嵌入式LINUX学习心得(多篇)

嵌入式LINUX学习心得(多篇)
嵌入式LINUX学习心得(多篇)

嵌入式linux学习心得(精选多篇) 知识结构

1. 嵌入式处理器与裸机程序开发

2. linux系统管理

3. linux 应用程序开发

4. linux驱动程序开发

5. linux内核开发与系统移植

一、处理器

1. arm处理器工作模式

2. arm系统寄存器

3. arm寻址方式

4. arm 汇编指令集

5. arm环境c语言编程

6. arm中断与异常

7. ads 集成开发环境

8. 裸机程序开发(串口、lcd、时钟、led、按键……)

二、系统管理

1. linux定制安装

2. linux命令详解

3. samba、nfs、tftp、wireshark使用

4. shell编程

三、应用程序开发

1. g、gdb、makefile

2. 文件、时间编程

3. 多进程、多线程程序设计

4. 进程间通讯

5. 网络编程

6. qt图形化应用程序开发

7. android图形化应用程序开发

四、内核开发

1. linux内核配置与裁剪

2. linux内核模块开发

3. 根文件系统制作

4. 进程子系统

5. 内存子系统

6. proc文件系统

7. 系统调用

8. 内核定时器

9. 内核异常分析

五、驱动程序开发

1. 字符设备驱动程序

2. 总线、设备、驱动模型

3. 硬件访问技术

4. 中断处理

5. input设备驱动

6. platform驱动程序

7. pci、usb驱动程序

8. 网卡驱动程序

9. 触摸屏驱动程序 10. 串口驱动程序

学习顺序

1. 嵌入式处理器与裸机程序开发

2. linux系统管理

3. linux 应用程序开发

4. linux内核开发基础

5. 嵌入式linux环境搭建

6. linux驱动程序开发

7. 深入学习linux内核

嵌入式linux学习步骤

作者:phantom 时间:xx-8-6 :网络

1、linux 基础

安装linux操作系统 linux文件系统 linux常用命令 linux启动过程详解熟悉linux服务能够独立安装linux操作系统能够熟练使用linux系统的基本命令认识linux系统的常用服务安装linux 操作系统 linux基本命令实践设置linux环境变量定制linux的服务 shell 编程基础使用vi文件使用emacs文件使用其他器

2、shell 编程基础

shell简介认识后台程序bash编程熟悉linux系统下的环境熟悉linux下的各种shell 熟练进行shell编程熟悉vi基本操作熟悉emacs的基本操作比较不同shell的区别编写一个测试服务器是否连通的shell脚本程序编写一个查看进程是否存在的shell脚本程序编写一个带有循环语句的shell脚本程序

3、linux 下的 c 编程基础

linux c语言环境概述 g使用方法 gdb调试技术 autoconf automake makefile 代码优化熟悉linux系统下的开发环境熟悉g 编译器熟悉makefile规则编写hello,world程序使用 make命令编译程序编写带有一个循环的程序调试一个有问题的程序

4、嵌入式系统开发基础

嵌入式系统概述交叉编译配置tftp服务配置nfs服务下载bootloader和内核嵌入式linux应用软件开发流程熟悉嵌入式系统概念以及开发流程建立嵌入式系统开发环境制作cross_g工具链

编译并下载u-boot 编译并下载linux内核编译并下载linux应用程序

4、嵌入式系统移植

linux内核代码平台相关代码分析 arm平台介绍平台移植的关键技术移植linux内核到 arm平台了解移植的概念能够移植linux内核移植linux2.6内核到 arm9开发板

5、嵌入式 linux 下串口通信

串行i/o的基本概念嵌入式linux应用软件开发流程 linux系统的文件和设备与文件相关的系统调用配

置超级终端和mini 能够熟悉进行串口通信熟悉文件i/o 编写串口通信程序编写多串口通信程序

6、嵌入式系统中多进程程序设计

linux系统进程概述嵌入式系统的进程特点进程操作守护进程相关的系统调用了解linux系统中进程的概念能够编写多进程程序编写多进程程序编写一个守护进程程序 sleep系统调用任务管理、同步与通信 linux任务概述任务调度管道信号共享内存任务管理 api 了解linux系统任务管理机制熟悉进程间通信的几种方式

熟悉嵌入式linux中的任务间同步与通信编写一个简单的管道程序

实现文件传输编写一个使用共享内存的程序

7、嵌入式系统中多线程程序设计

线程的基础知识多线程编程方法线程应用中的同步问题了解线程的概念能够编写简单的多线程程序编写一个多线程程序

8、嵌入式 linux 网络编程

网络基础知识嵌入式linux中tcp/ip网络结构 socket 编程常用 api函数分析ping命令的实现基本udp套接口编程许可证管理 ppp协议 gprs 了解嵌入式linux网络体系结构能够进行嵌入式linux环境下的socket 编程熟悉udp协议、ppp协议熟悉gprs 使用socket 编写代理服务器使用socket 编写路由器编写许可证服务器指出tcp和udp的优缺点编写一个web服务器编写一个运行在 arm平台的网络播放器

9、gui 程序开发

gui基础嵌入式系统gui类型编译qt 进行qt开发熟悉嵌入式系统常用的gui 能够进行qt编程使用qt编写“hello,world”程序调试一个加入信号/槽的实例通过重载qwidget 类方法处理事件

