三维无限深势阱模型来描述。
3.1 金属中的电子 3.2 晶体中的电子-普遍解 3.3 晶体中的电子-具体解
3.4 外界作用下的电子
3.2 晶体中的电子-普遍解
一. 全模型
考虑了实际晶体中电子与电子、电子与原子核、原子核与原子核之间的相互作用后, 晶体电子的运动可用多粒子薛定谔方程描述,在此称为全模型。
ˆ H(r, R)r,R Er , R
2

1
2

E Tn 1 Vn 4T
2
2 2 n
E Tn 1 Vn 4Tn2 2

金属自由电子气模型ppt课件

金属自由电子气模型ppt课件
2k 2 E 2m
为波矢量.
E是电子的能 量本征值 P为电子的动 量本征值
p k
16
周期性边界条件
在金属的自由电子论中,它不完全自由,它的位 置受金属边界的限制 (r Lx ) (r ) (1) 周期性边界条件: (r Ly ) (r ) (2) (r Lz ) (r ) (3)
金属的电导率
有外电场时金属中自由电子的运动规律 (1)在外电场E的作用下, 金属中的电子在电场的反方向上将获得附加速度; (2)当电子与正离子发生碰撞时, 电子将失去附加速度; (3)碰撞后由于外场的继续作用, 电子又会获得定向运动速度而自由的前进。 这个过程在周期性晶体点阵中反复不断的进行。
eE v a =me 1 v平 = v 2 j nev平 j E
3
经典电子自由理论
1900年,特鲁德首先将金属 中的价电子与理想气体类比,提 出了金属电子气理论。 • 1904年,洛伦兹将麦克斯韦玻耳兹曼统计分布规律引入电子 气,据此就可用经典力学定律对 金属自由电子气体模型作出定量 计算。 • 这样就构成了特鲁德-洛仑兹 自由电子气理论,称为经典自由 电子理论
10
魏德曼—弗兰兹定律
1.电导率和热导率之间的关系
(洛仑兹关系)
实验表明:金属的电导率越高,则其热导率也越高。
2.魏德曼—弗兰兹定律
在不太低的温度下,金属的导热系数与电导率之比 正比于温度,其中比例常数的值不依赖于具体的金属。
2 C e,V v l e m v kB LT 2 2 3 ne l 2m v e
12
关于电阻率的思考
由之前的推导可以 得到:
E m 1 e e J ne vd ne (a ) n ne2

第五章:金属的电子理论

第五章:金属的电子理论

dN ( E ) 3 2me 2 dE 2
3/ 2
3/ 2
E1/ 2
V 3 2
V 2me 2 2 2 3N ( E ) 2E
E1/ 2
DOS: number of electrons/unit energy in a range E ~ E + dE
自由电子模型总结
• 即使在金属中,传导电子的电荷分布( charge distribution)收到 离子芯强烈静电势的影响。因此,自由电子模型描述传导电子的运 动特性(kinetic properties)最为合适。传导电子与离子之间的相 互作用将在能带理论中讨论。 • 最简单的金属是碱金属:Li, Na, K, Rb, Cs。在这些单价金属中,N 原子构成的晶体有N 个电子和N 个正离子。 • 自由电子模型产生于在量子理论建立之前。经典Drude模型成功导 出欧姆定律(Ohm’s law),以及电导和热导的关系。但是,由于 使用了Maxwell经典统计分布,它不能解释比热容(heat capacity) 和磁化率(magnetic susceptibility )。后来Sommerfeld在量子理 论基础上重建了该模型。
~ 10eV
1/ 3 2 pF kF 3 N ~ 108 cm / sec vF V me me me
2/3 2 2 2 EF 2 3 N ~ 105 K TF kF kB 2me kB 2me kB V
态密度(Density of states, DOS)
L N (E) 2 2
dN ( E ) L 2me 1 N ( E ) 2me E , D( E ) dE E 2

