认识三角形知识点

认识三角形知识点
认识三角形知识点

认识三角形

1.三角形有关的概念

(1) 三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫做三角形的边,相邻两边公共的端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角(简称三角形的角).

(2) 三角形的表示

三角形用符号“△”表示,顶点是A 、B 、C 的三角形,记作“△ABC ”,读作“三角形ABC ”。

如图7 -4一l ,三角形有三个顶点:A 、B 、C ;有三条边:AB 、BC 、AC;有三个角:A ∠、B ∠、C ∠.

△ABC 的三边用c b a ,,表示时,A ∠所对的边BC 用a 表示.B ∠所对的边AC 用b 表示.C ∠所对的边AB 用c 表示.

2.三角形的分类

?????是钝角)钝角三角形(有一个角

是直角)直角三角形(有一个角是锐角)锐角三角形(三个角都形角三

注意:根据角的大小来识别三角形的形状时,一般只要考虑三角形中的最大角;若最大角是锐角,则三角形是锐角三角形;若最大角是直角,则三角形直角三角形;若最大角是钝角,则三角形钝角三角形.

3.三角形中边的关系

(1)三角形的任意两边之和大于第三边;

(2)三角形的任意两边之差小于第三边

如图7 -4 -1中,c b a b a c a b c b c a a c b c b a <-<-<->+>+>+,,;,,。

注意:在任意给定的三条线段中,当三条线段中较短的两条线段之和大于另一条线段时,才能组成三角形。 例如:有三条线段的长分别为3、4、6因为3 +4 >6,所以这三条线段能组成三角形.

又如:有三条线段的长分别为3、4、8要为3+4 <8,所以这三条线段不能组成三角形.

4.三角形的三种主要线段

(1)高:从三角形的一个顶点向它的对边所在的直线画垂线,顶点和垂足间的线段,叫做三角形的高。

如图7 -4 -2,AD 是△ABC 的高,可表示为AD ⊥ BC 或ADC ∠=90°或

ADB ∠= 90°。

(2)中线:在三角形中,连接顶点和它对边中点的线段,叫做三角形的中线。

如图7 -4 -3,AE 是△ABC 的中线,表示为BE=EC 或BE = 21BC 或BC= 2EC. (3)角平分线:在三角形中,一个内角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线,一个角的平分线是一条射线,而三角形的角平分线是一条线段.

如图7-4-4,AF 是ABC ?的角平分线,可表示为CAF BAF ∠=∠或BAC BAF ∠=∠2

1或CAF BAC ∠=∠2.

一个三角形中三条中线交于一点,三条角平分线交于一点,三条高所在直线交于一点。

5.三角形的高、角平分线、中线的画法

(1)三角形高的画法,如图7-4 -5.

注意:①锐角三角形、直角三角形、钝角三角形都有三条高.

②锐角三角形的三条高交于三角形内部一点.如图7 -4 -5甲,

③钝角三角形的三条高交于三角形外部一点.如图7 -4 -5乙,

④直角三角形的三条高交于直角顶点.如图7 -4 -5丙.

(2) 三角形的中线的画法:将三角形一边的中点与这边所对角的顶点连接起来,就得到三角形一边上的中线.

(3)三角形的角平分线的画法:三角形的角平分线的画法与角平分线的画法相同,可以用量角器。

防错档案:画钝角三角形的高容易出错,要抓住从三角形一顶点向对边作垂线段.

6.面积法解题

例如:如图7 -4 -6,在△ABC

中,AB =AC ,AC 边上的高BD= 10,求

AB 边上的高CE 的长.

解析:由三角形面积公式有:

AC BD AB CE S ABC ?=?=?2

121 因为AB =AC ,BD =10,

所以CE= BD= 10.

名题诠释

【例题1】如图7 -4 -7,点D 是△ABC 的边BC 上的一点,点E 在AD 上.

(1)图中共有____个三角形;

(2)以.AC 为边的三角形是____;

(3)以∠BDE 为内角的三角形是____.

【解析】 (1)AD 的左右两侧各有3个三角形,分别是△ABE 、△ABD 、△EBD 、△ACE 、△.ACD 、

△ECD ,左右两侧组合又形成2个以BC 为边的三角

形,它们是△ABC 、△EBC.故共有8个三角形.(2) 以AC 为边的三角形有3个,它们是△.ACE 、△ACD 、△ACB. (3)以∠BDE 为内角的三角形有2个,它们是△EBD 、△ABD .

【答案】 (1)8 (2)△ACE 、△ACD 、△ACB (3)△EBD 、△ABD

【点评】 数三角形要注意选择恰当的顺序,做到不重不漏,注意最容易漏掉的是最大的三角形.

【例题2】 下列三角形分别是什么三角形?

(1)已知一个三角形的两个内角分别是50°和60°;

(2) 已知一个三角形的两个内角分别是35°和55°;

(3) 已知一个三角形的两个内角分别是30°和45°;

(4) 已知一个三角形的周长为16cm ,有两边的长分别是6cm 和4cm.

【解析】 确定三角形的形状,应紧扣定义.

【答案】 (1) 锐角三角形,因为三角形内角和为180°,而两个内角分别是50°和60°,所以第三个内角是70°,即这个三角形是锐角三角形.

(2) 直角三角形,同理.

(3) 钝角三角形,同理.

(4) 等腰三角形.因为第三条边的长为16 -6 -4 =6(cm).

【点评】 应全面考虑三角形的边和角的条件,再根据定义判别.

【例题3】 下列长度的三条线段能组成三角形的是( ).

A. lcm 、2cm 、3.5cm

B.4cm 、5cm 、9cm

C. 5cm 、8cm 、15cm

D.8cm 、8cm 、9cm

【解析】 因为1+2<3.5,所以lcm 、2cm 、3.5cm 的三条线段不能构成三角形

因为4+5 =9,所以4cm 、5cm 、9cm 的三条线段不能构成三角形;

因为5+8<15,所以5cm 、8cm 、15cm 的三条线段不能构成三角形;

因为8+8 >9,所以8cm 、8cm 、9cm 的三条线段能构成三角形.

【答案】D

【点评】 三条线段能否构成三角形的条件是三角形三边的关系,即是否满足任意两边之和大于第三边.简便方法

是检验较小的两边之和是否大于最大边.