10、linux 字符设备驱动程序

设备驱动程序基础知识 linux系统的模块字符设备驱动分析

fs_operation结构加载驱动程序了解设备驱动程序的概念了解linux字符设备驱动程序结构能够编写字符设备驱动程序编写

skull驱动编写键盘驱动编写i/o驱动分析一个看门狗驱动程序对比linux2.6内核与2.4内核中字符设备驱动的不同linux 块设备驱动程序块设备驱动程序工作原理典型的块设备驱动程序分析块设备的读写请求队列了解linux块设备驱动程序结构能够编写简单的块设备驱动程序比较字符设备与块设备的异同编写mmc卡驱动程序分析一个文件系统对比linux2.6内核与2.4内核中块设备驱动的不同

11、文件系统

虚拟文件系统文件系统的建立 ramfs内存文件系统 proc文件系统 devfs 文件系统 mtd技术简介 mtd块设备初始化 mtd块设备的读写操作了解linux系统的文件系统了解嵌入式linux的文件系统了解mtd技术能够编写简单的文件系统为 arm9开发板添加 mtd 支持移植jffs2文件系统通过proc文件系统修改操作系统参数分析romfs 文件系统源代码创建一个cramfs 文件系统

打印版本,()前面废话省略,进入正题:一、废话(已删)。

二、起步:你应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix

如何选择版本:北美用redhat,欧洲用suse,桌面mandrake较多,而debian是技术最先进的linux开发人员中用debian的最多,其次是redhat,从全球linux各应用领域市场份额来看无疑redhat是最多的,此外还有很多出名的发行版本,不再列举。

对于初学linux的人来说,我建议是使用redhat,原因如下:

1)现在很多书都是以redhat为例讲的,为了与书本协调一致

2)周围的人都用redhat,交流比较方便

3)redhat应用范围广,有典型性和代表性

4)它易于使用和安装,我们没有必要把时间浪费在“装系统”上而应集中精力学习最有用的东西。

【注】现在觉得rh很死板,as,es等用在服务器上或许不错,personal desktop用mandrake,debian,suse都不错,笔者现在用mandrake,因为她长得漂亮:)

如果你并不打算深入学习linux,而是有诸如适应北京市政府办公平台迁移到linux上这种需要,那么中软,红旗等中文linux是不错的选择

我强烈建议:自己亲自动手把linux装到你的硬盘上,你必须学会独立安装linux系统的技能,对于现在的版本来说,其实跟装winxp 一样简单

从此现在开始,请不要以windows的工作方式来考虑问题,应该尝试挖掘linux身上的“天才unix”的气质。

三.进阶

掌握至少50个以上的常用命令

理解shell管道"|",文件流重定向">"及追加">>"等

熟悉gnome/kde等x-windows桌面环境操作

掌握https://www.360docs.net/doc/be18941822.html,等软件包的常用安装方法

学习添加外设,安装设备驱动程序(比如modem)

熟悉grub/lilo引导器及简单的修复操作

熟悉系统固有目录的名称及公用

学会用mount命令访问其他文件系统

了解vi,g,gdb等常用器,编译器,调试器

学习linux环境下的简单组网

建议:买一本不需要太厚的linux教材,大致可以满足要求(现

在的书越来越多了,还带很多图,我当时可没这么多书)

四.高级应用

澄清一些概念:linux的普通操作与真正的系统管理不能相提并论,后者需要很多知识

1.英语

即使你不学linux,我也强烈建议你学好英文[u.s.english]。因为实质上计算机语言就是英文和字符,所谓的多国语言只是外部包装。你必须能无障碍的阅读大量的英文技术文档在搜索引擎找到的英文

网站和网页中熟练的检索最好能有用英文直接交流的能力,摆脱了这个障碍,你的学习和理解速度就能快很多,你就有机会拉开和别人的差距。

基于32位ARM920T内核的微处理器的嵌入式Linux系统构建详解

基于32位ARM920T内核的微处理器的嵌入式Linux系统构建详解目前,在嵌入式系统中基于ARM微核的嵌入式处理器已经成为市场主流。随着ARM技术的广泛应用,建立面向ARM构架的嵌入式操作系统成为当前研究的热点问题。 已经涌现出许多嵌入式操作系统,如VxWork,windows-CE,PalmOS,Linux等。在众多的嵌入式操作系统中,Linux以其开源代码及免费使用倍受开发人员的喜爱。本文选用的微处理器S3C2410是基于32位ARM920T内核的微处理器,基于此处理器构造一Linux 嵌入式操作系统,将其移植到基于32位的ARM920T内核的系统中,在此基础上进行应用程序开发。 l、开发环境介绍 1.1、基于S3C2410ARM920T的硬件平台 该系统的硬件平台为深圳旋极公司提供,硬件的核心部件为三星$3C2410ARM920T芯片,外围还包括:64MNANDFLASH和RAM外围存储芯片;串口、网口和USB外围接口;CSTNLCD和触摸屏外围显示设备;UDAl34lTS的外围音频设备。S3C2410处理器和外围设备共同构成了基于ARM920T的开发板。 1.2、嵌入式Limlx软件系统 该嵌入式Linux的软件系统包括以下4个部分:引导加载程序vivi;Linux2.6.14内核;YAFFS2文件系统以及用户程序。他们的可执行映像依次存放在系统存储设备上. 与通常的嵌入式系统布局有所不同,本系统在引导加载程序和内核映像之间还增加了一个启动参数区,在这个区里存放着系统启动参数。引导加载程序通过调用这些参数来决定启动模式、启动等待时间等,这些启动参数的增加加强了系统的灵活性。本系统采用64MNANDFLASH的存储设备。 2、嵌入式Linux系统设计与实现 2.1、引导加载程序vivi