[整理]金属键与金属性辨析

[整理]金属键与金属性辨析

金属键与金属性辨析金属键与金属性是反映金属性质的两个重要的参数,掌握了这两方面的知识,有关金属的问题就基本解决了。

对高中学生来说,金属键与金属性这两个概念又是最容易混淆的,它们到底有什么区别呢?一、金属键知识辨析1.金属键的“电子气”理论金属晶体中存在金属键,金属键是一种化学键。

金属键的“电子气”理论认为:金属晶体中,部分金属原子释放出其最外层电子(自由电子),这些自由电子在晶体中运动形成了“电子气”(类似于电子云),金属原子、金属离子与“电子气”之间必然存在一种强烈的相互作用,这种作用就是金属键。

也有人把金属键的作用形象的称之为“电子海洋”:在金属晶体中,金属原子最外层电子(自由电子)在晶体中运动,无数自由电子的运动形成了“电子的海洋”,失去电子的金属阳离子构成的晶格沉浸在“电子的海洋”中,金属键可以看成是金属离子与自由电子间的强烈相互作用。

这些说法大同小异,其基本原理是一样的。

2.金属键的强弱金属键是一种化学键,化学键是比较强的作用。

那么金属键的强弱如何呢?金属键的强弱差别很大,比如:金属铬的硬度很大、熔点也很高,它的金属键很强;但是金属钠很柔软、熔点很低,说明钠的金属键比较弱。

影响金属键的强弱的因素有许多,但在高中阶段只用金属离子半径与离子电荷去分析就可以了。

规律是:金属离子半径越小金属键越强,如碱金属元素中金属键强弱的顺序为Li>Na>K>Rb>Cs;金属离子所带的电荷越多金属键越强,如钠、镁、铝三种金属的金属键强弱为Na<Mg<Al。

3.金属键与其他化学键的区别金属受外力作用或拉伸或锻压变形后,在金属的晶体中原子的相对位置发生了移动,但是金属原子、金属离子沉浸“电子气”中这一事实没有改变,也就是金属键仍然存在,这就是金属键的特殊性。