【例题4】 甲地离学校4km ,乙地离学校lkm .记甲、乙两地之间的距离

为dkm ,则d 的取值为( ).

A.3

B.5

C.3或5 D .3≤d ≤5

【解析】本题应分两种情况讨论:(1)甲、乙两地与学校在一条直线上;(2)甲、乙两地

与学校不在同一条直线上,则构成三角形,可利用三角形三边关系解题.

【答案】 D

【例题5】 如图7-4 -8,在△ABC 中,1∠=2∠,G 为AD 的中点,延长BG 交AC 于

E .

F 为AB 上一点,CF ⊥AD 于H ,下面判断正确的有( ).

①AD 是△ABE 的角平分线;②BE 是△ABD 边AD 上的

中线;③CH 为△ACD 边AD 上的高;④AH 是△ACF 的角平

分线和高线.

A.l 个 B .2个 C.3个 D .4个

【解析】由1∠=2∠知AD 平分∠BAE .但AD 不是△ABE 内的线段,故①错,AD 应是△ABC 的角平分线;同理,BE 经过△ABD 的边AD 的中点G ,但BE 不是△ABD 中的线段,故②不正确,正确的说法应是BG 是△ABD 边AD 上的中线;由于CH ⊥AD 于H ,故CH 是△ACD 边AD 上的高,故③正确;AH 平分∠FAC 并且在△ACF 内,故AH 是△ACF 的角平分线,同理AH 也是△ACF 的高,故④正确.

【答案】B

【点评】 三角形的角平分线和角的平分线之间的区别:前者是线段,在三角形的内部,后者是射线,可以无限延伸.

【例题6】在△ABC 中,AB =AC ,AC 边上的中线BD 把三角形的周长分为12cm 和15cm 两部分,求三角形各边的长,

【解析】 中线BD 把三角形的周长分为12cm 和15cm 两部分,要分类讨论:(1)当腰长小于底边时,AB +AD =12,如图7-4 -9①;(2)当腰长大于底边时,AB +AD =15,如图7-4 -9②.

【答案】设AB=x ,则有:AD= DC=x 21. (1)若AB +AD =12,即x + x 2

1=12,x =8. AB =AC =8,DC =4,故BC= 15 -4= 11.

此时AB +AC> BC ,

所以三角形三边长分别为8cm ,8cm ,llcm.

(2)若AB+ .4D= 15,即x +x 2

1=15,x =10. 即AB =AC =10,DC =5,

故BC=12 -5 =7.显然,此时三角形存在,

所以三角形三边长分别为l0cm ,l0cm ,7cm .

综上所述,此三角形的三边长分别为8cm ,8cm .llcm 或l0cm ,l0cm ,7cm .

【例题7】 如图7-4 -10,是甲、乙、丙、丁四位同学画的钝角△ABC 的高BE ,其中画法错误的是____________

【解析】 甲图错在把三自形的高线与AC 边的垂线定义相混淆,把“线段”画成“直线”;乙图错在未抓住“垂线”这一特征,画出的BE 与AC 不垂直;丙图错在没有过点B 画AC 的垂线,故不是高;丁图错在没有向点B 的对边画垂线.

【答案】 甲、乙、丙、丁

【例题8】 如图7—4-11,在△ABC 中,AB =AC ,AC 边上高BD=10,P 为边BC 上任意一点,PM ⊥AB ,PN ⊥AC ,垂足分别为M,N .求PM+PN 的值.

【解析】 连接AP 后,PM 、PN 就转化为△APB 和△APC 的高,从而由面积法可求得PM+ PN 的值.

【答案】 连接AP ,由图7-4 -11可知:

ABC ACP ABP S S S ???=+, 即BD AC PN AC PM AB ?=?+?2

12121 因为AB =AC ,BD =10,

所以PM+PN= BD =10.

速效基础演练

1如图7 -4 -12,图中三角形的个数共有 ( ).

A 1个

B .2个 C.3个 D .4个

2 三角形两边的长分别为lcm 和4cru ,第三边的长是一个偶数,则第三边的长是________,这个三角形是___________三角形

3如图7 -4 -13.

( 1 ) AD ⊥BC ,垂足为D ,则AD 是___________的高,_______=_______= 90°;

八年级数学上册认识三角形单元测试题

1.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完 全一样的玻璃,那么最省事的办法是( ) A.带①去 B. 带②去 C. 带③去 D. 带①和②去 2. 三角形三条高的交点一定在 ( ) A. 三角形的内部 B. 三角形的外部 C. 三角形的内部或外部 D. 三角形的内部、外部或顶点 3.下列长度的三条线段中,能组成三角形的是 ( ) A 、3cm ,5cm ,8cm B 、8cm ,8cm ,18cm C 、0.1cm ,0.1cm ,0.1cm D 、3cm ,40cm ,8cm 4、已知∠A :∠B :∠C=1:2:2,则△ABC 三个角度数分别是( ) A .40o、 80o、 80o B .35o 、70o 、70o C .30o、 60o、 60o D .36o、 72o、 72o 5、三角形中,有一个外角是79o,则这个三角形的形状是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定形状 6. 一个三角形的三个内角中( ) A. 至少有一个等于90° B. 至少有一个大于90° C. 不可能有两个大于89° D. 不可能都小于60° 7.如图,点O 是△ABC 内一点,∠A=80°,∠1=15°,∠2=40°, 则∠BOC 等于( ) A. 95° B. 120° C. 135° D. 无法确定 8.能把一个任意三角形分成面积相等的两部分是( ) A.角平分线 B.中线 C.高 D. A 、B 、C 都可以 9.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形 10.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A.5 B.6 C.7 D.8 11.等腰三角形的一边长等于4,一边长等于9,则它的周长是( ) A .17 B .13 C .17或22 D .22 12、适合条件C B A ∠=∠=∠2 1的三角形是( ) A 、锐角三角形 B 、等边三角形 C 、钝角三角形 D 、直角三角形 13.在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3; ③∠A=90°-∠B; ④∠A=∠B=1 2 ∠C,能确定△ABC 是直角三角形的条件有( )个. A. 1 B. 2 C. 3 D. 4 14.在△ABC 中,∠A=60°,∠C=2∠B ,则∠C=_____. 15.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是 _____________ 16.四条线段的长分别为5cm 、6cm 、8cm 、13cm ,?以其中任意三条线段为边可以构成________个三角形. 17.若三角形三个内角度数的比为2:3:4,则相应的外角比是 . 18.多边形每一个内角都等于150°,则该多边形是_____边形。 19.等腰三角形的一边长等于5,一边长等于9,则它的周长是__________ , 若一边长等于5,一边长等于10,它的周长是_______________ 20.在△ABC 中,已知∠A=3∠C=54°,则∠B 的度数是___________ 21.已知不等边三角形的两边长分别是2cm 和9cm ,如果第三边的长为整数, 那么第三边的长为_____________ 22、如图所示: (1)在△ABC 中,BC 边上的高是 ; (2)在△AEC 中,AE 边上的高是 ; 23. 如图所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点, 且ABC S △=4平方厘米,则BEF S △的值为 _______________ 图1