探究linux内核,超详细解析子系统

探究linux内核,超详细解析子系统 Perface 前面已经写过一篇《嵌入式linux内核的五个子系统》,概括性比较强,也比较简略,现在对其进行补充说明。 仅留此笔记,待日后查看及补充!Linux内核的子系统 内核是操作系统的核心。Linux内核提供很多基本功能,如虚拟内存、多任务、共享库、需求加载、共享写时拷贝(Copy-On-Write)以及网络功能等。增加各种不同功能导致内核代码不断增加。 Linux内核把不同功能分成不同的子系统的方法,通过一种整体的结构把各种功能集合在一起,提高了工作效率。同时还提供动态加载模块的方式,为动态修改内核功能提供了灵活性。系统调用接口用户程序通过软件中断后,调用系统内核提供的功能,这个在用户空间和内核提供的服务之间的接口称为系统调用。系统调用是Linux内核提供的,用户空间无法直接使用系统调用。在用户进程使用系统调用必须跨越应用程序和内核的界限。Linux内核向用户提供了统一的系统调用接口,但是在不同处理器上系统调用的方法

各不相同。Linux内核提供了大量的系统调用,现在从系统 调用的基本原理出发探究Linux系统调用的方法。这是在一个用户进程中通过GNU C库进行的系统调用示意图,系 统调用通过同一个入口点传入内核。以i386体系结构为例,约定使用EAX寄存器标记系统调用。 当加载了系统C库调用的索引和参数时,就会调用0x80软件中断,它将执行system_call函数,这个函数按照EAX 寄存器内容的标示处理所有的系统调用。经过几个单元测试,会使用EAX寄存器的内容的索引查system_call_table表得到系统调用的入口,然后执行系统调用。从系统调用返回后,最终执行system_exit,并调用resume_userspace函数返回用户空间。 linux内核系统调用的核心是系统多路分解表。最终通过EAX寄存器的系统调用标识和索引值从对应的系统调用表 中查出对应系统调用的入口地址,然后执行系统调用。 linux系统调用并不单层的调用关系,有的系统调用会由

嵌入式Linux内核移植详解(顶嵌)

内核移植阶段 内核是操作系统最基本的部分。它是为众多应用程序提供对计算机硬件的安全访问的一部分软件,这种访问是有限的,并且内核决定一个程序在什么时候对某部分硬件操作多长时间。直接对硬件操作是非常复杂的,所以内核通常提供一种硬件抽象的方法来完成这些操作。硬件抽象隐藏了复杂性,为应用软件和硬件提供了一套简洁,统一的接口,使程序设计更为简单。 内核和用户界面共同为用户提供了操作计算机的方便方式。也就是我们在windows下看到的操作系统了。由于内核的源码提供了非常广泛的硬件支持,通用性很好,所以移植起来就方便了许多,我们需要做的就是针对我们要移植的对象,对内核源码进行相应的配置,如果出现内核源码中不支持的硬件这时就需要我们自己添加相应的驱动程序了。 一.移植准备 1. 目标板 我们还是选用之前bootloader移植选用的开发板参数请参考上文的地址: https://www.360docs.net/doc/be18941822.html,/thread-80832-5-1.html。bootloader移植准备。 2. 内核源码 这里我们选用比较新的内核源码版本linux-2.6.25.8,他的下载地址是 ftp://https://www.360docs.net/doc/be18941822.html,/pub/linux/kernel/v2.6/linux-2.6.25.8.tar.bz2。 3. 烧写工具 我们选用网口进行烧写这就需要内核在才裁剪的时候要对网卡进行支持 4. 知识储备 要进行内核裁剪不可缺少的是要对内核源码的目录结构有一定的了解这里进 行简单介绍。 (1)arch/: arch子目录包括了所有和体系结构相关的核心代码。它的每一个子 目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体 系结构的子目录。PC机一般都基于此目录。 (2)block/:部分块设备驱动程序。 (3)crypto:常用加密和散列算法(如AES、SHA等),还有一些压缩和CRC校验 算法。 (4) documentation/:文档目录,没有内核代码,只是一套有用的文档。 (5) drivers/:放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目 录:如,/block 下为块设备驱动程序,比如ide(ide.c)。 (6)fs/:所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持 一个文件系统, 例如fat和ext2。

linux内核IMQ源码实现分析

本文档的Copyleft归wwwlkk所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。 E-mail: wwwlkk@https://www.360docs.net/doc/be18941822.html, 来源: https://www.360docs.net/doc/be18941822.html,/?business&aid=6&un=wwwlkk#7 linux2.6.35内核IMQ源码实现分析 (1)数据包截留并重新注入协议栈技术 (1) (2)及时处理数据包技术 (2) (3)IMQ设备数据包重新注入协议栈流程 (4) (4)IMQ截留数据包流程 (4) (5)IMQ在软中断中及时将数据包重新注入协议栈 (7) (6)结束语 (9) 前言:IMQ用于入口流量整形和全局的流量控制,IMQ的配置是很简单的,但很少人分析过IMQ的内核实现,网络上也没有IMQ的源码分析文档,为了搞清楚IMQ的性能,稳定性,以及借鉴IMQ的技术,本文分析了IMQ的内核实现机制。 首先揭示IMQ的核心技术: 1.如何从协议栈中截留数据包,并能把数据包重新注入协议栈。 2.如何做到及时的将数据包重新注入协议栈。 实际上linux的标准内核已经解决了以上2个技术难点,第1个技术可以在NF_QUEUE机制中看到,第二个技术可以在发包软中断中看到。下面先介绍这2个技术。 (1)数据包截留并重新注入协议栈技术