如果是原子晶体、离子晶体,构成晶体的质点发生相对位移后,化学键就被破坏,晶体就碎裂了。

4.金属键能解决什么问题?金属键的知识主要用来解决金属的物理性质方面的问题。

电子行业金属自由电子气模型

电子行业金属自由电子气模型

电子行业金属自由电子气模型引言自由电子气模型是描述金属中电子行为的重要理论模型之一。

在电子行业中,金属材料具有良好的导电性和热导性,这一特性正是由于金属中存在着大量的自由电子。

本文将详细介绍电子行业金属中自由电子气模型的基本原理。

自由电子气模型的基本原理自由电子气模型的基本原理是假设金属中的自由电子在晶体中自由运动,并且彼此之间无相互作用。

这个假设是基于金属中的电子大量和密度较大,使得它们之间的相互作用可以忽略不计。

而晶体的周期性结构对电子运动所产生的影响可以用晶格周期势能来描述。

在自由电子气模型中,每个电子都可以被看作是一个自由粒子,其能量由动能和势能共同决定。

由于假设电子之间无相互作用,并且忽略自旋和磁场的影响,可以将自由电子气模型简化为一维、二维或三维的能带结构。

能带结构能带结构描述了金属中电子的能量分布情况。

根据自由电子气模型,电子能量随动量的变化形成能带。

在一维情况下,能带是连续的,电子在能带中可以具有任意动量。

而在二维和三维情况下,能带则呈现出带状结构,电子在能带中只能具有特定的动量。

根据泡利不相容原理, 每个能级只能容纳两个电子(自旋相反)。

因此,在一维情况下,每个能级只能容纳一个电子,而在二维和三维情况下,每个能级可以容纳多个电子。

能带结构可以分为导带和价带。

导带是指位于较高能量的带,其中的电子具有较高的能量,可以随意运动。

价带是指位于较低能量的带,其中的电子具有较低的能量,并且在金属中形成近满带,起到稳定晶体结构的作用。

费米能级费米能级是能带结构中的一个重要参数,它代表了电子在金属中填充的最高能级。

根据赛曼效应,当温度趋近于绝对零度时,费米能级上方的能级将几乎全部被填充,而费米能级以下的能级将几乎为空。

费米能级决定了电子在金属中的运动性质,对导电性和热导性有很大影响。

在金属中,费米能级附近的能级比较稠密,形成了电子态密度的峰值,使得金属能够有效地传导电流和热量。

自由电子气模型的应用自由电子气模型是研究金属导电性和热导性的基础理论之一。

【知识解析】金属键与金属晶体

【知识解析】金属键与金属晶体

金属键与金属晶体1 金属键定义金属阳离子与自由电子之间存在的强烈的相互作用称为金属键本质金属原子的价层电子受原子核的束缚比较弱,价层电子容易脱离原子核的束缚形成遍布整块晶体的“电子气”,被所有原子所共用,从而把所有金属原子维系在一起。

“电子气”使得金属阳离子和自由电子之间形成强烈的相互作用。

这一理论称为“电子气理论”,金属键本质上是一种电性作用影响金属键强弱的因素金属元素的原子半径一般而言,金属元素的原子半径越小,金属键越强金属原子价层电子数一般而言,金属原子的价层电子数越多,金属键越强金属键的特征自由电子不是专属于某个特定的金属阳离子,即每个金属阳离子均可享有所有的自由电子,但都不可能独占某个或某几个自由电子,电子在整块金属中自由运动。

金属键既没有方向性,也没有饱和性。

金属键模型如图3-3-1所示图3-3-1存在金属单质或合金2 金属晶体(1)定义:金属原子之间通过金属键相互结合形成的晶体,叫做金属晶体。

(2)特点:①构成金属晶体的微粒是金属阳离子和自由电子;②在金属晶体中,不存在单个分子;③金属晶体中金属阳离子被自由电子所包围。

名师提醒(1)在金属晶体中有阳离子,但没有阴离子,所以,晶体中有阳离子不一定有阴离子,若有阴离子,则一定有阳离子。

(2)金属单质或合金的晶体(晶体锗、灰锡除外)属于金属晶体。

(3)金属晶体与共价晶体一样,是一种“巨分子”。

3 电子气理论解释金属材料的有关性质物理性质电子气理论解释延展性当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,而且弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以在各原子层之间发生相对滑动以后,仍可以保持这种相互作用,因而即使在外力作用下,金属发生形变也不易断裂。

因此,金属有良好的延展性。

如图3-3-2所示:图3-3-2导电性在金属晶体中,自由电子的移动是没有方向的,但是在外加电场的作用下,自由电子就会发生定向移动,因而形成电流,所以金属容易导电。