鲁教版五四制七年级上册认识三角形知识点

鲁教版五四制七年级上册认识三角形知识点梳理 一、学习目标 1. 掌握三角形的三边关系与三角形内角和性质; 2. 理解三角形、三角形的中线、三角形的高、三角形的角平分线的概念; 3. 了解图形的全等,能利用全等图形进行简单的图形设计; 4. 掌握全等三角形的性质,能进行简单的推理和计算,解决一些实际问题. 二、知识归纳 1.三角形的三边关系 (1)三角形的任意两边之和大于第三边; (2)三角形的任意两边之差小于第三边. 二、 2. 三角形的内角和等于180°. 3. 三角形的中线、角平分线、高 连结三角形的顶点和它所对的边的中点所得到的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线;从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线,简称三角形的高. 4. 形状、大小相同的图形放在一起完全重合,像这样能够完全重合的两个图形叫做全等形. 5. 全等三角形 能够完全重合的两个三角形叫做全等三角形. 把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角. 6. 全等三角形的性质 全等三角形的对应边相等、对应角相等. 一、全等图形、全等三角形: 1.全等图形:能够完全重合的两个图形就是全等图形。2.全等图形的性质:全等多边形的对应边、对应角分别相等。3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

说明:全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。注意:(1)周长相等的两个三角形,不一定全等;(2)面积相等的两个三角形,也不一定全等。 二、全等三角形的判定: 1.一般三角形全等的判定(1)边边边公理:三边对应相等的两个三角形全等(“边边边”或“SSS”)。(2)边角边公理:两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。(3)角边角公理:两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。(4)角角边定理:有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。 2.直角三角形全等的判定斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”).注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。 三、角平分线的性质及判定: 性质定理:角平分线上的点到该角两边的距离相等。 判定定理:到角的两边距离相等的点在该角的角平分线上。 四、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤: 1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系); 2.回顾三角形判定公理,搞清还需要什么; 3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。 1.1轴对称现象 1.轴对称图形:(1)如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,这个图形叫轴对称图形。这条直线叫对称轴。(注意:对称轴是一条直线,不是线段,也不是射线)。 (2)轴对称图形至少有一条对称轴,最多可达无数条。 例:①圆的对称轴是它的直径( ×) 直径是线段,而对称轴是直线(应说圆的对称轴是过圆心的直线或直径所在的直线); ②角的对称轴是它的角平分线( ×) 角平分线是射线而不是直线(应说角的对称轴是角平分线所在的直线);

认识三角形精品练习题

认识三角形 1、三角形的定义:由3条不在同一直线上的线段,首尾依次相接组成的图形称为三形。 如右的图形就是一个三角形 2、 三角形的各组成部分 3.三角形表示:“△”来表示一个三角形,如上图中,此三角形可以表示为△ABC ,或△ACB 或△BAC 等等。 4、三角形的分类 1)按角分 2)按边分 5.三角形三边性质:三角形任意两边之和大于第三边; 两边之差<第三条边<两边之和 试一试: 1. △AB C 中,已知a =8,b =5,则c 为 ( ) A.c =3 B.c =13 C.c 可以是任意正实数 D.c 可以是大于3小于13的任意数值 2. 下列长度的4根木条中,能与4cm 和9cm 长的2根木条首尾依次相接围成一个三角形的是( ) A 、4cm B 、9cm C 、5cm D 、13cm 3. 有下列长度的三条线段能构成三角形的是 ( ) A.1 cm 、2 cm 、3 cm B.1 cm 、4 cm 、2 cm C.2 cm 、3 cm 、4 cm D.6 cm 、2 cm 、3 cm 4 、如图,以∠C 为内角的三角形有 和 在这两个三角形中,∠C 的对边分别为 和 5、等腰三角形的一边长为3㎝,另一边长是5㎝,则它的第三边长为 6、三角形的三边长为3,a ,7,则a 的取值范围是 ;如果这个三角形中有两条边相等,那么它的周长是 ; 7一个三角形的两边长分别为2㎝和9㎝,第三边长是一个奇数,则第三边的长为___________,此三角形的周长为_________. 8一个等腰三角形的两边分别为2.5和5,求这个三角形的周长。 9、画一个三角形,使它的三条边长分别为3 cm 、4 cm 、6 cm. A B C A B C D

第二单元-认识三角形和四边形知识点及检验题

第二单元:认识三角形和四边形知识点及测试题 1.图形分为:立体图形和平面图形。 2.平面图形:a、圆(由曲线围成的图形)b、三角形、四边形、多边形(由线段围成的图形) 3.三角形内角和是180°。锐角:小于90°的角是锐角。钝角:大于90°的角是钝角。直角: 等于90°的角是直角。平角=180°;周角=360° 4.等腰三角形相等的两条边叫做腰。等腰三角形两腰间的夹角叫顶角。腰与底边的夹角叫底角。 5.等腰三角形包含:等腰三角形、等边三角形(又叫正三角形)、等腰直角三角形。 等边三角形是特殊的等腰三角形,它的每个内角都是60°。 6.三角形不易变形具有稳定性。四边形易变形具有不稳定性. 直角三角形(有一个直角两个锐角) 按角分锐角三角形(三个角都是锐角) 钝角三角形(有一个钝角两个锐角) 7 .三角形 (有三条边)等边三角形(三条边都相等)是对称图形,有三条对称轴 按边分等腰三角形(有两条边相等)是对称图形,有一条对称轴 不等边三角形(三条边都不相等) 8.三角形任意两边之和大于第三边。 9.由四条线段围成的封闭图形叫四边形四边形内角和是360°。 10.正方形是特殊的长方形。长方形和正方形是特殊的平行四边形。 11.平行四边形:两组对边分别平行且相等的四边形。 12.梯形:只有一组对边平行的四边形。 13.平行的两条边叫做梯形的底边,上面的一条叫上底,下面一条叫下底。 14.梯形的周长:上底+下底+腰+腰梯形的面积:(上底+下底)×高÷2 15..根据三角形的边长判定三角形的类型:

较小两边的平方和小于最长边的平方 钝角三角形 较小两边的平方和等于最长边的平方 直角三角形 较小两边的平方和大于最长边的平方 钝角三角形 16.. 等腰三角形的两个底角相等。等边三角形是特殊的等腰三角形。 一般平行四边形 平行四边形: 长方形 (两组对边分别平行且相等的四边形) 正方形 17. 四边形 一般四边形: (有四条边) (两组对边都不平行的四边形) 一般梯形 梯形: 等腰梯形:两条腰相等,同一底上的两个底角相等。 (只有一组对边平行的四边形) 直角梯形:一条腰垂直于的的梯形。 第二单元认识三角形和四边形测试题 一、 填空: 1.有一个角是直角的三角形是( )有一个角是钝角的三角形是( ),三个角是锐角的三角形是( )。任何三角形都有( )个角,( )条边,( )顶角。 2.等腰三角形相等的两条边叫( ),另一条边叫( );两腰的夹角叫( ),底边上的两个角叫( )。 3.三角形中三个角都相等的是( )三角形,又叫( )三角形。它的三天边都( ),每个角都是( )度。 4.三角形按角分可以分为( )( )( );按边分可以分为( )( )( )。三角形是( )图形,圆球是( )图形。 5.三角形最多有( )直角,最多有( )钝角,最多有( )锐角,至少有( )个锐角。 6.( )条边相等的三角形是等腰三角形,( )条边都相等的三角形是等边三角形。 7.三角形具有( )性,而( )易变形。

1.1认识三角形教学设计

1.1 认识三角形(1) 教学目标: 1. 进一步认识三角形的概念 2. 会用符号、字母表示三角形。 3. 了解三角形的按角分类。 4. 理解“三角形任何两边的和大于第三边”的性质 5. 通过操作、观察、归纳和说理等过程初步体会分类思想,感受数学的美,逐步养成良好的数学思维习惯。 教学重点: 三角形任何两边的和大于第三边的性质是本节课的重点 教学难点: 判断三条线段能否组成三角形,过程较为复杂,是本节课的难点。 教学流程: 一、 学习准备 1. 观察下列图片,说出你所知道的几何图形。 2. 对于三角形,你已经了解哪些方面的知识? 二、 讲解新课 探究一: 阅读:课本第4页第一段的内容 思考:1.由________________的三条线段___________相接所组成的图形交三角形。 2.举例说明对概念的理解。 (图1 )(图 (图1线段AB 、BC 、AC 组成的图形不是三角形,图2没有满足首尾相接。通过这一环节让学生能真正理解三角形的概念。) 练习:完成课本第4页做一做(把说出图中的三角形改为写出图中的三角形)和第6页 作业题1(通过这一环节让学生对三角形进行辨认及表示) 归纳:在复杂的图形中数三角形的个数,怎样才能做到不重不漏? 探究二: 阅读:课本第4页的三角形分类。 思考: 1.三个分类中有哪一个分类概念是不同的?(通过这个思考,让学生理解锐角三 B C

B A C C a b 角形必须三个角都是锐角) 2.三角形除按内角分类,还可以按什么分类? 练习:第5页的课内练习1,和第6页作业题第4题 归纳:三角形按角分类可分为________、__________、_________。 探究三: 操作并填表 从四根小棒(12厘米、8厘米、6厘米、4厘米、)中任选三根拼接三角形 (1)先选择三根小棒 (2)再将选择的每根小棒的长度从小到大填入表格中 (3)最后拼接,观察能否围成三角形 (学生合作学习、小组交流) 否组成三角形的方法。) 思考:1.三根小棒的长度必须具备怎样的条件才能围成三角形?你能否用也学过的知识进行 解释? 2.如图:在△ABC 中,(1)对于“b+c>a ”,可理解为 _____________两点之间的线段最短。 (2)对于“b+ a >c ”,可理解为_____________两点之间 的线段最短。 (3)对于“a +c>b ”,可理解为_____________两点之间 的线段最短。(从深层次上去理解“两边之和大于第三边”)。 3.尝试解答第5页的例1. 判断下列各组线段中,哪些首尾相接能组成三角形,哪些不能组成三角形,并说明理由。 (1)a=2.5cm,b=3cm,c=5cm (2)a=6.3cm,f=6.3cm,g=12.6cm 判断三条线段能否组成三角形的一般步骤? (学生尝试解答,若学生是三个不等式来判断的,让学生观察三个不等式,判断其中两个式是多余的,若学生只用一个不等式来判断的,让学生解释原因。从而归纳出判断三条线段能否组成三角形的方法。) 4.三角形任何两边的差与第三边有什么关系?(通过学生的讨论,实际操作得出) 练习:第5页的课内练习2、3题和作业题第3题

新浙教版八年级上册数学1.1 认识三角形(1)教案

新浙教版八年级上册数学1.1 认识三角形(1)教 案 【教学目标】 一、知识和技能 1. 结合具体实例,进一步认识三角形的概念及基本要素. 2. 理解三角形三边关系的性质,并会初步应用它们来解决问题. 3. 通过观察、操作、想象、推理等活动,发展空间观念和推理能力,在与其他人交流的过程中,能合理清晰的表达自己的思维过程. 二、过程与方法 采用“情境—问题—探究—反思—提高”,使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程. 三、情感、态度与价值观 1.让学生树立三角形的知识源于客观实际,用于实际的观念,激发学生学习兴趣. 2.在与他人的合作过程中,增强互相帮助,团结协作的精神. 3.通过解决实际问题的过程和丰富的实例体会到数学与生活的密切联系. 【教学重点】 三角形的有关概念及三角形三边关系的性质. 【教学难点】 三角形三边关系的性质. 【教学过程】 一、创设情景,引出课题. 展示一组图形,如:铁塔、桥梁、房顶三角架等. 相关以往知识: _______________________ _______________________ ____________________ ______________________ 教学内容和方法: _______________________ _______________________ _______________________ _______________________ _______________________ _________________ 个性化教学思路及改进建议: _______________________ _______________________ _______________________ _______________________ _______________________ _________________ ______________________ _______________________ _______________________ _______________________