(2)及时处理数据包技术 QoS有个技术难点:将数据包入队,然后发送队列中合适的数据包,那么如何做到队列中的数

激活状态的队列是否能保证队列中的数据包被及时的发送吗?接下来看一下,激活状态的队列的 证了数据包会被及时的发送。 这是linux内核发送软中断的机制,IMQ就是利用了这个机制,不同点在于:正常的发送队列是将数据包发送给网卡驱动,而IMQ队列是将数据包发送给okfn函数。

嵌入式Linux系统开发教程很完整的习题答案资料

参考答案 第一章 一、填空题。 1、嵌入式系统主要融合了计算机软硬件技术、通信技术和微电子技术,它是将计算机直接嵌入到应用系统中,利用计算机的高速处理能力以实现某些特定的功能。 2、目前国内对嵌入式系统普遍认同的定义是:以应用为中心、以计算机技术为基础、软硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。 3、嵌入式系统一般由嵌入式计算机和执行部件组成,其中嵌入式计算机主要由四个部分组成,它们分别是:硬件层、中间层、系统软件层以及应用软件层。 4、嵌入式处理器目前主要有ARM、MIPS、Power PC、68K等,其中arm处理器有三大特点:体积小、低功耗、的成本和高性能,16/32位双指令集,全球合作伙伴众多。 5、常见的嵌入式操作系统有:Linux、Vxworks、WinCE、Palm、uc/OS-II和eCOS。 6、嵌入式系统开发的一般流程主要包括系统需求分析、体系结构设计、软硬件及机械系统设计、系统集成、系统测试,最后得到最终产品。 二、选择题 1、嵌入式系统中硬件层主要包含了嵌入式系统重要的硬件设备:、存储器(SDRAM、ROM等)、设备I/O接口等。(A) A、嵌入式处理器 B、嵌入式控制器 C、单片机 D、集成芯片 2、20世纪90年代以后,随着系统应用对实时性要求的提高,系统软件规模不断上升,实时核逐渐发展为,并作为一种软件平台逐步成为目前国际嵌入式系统的主流。(D) A、分时多任务操作系统 B、多任务操作系统 C、实时操作系统 D、实时多任务操作系统 3、由于其高可靠性,在美国的火星表面登陆的火星探测器上也使用的嵌入式操作系统是。(B) A、Palm B、VxWorks C、Linux D、WinCE [在此处键入]

Linux内核结构详解教程

Linux内核结构详解教程 ─────Linux内核教程 linux内核就像人的心脏,灵魂,指挥中心。 内核是一个操作系统的核心,它负责管理系统的进程,内存,设备驱动程序,文件和网络系统,决定着系统的性能和稳定性。内核以独占的方式执行最底层任务,保证系统正常运行。协调多个并发进程,管理进程使用的内存,使它们相互之间不产生冲突,满足进程访问磁盘的请求等等. 严格说Linux并不能称做一个完整的操作系统.我们安装时通常所说的Linux,是有很多集合组成的.应称为GNU/Linux. 一个Linux内核很少1.2M左右,一张软盘就能放下. 内容基础,语言简短简洁 红联Linux论坛是致力于Linux技术讨论的站点,目前网站收录的文章及教程基本能满足不同水平的朋友学习。 红联Linux门户: https://www.360docs.net/doc/be18941822.html, 红联Linux论坛: https://www.360docs.net/doc/be18941822.html,/bbs 红联Linux 论坛大全,所有致力点都体现在这 https://www.360docs.net/doc/be18941822.html,/bbs/rf/linux/07.htm

目录 Linux内核结构详解 Linux内核主要五个子系统详解 各个子系统之间的依赖关系 系统数据结构 Linux的具体结构 Linux内核源代码 Linux 内核源代码的结构 从何处开始阅读源代码 海量Linux技术文章

Linux内核结构详解 发布时间:2006-11-16 19:05:29 Linux内核主要由五个子系统组成:进程调度,内存管理,虚拟文件系统,网络接口,进程间通信。

Linux内核主要五个子系统详解 发布时间:2006-11-16 19:05:54 1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。 2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。 3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。 4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。 5.进程间通讯(IPC) 支持进程间各种通信机制。 处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。

嵌入式Linux应用软件开发流程

从软件工程的角度来说,嵌入式应用软件也有一定的生命周期,如要进行需求分析、系统设计、代码编写、调试和维护等工作,软件工程的许多理论对它也是适用的。 但和其他通用软件相比,它的开发有许多独特之处: ·在需求分析时,必须考虑硬件性能的影响,具体功能必须考虑由何种硬件实现。 ·在系统设计阶段,重点考虑的是任务的划分及其接口,而不是模块的划分。模块划分则放在了任务的设计阶段。 ·在调试时采用交叉调试方式。 ·软件调试完毕固化到嵌入式系统中后,它的后期维护工作较少。 下面主要介绍分析和设计阶段的步骤与原则: 1、需求分析 对需求加以分析产生需求说明,需求说明过程给出系统功能需求,它包括:·系统所有实现的功能 ·系统的输入、输出 ·系统的外部接口需求(如用户界面) ·它的性能以及诸如文件/数据库安全等其他要求 在实时系统中,常用状态变迁图来描述系统。在设计状态图时,应对系统运行过程进行详细考虑,尽量在状态图中列出所有系统状态,包括许多用户无需知道的内部状态,对许多异常也应有相应处理。 此外,应清楚地说明人机接口,即操作员与系统间地相互作用。对于比较复杂地系统,形成一本操作手册是必要的,为用户提供使用该系统的操作步骤。为使系统说明更清楚,可以将状态变迁图与操作手册脚本结合起来。