金属自由电子经典理论

金属自由电子经典理论

金属自由电子经典理论
• 金属中的正离子形成的电场是均匀的,价电子不被原子所 束缚,可以在整个金属中自由地运动,形成自由电子。这 些电子起着导电和导热的作用,他们的行为像理想气体一 样,故被称作自由电子气体,其运动规律遵循经典力学气 体分子的运动定律。 • 在没有外电场作用时,金属中的自由电子沿着各方向运动 的几率相同,故不产生电流。当施加外电场后,自由电子 获得附加速度,于是便沿外电场方向发生定向迁移,从而 形成电流。自由电子在定向迁移过程中,因不断与正离子 发生碰撞,使电子的迁移受阻,因而产生了电阻。
金属自由电子经典理论的产生背景
18世纪末: 1、人们已熟悉金属导电和导热特性,但是还不具备解释这 些传导电子是如何形成和运动的理论基础。 2、1897年汤姆逊发现金属中存在电子(e/m测定)。
3、分子运动论处理理想气体十分成功。
金属自由电子经典理论的提出
•1900年,特鲁德首先将金属中的价电子与理想气体类比,提 出了金属电子气理论,即认为金属中存在有自由电子气体。 •1904年,洛伦兹将麦克斯韦-玻尔兹曼统计分布规律引入电 子气,据此就可用经典力学定律对金属自由电子气体模型作 出定量计算. •这样就构成了特鲁德-洛伦兹自由电子气理论,称为经典自 由电子理论.
金属中自由电子在电场中的运动
当金属中有电流时,每个自由电子都因受到电场力的作用而 加速,即在无规则的热运动上叠加一个定向运动。
自由电子在运动过程中频繁的与晶格碰撞,碰后电子向各个 方向运动的几率相等,因此可认为每个电子在相邻两次碰撞 间做初速度为零的匀加速直线运动。 大量自由电子的统计平均,就是以平均定向漂移速度逆着电 场线方向漂移。
电导率σ的推导
设导体内的恒定电场为 ,则电子的加速度为
v0 电子两次碰撞的时间间隔为t,上次碰撞后的初速度为

金属自由电子气理论

金属自由电子气理论

金属自由电子气理论特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量自由电子气+波尔兹曼统计→欧姆定律 电子平均自由程+分子运动论→电子的热导率特鲁德(Paul Drude )模型的基本假设11.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。

2.独立电子近似:电子与电子之间的相互作用可以忽略不计。

外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。

)特鲁德(Paul Drude )模型的基本假设23.玻尔兹曼统计:自由电子服从玻尔兹曼统计。

4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。

每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。

特鲁德模型的成功之处——成功解释了欧姆定律欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。

202()1I j nev ne S j E eEt m v v E j m ne eE m v m τρτστρ⎧==-⎪⎧=⎪⎪-⎪⎪=+⇒⇒=⎨⎨⎪⎪==⎪⎪⎩=-⎪⎩2.经典模型的另一困难:传导电子的热容根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故333(),222A B e U U N k T RT C R T ∂====∂33/29v ph e C C C R R =+=+≈(卡/molK.)但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。

4.2 Sommerfeld 的自由电子论1925年:泡利不相容原理 1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。

金属电子论

金属电子论

k
的取值范围? 的取值范围?
( )的解, 波函数 ψ (r ) 虽然是方程 2)的解,它还应满足边界条件
v
为方便,在处理晶体的问题时,通常取周期性边界条件 为方便,在处理晶体的问题时,通常取周期性边界条件 v ψ (r ) 满足: 即要求 满足:
ψ ( x + L, y , z ) = ψ ( x , y , z ) ψ ( x , y + L, z ) = ψ ( x , y , z ) ψ ( x , y , z + L ) = ψ ( x, y , z )
这样( ) 这样(3)和(4)就可以具体写为: )就可以具体写为:
v v v v k = k x ex + k y e y + k z ez
1 i ( k x x x + k y y y + k z z ) (5) v ψ (r ) = 1 / 2 e V 2 2 2 2 2 2 h (k x + k y + k z ) h k E= = (6) 2m 2m
§5.1金属自由电子模型 金属自由电子模型
由于不考虑带正电的离子对电子的库仑吸引作用, 由于不考虑带正电的离子对电子的库仑吸引作用,但 整块金属是点中性的,即正负电荷总量相等, 整块金属是点中性的,即正负电荷总量相等,虽然相 互间又没有作用,但正电荷毕竟存在, 互间又没有作用,但正电荷毕竟存在, 可以把正电荷看成是一种均匀的连续电荷分布, 可以把正电荷看成是一种均匀的连续电荷分布,以保持总 体的电中性, 体的电中性,相互独立的电子是在均匀分布的正电荷背景 中运动。因为正电荷均匀分布的, 中运动。因为正电荷均匀分布的,对电子产生的静电场是 常数, 常数,即电子无论在晶体中的哪个位置所感受到的正电荷 产生的势场作用都相同,不会受到力的作用。 产生的势场作用都相同,不会受到力的作用。 这样,自由电子气模型可以进一步表述为: 这样,自由电子气模型可以进一步表述为:是一种均匀 分布的正电荷背景中自由运动的电子气。可以形象地称 分布的正电荷背景中自由运动的电子气。 凝胶模型,正电荷背景相当于一种凝胶, 为凝胶模型,正电荷背景相当于一种凝胶,电子是在凝 胶介质中自由运动。 胶介质中自由运动。