认识三角形练习题好

认识三角形练习题一.选择题 1.如果三角形的三个内角的度数比是2:3:4,则它是( ) A.锐角三角形 B.钝角三角形; C.直角三角形 D.钝角或直角三角形 2.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是(). A.4cm B。5cm C。9cm D。13cm 3.已知ΔABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角() A.一定有一个内角为45? B.一定有一个内角为60? C.一定是直角三角形 D.一定是钝角三角形 4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是() A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定 5.下列各题中给出的三条线段不能组成三角形的是() A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10 C.3cm,8cm,10cm D.3a,5a,2a+1(a>0) 6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是() A.18 B.15 C.18或15 D.无法确定 A.3 B.4 C.5 D.6 8.等腰三角形的一边长为3cm,周长为19cm,则该三角形的腰长为( )cm. A、3 B、8 C、3或8 D、以上答案均不对 9.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=900-∠B,④∠A=∠B=1 2 ∠ 中,能确定△ABC是直角三角形的条件有() A.1个 B. 2个 C. 3个 D. 4个 10.下列长度的三条线段能组成三角形的是() A.3cm,4cm,8cm B.5cm,6cm,11cm C.5cm,6cm,10cm D.3cm,8cm,12cm 11.在下图中,正确画出AC边上高的是(). A B C D 二.填空题 12.若∠A=1200,∠B=2∠C,则∠C=___ 13.已知线段3cm,5cm,xcm,x为偶数,以3,5,x为边能组成______个三角形。 14.在等腰△ABC中,如果两边长分别为5cm、10cm,则这个等腰三角形的周长为________.16.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.17.在△ABC中,∠A=40°,∠B=∠C,则∠C=. 18.在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,则∠A=______;∠B=______;∠C=______.19.小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是_ 20.已知直角三角形的一个锐角是另一个锐角的3倍,则最小的锐角的度数是________ 21.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G, (1)完成下面的证明: ∵ MG平分∠BMN(),∴∠GMN=∠BMN(), 同理∠GNM=∠DNM.∵ AB∥CD(), ∴∠BMN+∠DNM=________().∴∠GMN+∠GNM=________. ∵∠GMN+∠GNM+∠G=________(),∴∠G= ________. ∴ MG与NG的位置关系是________. (2)把上面的题设和结论,用文字语言概括为一个命题: _______________________________________________________________.

人教版八年级数学-三角形-知识点+考点+典型例题(含答案)

第七章三角形 【知识要点】 一.认识三角形 1.关于三角形的概念及其按角的分类 定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2.三角形的分类: ①三角形按角的大小分为三类:锐角三角形、直角三角形、钝角三角形。 ②三角形按边分为两类:等腰三角形和不等边三角形。 2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短) 根据公理“两点之间,线段最短”可得: 三角形任意两边之和大于第三边。 三角形任意两边之差小于第三边。 3.与三角形有关的线段 ..:三角形的角平分线、中线和高 三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段; 三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分; 三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。 注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线; ②任意一个三角形都有三条角平分线,三条中线和三条高; ③任意一个三角形的三条角平分线、三条中线都在三角形的部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的部;直角三角形有一条高在三角形的部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的部,另两条高在三角形的外部。 ④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。) 4.三角形的角与外角 (1)三角形的角和:180° 引申:①直角三角形的两个锐角互余; ②一个三角形中至多有一个直角或一个钝角; ③一个三角中至少有两个角是锐角。 (2)三角形的外角和:360° (3)三角形外角的性质: ①三角形的一个外角等于与它不相邻的两个角的和;——常用来求角度 ②三角形的一个外角大于任何一个与它不相邻的角。——常用来比较角的大小 5.多边形的角与外角 多边形的角和与外角和(识记)

小学四年级认识三角形和四边形练习题

认识三角形和四边形练习题 一、专心填一填。(20分) 1、三角形的内角和是()°,一个等腰三角形,它的一个底角是26°,它的顶角是()。 2、长5厘米,8厘米,()厘米的三根小棒不能围成一个三角形 3、三角形具有()性。 4、一个三角形中有一个角是45°,另一个角是它的2倍,第三个角是(),这是一个()三角形。 5、按角的大小,三角形可以分为()三角形、()三角形、()三角形。 6、在三角形中,∠1=30°,∠2=70°,∠3=()°,它是()三角形。 7、有()组对边平行的四边形是平行四边形。 8、在一个直角三角形中,有一个角是30°,另两个角分别是()() 9、长方形正方形是特殊的()形。 10、将一个大三角形分成两个小三角形,其中一个小三角形的内角和是()度。 11、三角形的两个内角之和是85°,这个三角形是()三角形,另一个角是()度。

12、一个等边三角形的边长是9厘米,它的周长是()厘米。 二、细心判一判(对的打“√”,错的打“×”)。(每空1分,共计12分) 1、等边三角形的每一个内角都是60o。() 2、等边三角形是特殊的等腰三角形。() / 3、有一组对边平行的四边形叫做梯形。() 4、直角三角形的两个锐角之和大于直角。() 5、用三根不一样长的小棒一定能围成一个三角形。() 6、有一个角是钝角的三角形一定是钝角三角形。() 7、等腰三角形中有锐角三角形,也有直角三角形和钝角三角形。() 8、一个锐角三角形的三个内角分别是56°、70°、64°() 9、一个三角形有两条边都是4厘米,第三条边一定大于4厘米。() 10、两个完全一样的三角形,可以拼成一个平行四边形。() 11、在一个三角形中截去一个20°的锐角,剩下图形的内角和是160。[ 12、一个等腰三角形中,有一个角是60°,这个三角形一定是等边三角形。()