在对需求进行分析,了解系统所要实现的功能的基础上,系统开发选用何种硬件、软件平台就可以确定了。 对于硬件平台,要考虑的是微处理器的处理速度、内存空间的大小、外部扩展设备是否满足功能要求等。如微处理器对外部事件的响应速度是否满足系统的实时性要求,它的稳定性如何,内存空间是否满足操作系统及应用软件的运行要求,对于要求网络功能的系统,是否扩展有以太网接口等。 对于软件平台而言,操作系统是否支持实时性及支持的程度、对多任务的管理能力是否支持前面选中的微处理器、网络功能是否满足系统要求以及开发环境是否完善等都是必须考虑的。 当然,不管选用何种软硬件平台,成本因素都是要考虑的,嵌入式Linux 正是在这方面具有突出的优势。 2、任务和模块划分 在进行需求分析和明确系统功能后,就可以对系统进行任务划分。任务是代码运行的一个映象,是无限循环的一段代码。从系统的角度来看,任务是嵌入式系统中竞争系统资源的最小运行单元,任务可以使用或等待CPU、I/O设备和内存空间等系统资源。 在设计一个较为复杂的多任务应用系统时,进行合理的任务划分对系统的运行效率、实时性和吞吐量影响都极大。任务分解过细会不断地在各任务之间切换,而任务之间的通信量也会很大,这样将会大大地增加系统的开销,影响系统的效率。而任务分解过粗、不够彻底又会造成原本可以并行的操作只能按顺序串行执行,从而影响系统的吞吐量。为了达到系统效率和吞吐量之间的平衡折中,在划分任务时应在数据流图的基础上,遵循下列步骤和原则:

linux内核启动 Android系统启动过程详解

linux内核启动+Android系统启动过程详解 第一部分:汇编部分 Linux启动之 linux-rk3288-tchip/kernel/arch/arm/boot/compressed/ head.S分析这段代码是linux boot后执行的第一个程序,完成的主要工作是解压内核,然后跳转到相关执行地址。这部分代码在做驱动开发时不需要改动,但分析其执行流程对是理解android的第一步 开头有一段宏定义这是gnu arm汇编的宏定义。关于GUN 的汇编和其他编译器,在指令语法上有很大差别,具体可查询相关GUN汇编语法了解 另外此段代码必须不能包括重定位部分。因为这时一开始必须要立即运行的。所谓重定位,比如当编译时某个文件用到外部符号是用动态链接库的方式,那么该文件生成的目标文件将包含重定位信息,在加载时需要重定位该符号,否则执行时将因找不到地址而出错 #ifdef DEBUG//开始是调试用,主要是一些打印输出函数,不用关心 #if defined(CONFIG_DEBUG_ICEDCC)

……具体代码略 #endif 宏定义结束之后定义了一个段, .section ".start", #alloc, #execinstr 这个段的段名是 .start,#alloc表示Section contains allocated data, #execinstr表示Section contains executable instructions. 生成最终映像时,这段代码会放在最开头 .align start: .type start,#function /*.type指定start这个符号是函数类型*/ .rept 8 mov r0, r0 //将此命令重复8次,相当于nop,这里是为中断向量保存空间 .endr b 1f .word 0x016f2818 @ Magic numbers to help the loader

Linux内核分析-网络[五]:网桥

看完了路由表,重新回到netif_receive_skb ()函数,在提交给上层协议处理前,会执行下面一句,这就是网桥的相关操作,也是这篇要讲解的容。 view plaincopy to clipboardprint? 1. s kb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 网桥可以简单理解为交换机,以下图为例,一台linux机器可以看作网桥和路由的结合,网桥将物理上的两个局域网LAN1、LAN2当作一个局域网处理,路由连接了两个子网1.0和2.0。从eth0和eth1网卡收到的报文在Bridge模块中会被处理成是由Bridge收到的,因此Bridge也相当于一个虚拟网卡。 STP五种状态 DISABLED BLOCKING LISTENING LEARNING FORWARDING 创建新的网桥br_add_bridge [net\bridge\br_if.c] 当使用SIOCBRADDBR调用ioctl时,会创建新的网桥br_add_bridge。 首先是创建新的网桥: view plaincopy to clipboardprint?

1. d ev = new_bridge_dev(net, name); 然后设置dev->dev.type为br_type,而br_type是个全局变量,只初始化了一个名字变量 view plaincopy to clipboardprint? 1. S ET_NETDEV_DEVTYPE(dev, &br_type); 2. s tatic struct device_type br_type = { 3. .name = "bridge", 4. }; 然后注册新创建的设备dev,网桥就相当一个虚拟网卡设备,注册过的设备用ifconfig 就可查看到: view plaincopy to clipboardprint? 1. r et = register_netdevice(dev); 最后在sysfs文件系统中也创建相应项,便于查看和管理: view plaincopy to clipboardprint? 1. r et = br_sysfs_addbr(dev); 将端口加入网桥br_add_if() [net\bridge\br_if.c] 当使用SIOCBRADDIF调用ioctl时,会向网卡加入新的端口br_add_if。 创建新的net_bridge_port p,会从br->port_list中分配一个未用的port_no,p->br会指向br,p->state设为BR_STATE_DISABLED。这里的p实际代表的就是网卡设备。 view plaincopy to clipboardprint? 1. p = new_nbp(br, dev); 将新创建的p加入CAM表中,CAM表是用来记录mac地址与物理端口的对应关系;而刚刚创建了p,因此也要加入CAM表中,并且该表项应是local的[关系如下图],可以看到,CAM表在实现中作为net_bridge的hash表,以addr作为hash值,链入 net_bridge_fdb_entry,再由它的dst指向net_bridge_port。

ARM嵌入式开发系统实例.