金属电子气的Drude模型

金属电子气的Drude模型

Drude模型在半导体物理中的应用
半导体载流子运动
Drude模型在半导体物理中用于描述半导体中载流子的运动行为。通过该模型, 可以研究半导体中电子和空穴的迁移率、扩散系数等性质,从而深入了解半导 体的光电、热电等效应。
半导体器件性能
Drude模型在半导体器件性能分析中也有重要应用,如晶体管、太阳能电池等。 通过该模型,可以研究器件中载流子的传输、注入、收集等过程,为优化器件 性能提供理论支持。ຫໍສະໝຸດ HANKS FOR WATCHING
感谢您的观看
04
Drude模型的局限性
Drude模型的近似性
Drude模型假设电子在金属中以无相 互作用的粒子形式运动,忽略了电子 间的相互作用。
在实际金属中,电子间存在相互作用, 这会导致电子的运动受到散射,使得 电子的运动不满足Drude模型的假设。
Drude模型在高场下的不适用性
Drude模型在高电场下不适用,因为 高电场下电子的运动速度接近光速, 需要考虑相对论效应。
02
当电子气受到外部扰动时,阻尼系数决定了电子气 的响应速度和振幅衰减。
03
阻尼系数的大小与金属的微观结构和温度有关,是 金属导电性能的重要参数。
电子气的弛豫时间
01 弛豫时间表示电子气达到热平衡状态所需的时间。 02 在Drude模型中,弛豫时间反映了电子气内部相
互作用的过程。
03 弛豫时间的长短决定了金属的电导和热导等物理 性质随时间的变化规律。
述这些效应。
发展Drude模型的量子版本
引入量子力学效应
在量子版本的Drude模型中,考 虑量子力学效应对金属电子气行 为的影响,如能级量子化、波函 数等。
考虑量子相干性
在低温下,金属电子气可能表现 出量子相干性,需要发展量子版 本的Drude模型来描述这种行为。

第六章自由电子费米气体

第六章自由电子费米气体

v平


eEt
me
me——电子的质量
t ——传导电子与离子实发生碰撞的平均自由时间
j

nev平

ne2t
me
E
ne2t 1 me
j E E j 欧姆定律 8
3)金属的平均自由时间和平均自由程 ——实验测定金属的电阻率,来估计平均自由时间t
t me 1015 1014 s ne2
另一方面,对金属材料的了解,也是认识非金属材料的基 础。
有关金属的第一个理论模型,是特鲁德(P. Drude)在1900 年提出的经典自由电子气体模型。它将在当时已非常成功的 气体分子运动理论运用于金属,用以解释金属电导和热导的 行为。1928年索末菲(A. Sommerfeld)又进一步将费米-狄拉克 统计理论用于自由电子气体,发展了量子的自由电子气模型, 从而克服了经典自由电子气模型的不足。
(3)电子与电子之间的散射。这是由泡利原理 引起的,几率很小。
17
物理现象 或实验结果
决定因素
修 改
物理模型
理论解释
验证
结果与预言
18
§6.2 能级和轨道密度
19
1. 一维能级和轨道
若有一长为L的样品,可以写出其中传导电子的薛
定锷方程为: Hˆ n (x) n n (x)
Hˆ P2 2m
量子力学对金属中电子的处理
—— 索末菲在自由电子模型基础上,提出电子在离子产生 的平均势场中运动,电子气体服从费密 — 狄拉克分布和泡 利不相容原理。 —— 成功地计算了电子的热容,解决了经典理论的困难。
11
2 索末菲(Sommerfeld)的自由电子论
一、索末菲自由电子模型