1.1 认识三角形

1.1 认识三角形 教学目标 (一)进一步认识三角形的概念. (二)会用符号、字母表示三角形. (三)了解三角形的按角分类 (四)理解“三角形任何两边之和大于第三边”的性质. 学情分析 三角形是最简单、最基本的几何图形,是我们在小学就已经熟悉的图形,在生活中随处可见,是构造较为复杂图形的基础。学生在学习了图形的初步认识后安排了本教材的内容,它既是对以前知识的进一步应用和深化,同时也为学生以后观察几何图形,初步建立空间观念做了很好的铺垫。教材安排了让学生动手做三角形,使学生在动手中体验发现问题,提出问题,并解决问题的过程,体会到学习数学的乐趣。 重点难点 重点:三角形任何两边的和大于第三边的性质. 难点:判断三条线段能否组成三角形,过程较复杂. 情境创设,引入新课 请学生带着一个谜语(三个头,尖尖角,我们学习少不了)欣赏一组图片,引出课题。 三角形的概念提出 1.教师给每组学生准备3条白纸带,让学生动手拼一个三角形,并展示在黑板上,并说说是怎么拼出来的?概括出“三角形”的概念(可由学生完成,教师加以完善)“由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。” 2.在拼三角形的同时,有2组同学的纸带因为长度不符合组成三角形的条件,所以没办法拼出三角形的,就让他们把不完整的三角形也展示在黑板上,引导学生发现问题“为什么这样的三条纸带不能拼出三角形?” 设计意图:让学生在动手拼三角形的过程中体验三角形的概念的得出,安排2组学生不能拼出三角形,为后面“三条线段满足任何两边之和才能组成三角形”做铺垫。

三角形的表示. 1.为了区分黑板上的四个已经拼出的三角形,我们可以给每个三角形取个名字,怎么表示?选择第一组的三角形为例,示范三角形的表示方法,符号表示“△ABC”,记作△ABC,读作“三角形ABC”。 2.请另外三组的学生为自己的三角形取上名字,并表示在黑板上。 设计意图:让学生明白三角形命名的意义,并让他们为自己拼出的三角形命名,体验到从中的快乐。 三角形的三要素 顶点,内角,和边(边的两种表示方法),说清楚对边和对角之间的关系。 应用结论,拓展提高 帮小慧解决一个实际问题:小慧要做一个三角形,现有5cm和8cm的木棒, (1)她用长度为2cm的木棒与它们能做成三角形吗?为什么?(2)用长度为13cm的木棒呢?(3)你认为小慧需要准备多长的木棒才可以呢?(4)如果要求第三根米棒的长度是奇数,那么小慧有几种选择?由学生回答完成。 设计意图:让学生体验到能用所学的知识来解决实际问题的快乐感和满足感。 归纳小结,充实结构。 这节课我学到了什么? 我的收获是……多个学生补充回答 我还有……的疑惑,写在学习稿的后面部分

认识三角形测试题

《三角形的初步》训练题 班级_____ 学号______ 姓名______ 得分____ 一:选择题(30分) 1.在下列四根木棒中,能与4cm ,9cm 长的两根木棒钉成一个三角形的是( ) A 、4cm B 、5cm C 、9cm D 、13cm 2、在△ABC 中,∠A +∠C =∠B ,那么△ABC 是( ) A 、等边三角形 B 、锐角三角形 C 、钝角三角形 D 、直角三角形 3、如图:PD ⊥AB ,P E ⊥AC ,垂足分别为D 、E ,且AP 平分∠BAC ,则△APD ≌△APE 的理由是( ) A 、SAS B 、ASA C 、SSS D 、AAS 4.如图,木工师傅在做完门框后,为防止变形常常象图中 所示那样钉上两条斜拉的木条(图中的AB 、CD 两根木条),这样做是运用了三角形的( ) A 、全等性 B 、灵活性 C 、稳定性 D 、对称性 5.下列说法中错误..的是( ) A 、三角形三条角平分线都在三角形的内部 B 、三角形三条中线都在三角形的内部 C 、三角形三条高都在三角形的内部 D 、三角形三条高至少有一条在三角形的内部 6.小明给小红出了这样一道题:如右图,由AB=AC ,∠B=∠C , 便可知道AD=AE 。这是根据什么理由得到的?小红想了想, 马上得出了正确的答案。你认为小红说的理由( ) A 、SSS B 、SAS C 、ASA D 、AAS 7、如图,点E 在BC 上,ED 丄AC 于F ,交BA 的延长线于D ,已知∠D =30°,∠C =20°,则∠B 的度数是( ) A 、20° B 、30° C 、40° D 、50° E D C A

新北师大版认识三角形练习题

认识三角形练习题 一、 知识点: 1、如图1,图中共有 个三角形,其中以AB 为一边的三角形有 ,以C ∠为一个内角的三角形有 。 2、如图2,在ABC ?中,已知AE 是中线,AD 是角平分线,AF 是高,根据已知条件填空: (1) AE 是ABC ?的中线 (已知) ∴BE= =2 1 BC=2 =2 ( 三角形中线的定义 ) (2) AD 是ABC ?的角平分线(已知) ∴BAD ∠= =2 1 ; BAD ∠=2 =2 ( 三角形角平分线的定义 ) (3) AF 是ABC ?的高线(已知) ∴=∠A F B =?90 ( 三角形高中线的定义 ) 3 如图4中已知 ∠A =30° , ∠B = 20°求:∠AC B 解: ∵ ∠A +∠B +∠ACB =180°( ) ∴ ∠BPC =180°-∠A -∠B ( ) ∴∠BPC =180°-30°-20°=130° 4.如图4 , DCB ∠是ABC ?的外角(已知) ∴B C D ∠=∠ +∠ .( ) 二 练习 5、如图,BC AD ⊥于D ,AC BE ⊥于E ,AB CF ⊥于F ,AC GA ⊥于A , 则ABC ? 中,AC 边上的高为( ) A 、AD B 、GA C 、BE D 、CF 图1 图 2

6、如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC 、AB 、BC 于C 、D 、E ,下列说法中不正确的是( ) A .AC 是ΔABC 的高 B .DE 是ΔAB C 的高 C .DE 是ΔABE 的高 D .AD 是ΔACD 的高 7、如图所示,?=∠?=∠?=∠25,35,70ACD ABE A ,则=∠BDC , BEC ∠= 。 第9题 8.如图所示,则∠A+∠B+∠C+∠D+∠E+∠F= ° 9如图C B ∠=∠,则A D C ∠和AEB ∠的大小关系是 ( ) A 、AE B AD C ∠>∠ B 、AEB ADC ∠=∠ C 、AEB ADC ∠<∠ D 、大小关系不能确定 10. 如图,1∠,2∠,3∠,4∠恒满足的关系式是 ( ) A.1234∠+∠=∠+∠ B.1243∠+∠=∠-∠ C. 1423∠+∠=∠+∠ D.1423∠+∠=∠-∠ 11、ABC ?中,AD 是ABC ?的中线,且cm BD 10=, 求:BC 12、在ABC ?中,?=∠80BAD ,AD 为A ∠的平分线, 求A ∠ B C A E D 1 2 3 4