第一章 ARM概述及体系结构 1.ARM的全称:Advanced RISC Machine 2.ARM内核最大的优势在于高速度,低功耗,32位嵌入式RISC微处理器结构—ARM体系结构,ARM处理器核当前有6个系列产品:ARM7,ARM9,ARM9E,ARM10E,SecurCore,ARM11 3.ARM处理器的7种模式:用户模式,快速中断模式,外部中断模式,特权模式,数据访问模式,未定义模式,系统模式 4.ARM处理器共有37个寄存器,包括31个通用寄存器和6个状态寄存器。通用寄存器可以分为三类:未备份寄存器,备份寄存器,程序寄存器(PC),寄存器R14又称为连接寄存器,它有两个作用,第一:它存放了当前子程序的返回地址。第二:当异常中断发生时,该异常模式特定的物理R14被设置成该异常模式将要返回的地址。 5 CPRS(当前程序状态寄存器)中断控制位当I=1时禁止IRQ中断当F=1时禁止FIQ中断 6 ARM中断异常中断的种类:复位(RESET),未定义的指令(UNDENFINED INSTRUCTION),软件中断(SOFTWARE INTERRUPT),指令预取中止(PREFECH),数据访问中止(DATA ABORT),外部中断请求(IRQ),快速中断请求(FRQ) 7 ARM的存储器接口可以分为四类:时钟和时钟控制信号,地址类信号,存储器请求信号,数据时序信号。 第三章构造和调试ARM系统 1 ARM应用系统的设计包含硬件系统的设计和软件系统的设计。最基本得组成部分包括:电源部分,晶振电路,复位电路,ROM和RAM。 2.P96的RESET电路(大家好好看下,老师上课说了下的)复位电路主要完成系统的上电复位和系统在运行时的用户的按键复位功能。它的工作原理是:在系统上电是,通过电阻R1向电容C1充电,当C1两端的电压未达到高电平的门限电压时,RESET端输出为低电平,系统处于复位状态,当C1两端的电压达到了高电平的门限电压时,RESER端输出为高电平,系统处于正常工作状态。当用户按下按钮S1时,C1两端的电荷被卸放掉,reset 端输出为低电平,系统进入复位状态,再重复以上的充电过程,系统进入正常的工作状态。

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

嵌入式LINUX开发工具选择

嵌入式Linux具有稳定、可伸缩及开放源代码等特点,可兼容多 种处理器和主机,广泛适用于各种产品和应用。但是,交叉编译、 设备驱动程序开发/调试,以及更小尺寸等要求对嵌入式Linux开 发者来说都是严峻的挑战。为应对这些挑战,针对嵌入式Linux开 发的专用工具应运而生,而且发展十分迅猛。 但是,许多这类开发工具都不兼容非X86平台,而且也没有很好 地实现归档备案或集成。在其它开发环境下,组件间的高度集成并 没有完全兑现。因此,要想完全从这些免费的软件组件开始创建 一个完整的跨平台开发环境,开发者应意识到这将需要大量的调 研、实施、培训和维护方面的工作。 Linux 是少数既可以在嵌入式设备上运行也可作为开发环境的操 作系统之一。这一特性可让开发者在转向此开发系统之前于常用硬 件(比如X86桌面系统)之上开发、调试和测试应用程序和库,因 此可减少对标准参考平台和指令集仿真器的依赖。这一技术仅适用于应用程序和库,但不适用于设备驱动程序,因为后者的开发依赖于 Linux架构。 开放源代码团体及一些软件供应商可提供设备驱动程序开发工具。由于设备驱动程序比标准应用程序距离硬件更近,因此它们的开发比较困难。所幸的是,Linux 桌面系统可以利用一些Windows及其它操作系统所没有的工具。有足够经验开发设备驱动程序的开发人员可能已经习惯将Linux作为他们的桌面开发系统了。 Linux的快速发展及其桌面方案的不断涌现提出了一个重要问题:所选择的工具方案怎样在不同的Linux分布式系统上运行?它们依赖于主机平台的软件配置吗? 有些Linux工具提供独立于主机平台的开发环境,包括一系列可支持开发工具的应用软件、库和实用程序。这一方法几乎将开发环境与主机配置完全隔离开来,因此主机可以是任何Linux分布式系统,而且任何更新和修改都不会影响开发环境的功能。 这种方法的主要缺点是对存储空间的要求有所增加――约200MB,因为它自己实际上相当于一个微型Linux分布式系统。 可用的工具 一个嵌入式Linux产品的开发需要几个阶段,包括为目标板配置和构建基本Linux OS;调试应用程序、库、内核及设备驱动程序/内核模块;出货前最终方案的优化、测试和验证。 有数百种开放源代码开发工具可供选择。只要开发者原意花时间和精力去调研、实施和维护一系列各不相同的工具,总能找出一个完整的解决方案,完成几乎任何开发任务。

基于ARM的嵌入式linux内核的裁剪与移植.