金属自由电子理论

金属自由电子理论

dk
dZ

2
VC
2π3
4π k 2
dk
E dE ky
dZ

2
VC
2π3

2mE 2
2
m dE 2m E
E
kx


4πVC
2π3
(2m)3 2 3
E1 2
dE
3

4πVC

2m h2

21
E 2dE
N (E) dZ cE1 2
dE
其中
C

4πVc

3
2
E
1
2

CE1
2
其中
C

4πVc

2m h2
3

2
4.1.3 自由电子气的费米能量
1.费米能量
在热平衡时,能量为E的状态被电子占据的概率是
1 f ( E ) e(EEF ) kBT 1
EF---费米能级(等于这个系统中电子的化学势),它的意 义是在体积不变的条件下,系统增加一个电子所需的自由能。 它是温度T和晶体自由电子总数N的函数。

k
(r)


Ae ikr
E

2k 2 2m

2 2m
(k
2 x

k
2 y

k
2 z
)
波函数为行波,表示当一个电子运动到表面时并不被反射
回来,而是离开金属,同时必有一个同态电子从相对表面的对
应点进入金属中来。
k
波矢, 2π
k
为电子的德布罗意波长。
电子的动量:p k

高中化学金属晶体与离子晶体

高中化学金属晶体与离子晶体

物质结构与性质金属晶体与离子晶体一、金属共同的物理性质容易导电、导热、有延展性、有金属光泽等二、金属的结构1.“电子气理论”(自由电子理论)金属原子脱落来的价电子形成遍布整个晶体的“电子气”,被所有原子所共用,从而把所有的原子维系在一起。

2.金属键:这种金属原子间由于电子气产生的作用(在金属晶体中,金属阳离子和自由电子之间的较强的相互作用)。

3、金属晶体:通过金属键作用形成的单质晶体金属键强弱判断:阳离子所带电荷多、半径小-金属键强,熔沸点高。

三、金属晶体的结构与金属性质的内在联系金属为什么易导电?在金属晶体中,存在着许多自由电子,这些自由电子的运动是没有一定方向的,但在外加电场的条件下自由电子就会发生定向运动,因而形成电流,所以金属容易导电。

金属为什么易导热?金属容易导热,是由于自由电子运动时与金属离子碰撞把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。

金属为什么具有较好的延展性?金属晶体中由于金属离子与自由电子间的相互作用没有方向性,各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。

1、金属晶体的形成是因为晶体中存在A.金属离子间的相互作用B .金属原子间的相互作用C.金属离子与自由电子间的相互作用D.金属原子与自由电子间的相互作用2.金属能导电的原因是A.金属晶体中金属阳离子与自由电子间的相互作用较弱B .金属晶体中的自由电子在外加电场作用下可发生定向移动C .金属晶体中的金属阳离子在外加电场作用下可发生定向移动D .金属晶体在外加电场作用下可失去电子3、下列叙述正确的是A.任何晶体中,若含有阳离子也一定含有阴离子B .原子晶体中只含有共价键C.离子晶体中只含有离子键,不含有共价键D .分子晶体中只存在分子间作用力,不含有其他化学键4、为什么碱金属单质的熔沸点从上到下逐渐降低,而卤素单质的熔沸点从上到下却升高?四、金属晶体的密堆积结构1.下列有关金属元素特征的叙述中正确的是A.金属元素的原子只有还原性,离子只有氧化性B.金属元素在化合物中一定显正价C.金属元素在不同化合物中的化合价均不同D.金属单质的熔点总是高于分子晶体2.关于ⅠA族和ⅡA族元素的下列说法中正确的是A.同一周期中,ⅠA族单质的熔点比ⅡA族的高B.浓度都是0.01mol·L-1时,氢氧化钾溶液的pH比氢氧化钡的小C.氧化钠的熔点比氧化镁的高D.加热时碳酸钠比碳酸镁易分解关于离子晶体1、离子键2、成键的微粒:3、成键的本质:4、成键的条件:5.常见的离子化合物1、活泼的金属元素(IA、IIA)和活泼的非金属元素(VIA、VIIA)形成的化合物。