北师大版七年级数学认识三角形练习题

北师大数学七年级下册课堂达标测试题 一、填空(每空3分,共60分) 1.三角形的三边关系:①三角形任意两边之和 第三边;②三角形任意两边之差 第三边. 2.下列每组分别是三根小木棒的长度,用它们能摆成三角形吗?(填“能”或“不能”): (1)3㎝,4㎝,5㎝( ) (2)8㎝,7㎝,15㎝ ( )(3)13㎝,12㎝,20㎝( ) (4)5㎝,5㎝,11㎝ ( )(5)6cm, 8cm, 10cm ( )(6)7cm, 7cm, 14cm ( ) 3.在△ABC 中,∠A =10°,∠B =30°,则∠C =_________.4.在△ABC 中,∠A =90°,∠B =∠C ,则∠B =_________. 5.(1)一个等腰三角形的一边是2cm ,另一边是9cm ,则这个三角形的周长是 _____________cm. (2)一个等腰三角形的一边是5cm ,另一边是7cm ,则这个三角形的周长是 _____________cm. 6.如果∠B +∠C =∠A ,那么△ABC 是 三角形. 7.在△ABC 中,AB =6 cm ,AC =8 cm 那么BC 长的取值范围是 .8.ABC ?中,AD 是ABC ?的中线,且cm BC 10=,则 BD= cm. 9.在ABC ?中,?=∠80A ,AD 为A ∠的平分线,则BAD ∠= 10.如果一个三角形两边上的高的交点,恰好是三角形的一个顶点,则此三角形是 _____________三角形. 11.判断具备下面条件的三角形是直角三角形、锐角三角形还是钝角三角形: (1)如果4:3:1::=∠∠∠C B A ,那么ABC ?是 三角形;(2)如果B A ∠=∠, ?=∠30C ,那么ABC ?是 三角形;(3)如果C B A ∠=∠=∠5 1 ,那么ABC ?是 三角形. 二、选择(每题3分,共27 分)1.在△ABC 中,∠A 是锐角,那么△ABC 是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、不能确定 2.△ABC 中,若∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 的形状是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、不确定 3.以下是由四位同学描述三角形的三种不同的说法,正确的是( ) A 、由三个角组成的图形叫三角形 B 、由三条线段组成的图形叫三角形 C 、由三条直线组成的图形叫三角形 D 、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形 4.△AB C 中,已知a =8, b =5,则c 为( ) A 、c =3 B 、c =13 C 、c 可以是任意正整数 D 、c 可以是大于3小于13的任意数值 5. 下面说法中正确的是:( )A 、三角形的角平分线,中线,高都在三角形内 B 、直角三角形的高只有一条C 、钝角三角形的三条高都在三角形外 D 、三角形至少有一条高在三角形内 6. 如果一个三角形的三条高线的交点恰好是三角形的一个顶点,那么这个三角形是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、不能确定 7.在一个三角形,若?=∠=∠40B A ,则ABC ?是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、以上都不对 8.三角形的高线是 ( ) A 、线段 B 、垂线 C 、射线 D 、直线 9.在Rt △中,两个锐角关系是( )A 、互余 B 、互补 C 、相等 D 、以上都不对 三、解答题 1.如图,在△ABC 中,∠BAC=60°,∠B=45°,AD 是△ABC 的一条角平分线求∠ADB 的度数. (7分) 2.在下列图中,分别画出三角形的三条高。(6分) 提高题 1.已知三角形的两边分别为4和9,则此△的周长L 的取值范围是( ) A 、5<L <13 B 、4<L <9 C 、18<L <26 D 、14<L <22 2.三角形的三边长为3,a ,7,则a 的取值范围是 ; 如果这个三角形中有两条边相等,那么它的周长是 . 3.如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,若∠BOC=120°,则∠A=________° 如图,在△ABC 中,∠A=50°,∠B 与∠C 的角平分线相交于点E ,则∠BEC= 度. 如图,小林已经画出了一个三角形的两条角平分线,他说:“我不用再将第三个角平分,就能画出第三条角平分线.”他说的有道理吗? .他会怎样作? ,他这样做的理由是 . A B C O

认识三角形知识点课件.doc

认识三角形 1.三角形有关的概念 (1) 三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫 做三角形的边,相邻两边公共的端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角(简称三角形的角).(2) 三角形的表示 三角形用符号“△”表示,顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。 如图7 -4 一l,三角形有三个顶点:A、B、C;有三条边: A B、B C、AC;有三个角: A 、B、 C . △ABC的三边用a,b,c 表示时,A所对的边BC用a表示. B 所对的边AC用b 表示. C 所对的边AB 用c 表示. 2.三角形的分类 三锐角三角形(三个是角锐都角) 角直角三角形(有一是个直角角) 形钝角三角形(有一是个钝角角) 注意:根据角的大小来识别三角形的形状时,一般只要考虑三角形中的最大角;若最大角是锐角,则三角形是锐角 三角形;若最大角是直角,则三角形直角三角形;若最大角是钝角,则三角形钝角三角形. 3.三角形中边的关系 (1)三角形的任意两边之和大于第三边; (2)三角形的任意两边之差小于第三边 如图7 -4 -1 中,a b c,b c a,a c b;c b a,c a b,a b c 。 注意:在任意给定的三条线段中,当三条线段中较短的两条线段之和大于另一条线段时,才能组成三角形。 例如:有三条线段的长分别为3、4、6 因为 3 +4 >6,所以这三条线段能组成三角形. 又如:有三条线段的长分别为3、4、8 要为3+4 <8,所以这三条线段不能组成三角形. 4.三角形的三种主要线段 (1)高:从三角形的一个顶点向它的对边所在的直线画垂线,顶点和垂足间的线段,叫做三角形的高。 如图7 -4 -2,AD 是△ABC的高,可表示为AD BC或ADC =90°或 ADB = 90°。 - 1 -

认识三角形(练习题)