基于ARM的嵌入式linux内核的裁剪与 移植 0引言微处理器的产生为价格低廉、结构小巧的CPU和外设的连接提供了稳定可靠的硬件架构,这样,限制嵌入式系统发展的瓶颈就突出表现在了软件方面。尽管从八十年代末开始,已经陆续出现了一些嵌入式操作系统(比较著名的有Vxwork、pSOS、Neculeus和WindowsCE)。但这些专用操作系统都是商业化产品,其高昂的价格使许多低端产品的小公司望而却步;而且,源代码封闭性也大大限制了开发者的积极性。而Linux的开放性,使得许多人都认为Linu 0 引言 微处理器的产生为价格低廉、结构小巧的CPU和外设的连接提供了稳定可靠的硬件架构,这样,限制嵌入式系统发展的瓶颈就突出表现在了软件方面。尽管从八十年代末开始,已经陆续出现了一些嵌入式操作系统(比较著名的有Vxwork、pSOS、Nec uleus和Windows CE)。但这些专用操作系统都是商业化产品,其高昂的价格使许多低端产品的小公司望而却步;而且,源代码封闭性也大大限制了开发者的积极性。而Linux的开放性,使得许多人都认为Linux 非常适合多数Intemet设备。Linux操作系统可以支持不同的设备和不同的配置。Linux对厂商不偏不倚,而且成本极低,因而很快成为用于各种设备的操作系统。嵌入式linux是大势所趋,其巨大的市场潜力与酝酿的无限商机必然会吸引众多的厂商进入这一领域。 1 嵌入式linux操作系统 Linux为嵌入操作系统提供了一个极有吸引力的选择,它是个和Unix 相似、以核心为基础、全内存保护、多任务、多进程的操作系统。可以支持广泛的计算机硬件,包括X86、Alpha、Sparc、MIPS、PPC、ARM、NEC、MOTOROLA 等现有的大部分芯片。Linux的程序源码全部公开,任何人都可以根据自己的需要裁剪内核,以适应自己的系统。文章以将linux移植到ARM920T内核的 s3c2410处理器芯片为例,介绍了嵌入式linux内核的裁剪以及移植过程,文中介绍的基本原理与方法技巧也可用于其它芯片。 2 内核移植过程 2.1 建立交叉编译环境 交叉编译的任务主要是在一个平台上生成可以在另一个平台上执行的程序代码。不同的CPU需要有不同的编译器,交叉编译如同翻译一样,它可以把相同的程序代码翻译成不同的CPU对应语言。 交叉编译器完整的安装涉及到多个软件安装,最重要的有binutils、gcc、glibc三个。其中,binutils主要用于生成一些辅助工具;gcc则用来生成交叉编译器,主要生成arm—linux—gcc交叉编译工具;glibc主要是提供用户程序所使用的一些基本的函数库。 自行搭建交叉编译环境通常比较复杂,而且很容易出错。本文使用的是

实例解析linux内核I2C体系结构(2)

实例解析linux内核I2C体系结构(2) 华清远见刘洪涛四、在内核里写i2c设备驱动的两种方式 前文介绍了利用/dev/i2c-0在应用层完成对i2c设备的操作,但很多时候我们还是习惯为i2c设备在内核层编写驱动程序。目前内核支持两种编写i2c驱动程序的方式。下面分别介绍这两种方式的实现。这里分别称这两种方式为“Adapter方式(LEGACY)”和“Probe方式(new style)”。 (1)Adapter方式(LEGACY) (下面的实例代码是在2.6.27内核的pca953x.c基础上修改的,原始代码采用的是本文将要讨论的第2种方式,即Probe方式) ●构建i2c_driver static struct i2c_driver pca953x_driver = { .driver = { .name= "pca953x", //名称 }, .id= ID_PCA9555,//id号 .attach_adapter= pca953x_attach_adapter, //调用适配器连接设备 .detach_client= pca953x_detach_client,//让设备脱离适配器 }; ●注册i2c_driver static int __init pca953x_init(void) { return i2c_add_driver(&pca953x_driver); } module_init(pca953x_init); ●attach_adapter动作 执行i2c_add_driver(&pca953x_driver)后会,如果内核中已经注册了i2c适配器,则顺序调用这些适配器来连接我们的i2c设备。此过程是通过调用i2c_driver中的attach_adapter方法完成的。具体实现形式如下: static int pca953x_attach_adapter(struct i2c_adapter *adapter) { return i2c_probe(adapter, &addr_data, pca953x_detect); /* adapter:适配器 addr_data:地址信息 pca953x_detect:探测到设备后调用的函数 */ } 地址信息addr_data是由下面代码指定的。 /* Addresses to scan */ static unsigned short normal_i2c[] = {0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,I2C_CLIENT_END}; I2C_CLIENT_INSMOD;

Linux内核启动流程分析(一)