第六章金属电子论

第六章金属电子论

O
L
x
(2)势阱内的哈密顿算符Ĥ 2 d 2 2 d 2 ˆ H 2 V ( x) 2 2m dx 2m dx
(3)势阱中的薛定谔方程 Ĥψ(r)=Eψ(r) (4)自由电子的能量
P k E ,P k,k 波矢。 2m 2m
y A Ax A Az 1 L3 2 为归一化常数,
x, y, z
V
2
dxdydz 1

V
n y nz nx A sin x sin y sin zdxdydz 1 L L L
4.对结果的讨论 ψ(x,y,z)代表驻波,驻波的平均速度为零,平 均动量为零,意味着电子在晶体中不能运动。之 所以得到此种结果,是因为所采用的边界条件是 驻波条件。 5.采用周期性边界条件 (1)一维晶体周期性边界条件——无限多个线度都 是L的势阱连接起来。在各个势阱相应的位置上 电子的状态相同。
二、三维晶体中电子气的能量分布
1. 三维无限深势阱分布 0 x,y,z L, V x , y, z 0 x , y, z 0及x , y, z L。 V x , y, z
2.势阱内的薛定谔方程 2 2 E 2m E:粒子在势阱内的能量;
在E E dE的体积元中可 容纳的电子数为 :
2 mE 2m dE dZ 2 2 2 E 2m 4VC 2 h
32
kz
dk
VC
k
O
ky
E dE
12
kx
(3)能级密度
dZ 2m DE 4VC 2 dE h 2m C 4VC 2 h

11金属自由自由电子气体模型及基态性质

11金属自由自由电子气体模型及基态性质
二者的一致性,表明周期性边条件的合理性 由周期性边界条件:(讲解以下推导过程)
Where the quantity nx, ny, nz are any integer(整数)
路漫漫其修远兮, 吾将上下而求索
路漫漫其修远兮, 吾将上下而求索
nx, ny, nz取值为整数,意味着波矢k取值是量子化的。
三、基态和基态能量 1.N个电子的基态、费米球、费米面 电子的分布满足:能量最小原理 和 泡利不相容原理 我们已知在波矢空间状态密度:
考虑到每个波矢状态代表点可容纳自旋相反的两个电子, 则单位相体积可容纳的电子数为:
路漫漫其修远兮, 吾将上下而求索
N个电子的基态(T=0K),可从能量最低的 k=0 态开始,从 低到高,依次填充而得到,每个k态两个电子。
路漫漫其修远兮, 吾将上下而求索
驻波边界条件 常用边界条件
周期性边界条件
人们广泛使用的是周期性边界条件(periodic boundary condition),又称为波恩-卡门(Born-von Karman)边条件
亦即:
对于一维
相当于首尾相接成环,从而既有有限尺寸,又消除了边界 的存在。
路漫漫其修远兮, 吾将上下而求索
每个点表示一个允许的单电子态。
路漫漫其修远兮, 吾将上下而求索
金属中自由电子波矢: nx, ny, nz取值为整数 所以,每个代表点(单电子态)在k空间是均匀分布的。 由此: (1)在波矢空间每个(波矢)状态代表点占有的体积为:
(2)波矢空间状态密度(单位体积中的状态代表点数): 注意量纲
路漫漫其修远兮, 吾将上下而求索
满足薛定谔方程:
路漫漫其修远兮, 吾将上下而求索
其中:V(r)为电子在金属中的势能,为电子的本征能量