认识三角形 一、知识点梳理 1、三角形的有关概念 (1)三角形的定义:由不在 上的三条线段首尾 相连所组成的图形。 (2)三角形的基本构造: ①组成三角形的三条线段叫做三角形的 ②两条边相接的点叫做三角形的 ③相邻两边组成的角叫做三角形的 2、三角形的三边关系: (1)三角形任意两边之和 第三边 (2)三角形任意两边之差 第三 3、三角形的角平分线、中线、高 (1)、在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做 (2)、在三角形中, 的线段,叫做这个三角形的中线。 (3)、从三角形的一个顶点向它的对边所在直线作垂线, 之间的线段叫做三角形的高。 4:三角形按角分类 ?? ??? 锐角三角形直角三角形钝角三角形 5、三角形内角和与外角和定理 (1)三角形三个内角的和等于180 (2)直角三角形两锐角互余。 (3)三角形一个外角大于和它不相邻的任何一个内角。 (4)三角形一个外角等于和它不相邻的两个内角的和。 (5)三角形三个外角的和等于360. 6:认识直角三角形:直角三角形的表示方法、性质:直角三角形两锐角互余。 二、经典例题 例1、下面各组数分别表示三条线段的长度,试判断以它们为边是否能组成三角形。( ) (1)1 ;4 ;5 (2)3 ;3 ;5 (3)3x ;5x ;7x (x 为正数) (4)三条线段长度之比为4:7:6 例2、 小明要制作一个三角形铁丝架,已知有两根铁丝长度分别是3cm ,5cm

(1) 他该如何选择第三根铁丝你能帮助小明确定它的长度或范围吗 (2) 如果要求第三根铁丝的长度是整数,那么小明有几种选择 例3、 如图所示,在小河的同侧有A,B,C 三个村庄,图中的线段表示道路,某邮递员从A 村送信到B 村,总是走经过C 村的道路,不走经过D 村的道路,这是为什么呢 请利用你所学的数学知识加以证明。 拓展:1、若设,,a b c 是△ABC 的三边,则a b c a b c +++--= 2、已知,,a b c 是△ABC 的三边, 2,5a b ==,且三角形的周长是偶数,(1)求c 的值;(2)判断△ABC 的形状。 例4、 (1)如图1,D 为S △ABC 的变BC 边的中点,若S △ADC =15, 那么S △ABC = (2)如图2,已知AD 、BE 分别是△ABC 中BC 、AC 边上的高,若00 70,120,2C ∠=∠=∠=那么 D C B A 2 1 E C B A 图1 图2 变式训练:如图在△ABC 中,BD 平分0 ,66,24,ABC C ABD A ∠∠=∠=∠那么= E D C B A A

认识三角形(基础)知识讲解

认识三角形(基础)知识讲解 【学习目标】 1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法; 2. 理解并能够证明三角形内角和定理; 3. 掌握并会把三角形按角分类; 4. 掌握并会应用三角形三边之间的关系; 5. 理解三角形的高、中线、角平分线的概念,掌握它们的画法;并能正确应用概念解题. 【要点梳理】 要点一、三角形的定义 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 要点诠释: (1)三角形的基本元素: ①三角形的边:即组成三角形的线段; ②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点. (2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”. (3)三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示. 要点二、三角形的内角和 三角形内角和定理:三角形的内角和为180°. 要点诠释:应用三角形内角和定理可以解决以下三类问题: ①在三角形中已知任意两个角的度数可以求出第三个角的度数; ②已知三角形三个内角的关系,可以求出其内角的度数; ③求一个三角形中各角之间的关系. 要点三、三角形的分类 【高清课堂:与三角形有关的线段 三角形的分类】 1.按角分类: ?? ?? ?? ?? 直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释: ①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形.

七年级数学认识三角形练习题.doc

三角形的认识练习题 一、填空(每空 3 分,共 60 分) 1.三角形的三边关系:①三角形任意两边之和第三边;②三角形任意两边之差第三边. 2.下列每组分别是三根小木棒的长度,用它们能摆成三角形吗?(填“能”或“不能”):(1) 3 ㎝, 4 ㎝, 5 ㎝()(2)8 ㎝, 7 ㎝, 15 ㎝()( 3) 13 ㎝, 12 ㎝, 20 ㎝()(4)5 ㎝, 5 ㎝, 11 ㎝()(5)6cm,8cm,10cm()( 6) 7cm,7cm,14cm() 3.在△ ABC 中,∠ A=10°,∠ B=30°,则∠ C=_________. (2)一个等腰三角形的一边是 5cm,另一边是 7cm,则这个三角形的周长是 _____________cm. 4.如果∠ B+∠ C=∠ A,那么△ ABC是三角形 . 5.在△ ABC 中, AB=6 cm,AC=8 cm 那么 BC 长的取值范围是 . 6.ABC 中, AD 是ABC 的中线,且 BC10cm ,则 BD=cm. 7.在ABC 中, A 80 ,AD 为 A 的平分线,则BAD = 8.如果一个三角形两边上的高的交点,恰好是三角形的一个顶点,则此三角形是_____________ 三角形 . 9.判断具备下面条件的三角形是直角三角形、锐角三角形还是钝角三角形: (1)如果 A : B : C 1: 3 : 4 ,那么 ABC 是三角形;(2)如果AB,C 30 ,那么 ABC 是三角形;( 3)如果AB 1 C ,那么ABC 是三角形 . 5 二、选择(每题 3 分,共 27 分) 1.在△ ABC 中,∠ A 是锐角,那么△ ABC 是() A 、锐角三角形 B、直角三角形C、钝角三角形D、不能确定 2.△ ABC 中,若∠ A∶∠ B∶∠ C=1∶2∶3,则△ ABC 的形状是() A 、锐角三角形 B、直角三角形 C、钝角三角形D、不确定 3.以下是由四位同学描述三角形的三种不同的说法,正确的是() A 、由三个角组成的图形叫三角形B、由三条线段组成的图形叫三角形 C、由三条直线组成的图形叫三角形 D、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫 三角形 4.△ ABC 中,已知 a=8,b=5,则 c 为() A 、 c=3B、c=13C、 c 可以是任意正整数D、 c 可以是大于 3 小于 13 的任意数值 5.下面说法中正确的是:() A、三角形的角平分线 , 中线 , 高都在三角形内 B、直角三角形的高只有一条

相关文档
最新文档