很久以前分析的,一直在电脑的一个角落,今天发现贴出来和大家分享下。由于是word直接粘过来的有点乱,敬请谅解! S3C2410 Linux 2.6.35.7启动分析(第一阶段) arm linux 内核生成过程 1. 依据arch/arm/kernel/vmlinux.lds 生成linux内核源码根目录下的vmlinux,这个vmlinux属于未压缩, 带调试信息、符号表的最初的内核,大小约23MB; 命令:arm-linux-gnu-ld -o vmlinux -T arch/arm/kernel/vmlinux.lds arch/arm/kernel/head.o init/built-in.o --start-group arch/arm/mach-s3c2410/built-in.o kernel/built-in.o mm/built-in.o fs/built-in.o ipc/built-in.o drivers/built-in.o net/built-in.o --end-group .tmp_kallsyms2.o 2. 将上面的vmlinux去除调试信息、注释、符号表等内容,生成arch/arm/boot/Image,这是不带多余信息的linux内核,Image的大小约 3.2MB; 命令:arm-linux-gnu-objcopy -O binary -S vmlinux arch/arm/boot/Image 3.将 arch/arm/boot/Image 用gzip -9 压缩生成arch/arm/boot/compressed/piggy.gz大小约 1.5MB;命令:gzip -f -9 < arch/arm/boot/compressed/../Image > arch/arm/boot/compressed/piggy.gz 4. 编译arch/arm/boot/compressed/piggy.S 生成arch/arm/boot/compressed/piggy.o大小约1.5MB,这里实 际上是将piggy.gz通过piggy.S编译进piggy.o文件中。而piggy.S文件仅有6行,只是包含了文件piggy.gz; 命令:arm-linux-gnu-gcc -o arch/arm/boot/compressed/piggy.o arch/arm/boot/compressed/piggy.S 5. 依据arch/arm/boot/compressed/vmlinux.lds 将arch/arm/boot/compressed/目录下的文件head.o 、piggy.o 、misc.o链接生成arch/arm/boot/compressed/vmlinux,这个vmlinux是经过压缩且含有自解压代码的内核, 大小约1.5MB; 命 令:arm-linux-gnu-ld zreladdr=0x30008000 params_phys=0x30000100 -T arch/arm/boot/compressed/vmlinux.lds a rch/arm/boot/compressed/head.o arch/arm/boot/compressed/piggy.o arch/arm/boot/compressed/misc.o -o arch/arm /boot/compressed/vmlinux

嵌入式linux系统开发概述

嵌入式linux系统开发概述 作者:谷丰,[email=您可以通 过%3Ca%20href=]gufeng77@https://www.360docs.net/doc/be18941822.html,[/email]" target="_blank">您可以通过 gufeng77@https://www.360docs.net/doc/be18941822.html,和他联系 基于linux的嵌入式系统开发是一个很大的课题,涵盖了从硬件到软件设计的多个领域,由于linux的开源特性,导致开发中可以使用的软件和工具多不胜数,从最底层与系统硬件直接打交道的引导装载程序(bootloader),到linux操作系统的分发版(distribution),再到上层的图形用户界面(GUI)乃至应用程序(application),可供选择的软件实在是太多了,这对开发者来说是一种恩赐。但由于标准的不统一,对于刚刚步入这个领域的初学者来说,很难在短时间内全部了解和掌握它们。本文论述了嵌入式linux开发的基本模式和概念,给出了一些常用的软件和工具,旨在带领他们更快的走入这个奇妙的世界。 1 引导装载程序(bootloader) 引导装载程序通常是在任何硬件上执行的第一段代码,它的主要任务视装载设备的不同而不同。在台式机和笔记本这样的常规系统中,经常存在多个操作系统并存的情况,因此bootloader的主要作用就是选择系统使用何种操作系统来引导。常用的引导程序有LILO或GRUB,通常将它们装入硬盘的主引导记录(Master Boot Record)中,或者装入linux 驻留的磁盘的第一个扇区。 在嵌入式系统中,情况有些不同。首先,嵌入式设备通常需要经常地移 动,考虑到在移动过程中的震动,一般不会采用机械式结构设计的硬盘为存 储设备;而且从成本控制上说,硬盘的价格比较高,除非是需要大容量存储 的场合,硬盘不适合作为嵌入式设备的存储介质。目前采用得比较多的是闪 存设备,闪存设备是与存储设备功能类似的特殊芯片,而且它

实例解析linux内核I2C体系结构

实例解析linux内核I2C体系结构 作者:刘洪涛,华清远见嵌入式学院讲师。 一、概述 谈到在linux系统下编写I2C驱动,目前主要有两种方式,一种是把I2C 设备当作一个普通的字符设备来处理,另一种是利用linux I2C驱动体系结构来完成。下面比较下这两种驱动。 第一种方法的好处(对应第二种方法的劣势)有: ●思路比较直接,不需要花时间去了解linux内核中复杂的I2C子系统的操作方法。 第一种方法问题(对应第二种方法的好处)有: ●要求工程师不仅要对I2C设备的操作熟悉,而且要熟悉I2C的适配器操作; ●要求工程师对I2C的设备器及I2C的设备操作方法都比较熟悉,最重要的是写出的程序可移植性差; ●对内核的资源无法直接使用。因为内核提供的所有I2C设备器及设备驱动都是基于I2C子系统的格式。I2C适配器的操作简单还好,如果遇到复杂的I2C适配器(如:基于PCI的I2C适配器),工作量就会大很多。 本文针对的对象是熟悉I2C协议,并且想使用linux内核子系统的开发人员。 网络和一些书籍上有介绍I2C子系统的源码结构。但发现很多开发人员看了这些文章后,还是不清楚自己究竟该做些什么。究其原因还是没弄清楚I2C子系统为我们做了些什么,以及我们怎样利用I2C子系统。本文首先要解决是如何利用现有内核支持的I2C适配器,完成对I2C设备的操作,然后再过度到适配器代码的编写。本文主要从解决问题的角度去写,不会涉及特别详细的代码跟踪。 二、I2C设备驱动程序编写 首先要明确适配器驱动的作用是让我们能够通过它发出符合I2C标准协议的时序。 在Linux内核源代码中的drivers/i2c/busses目录下包含着一些适配器的驱动。如S3C2410的驱动i2c-s3c2410.c。当适配器加载到内核后,接下来的工作就要针对具体的设备编写设备驱动了。

相关文档
最新文档