第三章 金属电子论(09年10月)

第三章 金属电子论(09年10月)

u tΔΔS为平均附加速度:v0.23~2.4 nm电子在发生碰撞前可自由穿过10个晶格。

A. Sommerfeld下,电子的能量和动量不随时间或位置改变,此时可以用: ,其中的方向为平面波的方向,(E)和动量(P)由德布罗意关系表示n 2、n 3是整数。

从上述分析可见,在k 空间,电子的状态是分立的,只允许波矢k 具有确定的分立值。

这样k 可以被解释为量子数。

因此单电子的本征能量亦取分立值。

由于单电子的本征能量为:的区域所允许的k 点(许可态)的数目个电子对许可k 态的占据,简单地由泡利不相容原理态,电子自旋能够取两个可能值:k 空间的电子态密度自由电子气系统的基态T=0K ,N 个自由电子的基态,可从能量最态开始,按能量从低到态两个电子,依次填充个电子,它的空间具有最k F 为半费米球,其。

对于基态,费米球内所有状态都被电子占据,而费米球外的状态全部未被定义为费米球的表面,在基态它把占据态和未N 个自由电子的基态为电子浓度。

相对应的能量称为费米能量:所受到的外力为:由于自由电子的动量与波矢之间的关系:则由牛顿第二定律可知:从上式可以看出,波矢k将随时间变化。

时刻将电场施加到电子气的基态,则在后一时刻费米球中心将移到新的位置:如果不发生碰撞,恒定的外加电场将使k空间中的费米球匀速移动。

由于电子与离子实的碰撞将使电子失τ为迟豫时间,Δk决定电子的漂移速度(平均速度) 。

不同的是,在量子体系中,由于非平衡费米球中与E=0时费米球交叠部分,方向上分布的对称性,对电流没有贡献。

电流来源于原费米球面撞,费米球整体的位移Δk和外力F的关系可由下式给出:为电子的漂移速度。

项为自由电子加速度而项表示碰撞效应项(相当于电子遭受碰撞而引入的摩擦阻力。

作用在一个电子上的洛仑兹力为:数为零,于是:则运动方程为:轴平行于磁场,于是运动方程可写为:其中。

:固体的界面效应和表面效应在金属自由电子模型中,金属内部被假设为均匀势场,离子实提供一个正电背景。

金属自由电子气模型

金属自由电子气模型
2 2 2 = (k x k y ) 2m
求(1)电子态密度(考虑自旋); (2)该系统的费米能(只考虑温度为绝对 零度
北京工业大学 固体物理学
第二节 自由电子气的热性质
费米-狄拉克分布函数 T≠0K时,电子在本征态上的分布服从费 米-狄拉克分布
fi
1 e
( i )/ k BT
vF/108cm/s TF/104K
1.29 1.07 0.86 0.81 0.75 1.57 1.39 1.40 2.25 1.58 1.28 1.83 2.03 1.74 1.90 1.83 1.87 5.51 3.77 2.46 2.15 1.84 8.16 6.38 6.42 16.6 8.23 5.44 11.0 13.6 10.0 11.8 11.0 11.5
T=0 T1


北京工业大学 固体物理学
1、化学势随温度的变化 ① T≠0K,自由电子气单位体积的内能
2 u ( k ) f g( ) f ( )d k 0 V k
② T≠0K,分布函数中的化学势可由电子数 密度算出
2 n V

k
fk g( ) f ( )d 0
北京工业大学 固体物理学
代入
f f I Q( ) ( )d Q( ) ( )( )d 1 f 2 Q( ) ( ) ( )d 2



(**)
(**)第一项积分项等于1 (**)第二项
1 ik (r ) e r V
电子的本征能量:
将波函数代入薛定谔方程,得
k (k ) 2m
2
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档