筛选模型

筛选模型
筛选模型

药物筛选

维基百科,自由的百科全书

跳转到:导航, 搜索

药物筛选是现代药物开发流程中检验和获取具有特定生理活性化合物的一个步骤,系指通过规范化的实验手段从大量化合物或者新化合物中选择对某一特定作用靶点具有较高活性的化合物的过程。药物筛选的过程从本质上讲就是对化合物进行药理活性实验的过程,随着药物开发技术的发展,对新化合物的生理活性实验从早期的验证性实验,逐渐转变为筛选性实验,即所谓的药物筛选。作为筛选,需要对不同化合物的生理活性做横向比较,因此药物筛选的实验方案需具有标准化和定量化的特点。随着组合化学和计算化学的发展,人们开始有能力在短时间内大规模合成和分离多种化合物,因而在现代新药开发流程中药物筛选逐渐成为发现先导化合物的主要途径之一。

药物开发流程。繁体字版按此。

目录

?1筛选模型

?2高通量筛选

?3虚拟药物筛选

?4参见

?5参考文献

?6外部链接

[编辑]筛选模型

筛选模型就是在药物筛选实验中所应用的药理实验模型,由于药物筛选要求实验方案有标准化和定量化的特征,因而在传统药理实验中常见的动物实验在药物筛选中较少应用,根据实验模型的不同,药物筛选可以分为生化水平的筛选和细胞水平的筛选。

生化水平的药物筛选用拟开发药物作用的靶点设计实验,一般而言这种作用靶点是具有特定生理功能的蛋白质,如酶和受体等,此外一些编码功能明确的DNA也越来越多地成为药物作用的靶点。候选化合物与靶点混合后,可以通过酶连免疫、荧光显色、核磁共振等方法定量测定化合物与靶点的相互作用,从而成为筛选化合物的依据。

细胞水平的药物筛选是更接近生理条件的一种药物筛选模型,其模型是拟设计药物作用的靶细胞,应用细胞培养技术获取所需细胞,将这些细胞与候选化合物相互作用,通过与生化水平筛选类似的检测技术测定化合物的作用能力,从而对化合物进行筛选。

生化水平的药物筛选操作相对简单,成本较低,但是由于药物在体内的作用并不仅仅取决于其与靶酶的作用程度,吸收、分布、代谢、排泄均会对药物的作用产生极大的影响,仅仅一道薄薄的细胞膜就能够阻挡住许多候选化合物成为药物的道路,因而生化水平的药物筛选不确定因素更多,误筛率更高。细胞水平的药物筛选模型更接近生理条件,筛选的准确率更高,但是需要建立细胞模型,操作更复杂,成本更高,数据之间的平行形较差,另外由于技术的限制,有些靶标还不能进行细胞水平的药物筛选。

[编辑]高通量筛选

高通量筛选最初是伴随组合化学而产生的一种药物筛选方式。1990年代末,组合化学的出现改变了人类获取新化合物的方式,人们可以通过较少的步骤在短时间内同时合成大量化合物,在这样的背景下高通量筛选的技术应运而生。高通量筛选技术可以在短时间内对大量候选化合物完成筛选,经过近十年的发展,已经成为比较成熟的技术,不仅仅应用于对组合化学库的化合物筛选,还更多地应用于对现有化合物库的筛选。目前世界各大药物生产商都建立有自己的化合物库和高通量筛选机构,对有潜力形成药物的化合物进行篦梳式的筛选。

一个高通量药物筛选体系包括微量和半微量的药理实验模型、样品库管理系统、自动化的实验操作系统、高灵敏度检测系统以及数据采集和处理系统,这些系统的运行保证了筛选体系能够并行操作搜索大量候选化合物。高通量筛选技术结合了分子生物学、医学、药学、计算科学以及自动化技术等学科的知识和先进技术,成为当今药物开发的主要方式。完整的高通量筛选体系由于高度的整合和自动化,因而又被称作“药物筛选机器人系统”

[编辑]虚拟药物筛选

虚拟药物筛选是药物筛选技术发展的另一个方向,由于实体的药物筛选需要构建大规模的化合物库,提取或培养大量实验必须的靶酶或者靶细胞,并且需要复杂的设备支

持,因而进行实体的药物筛选要投入巨额的资金,虚拟药物筛选是将药物筛选的过程在计算机上模拟,对化合物可能的活性作出预测,进而对比较有可能成为药物的化合物进行有针对性的实体体筛选,从而可以极大地减少药物开发成本。

根据计算原理,虚拟药物筛选分为基于小分子结构的筛选和基于药物作用机理的筛选两类,前者通过对已知具有相同作用机理的化合物进行定量构效关系研究,绘制出药物的药效团模型,依照模型对化合物数据库进行搜索,这种筛选技术本质上是一种数据库搜索技术;后者主要应用分子对接技术,实施这种筛选需要获知药物作用靶标的分子结构,通过分子模拟手段计算化合物库中的小分子与靶标结合的能力,预测候选化合物的生理活性。

建立合理的药效团模型、准确测定或预测靶标蛋白质的分子结构、精确和快速地计算候选化合物与靶标相互作用的自由能变化是进行虚拟药物筛选的关键,也是限制虚拟筛选准确性的瓶颈。虽然虚拟筛选的准确性有待提高,但是其快速廉价的特点使之成为发展最为迅速的药物筛选技术之一。

药物筛选首先要有合适的筛选模型。药物筛选模型是用于证明某种物质具有药理活性(生物活性、治疗作用) 的实验方法,这些实验方法是寻找和发现药物的重要条件之一。人们在长期寻找药物的实践过程中,建立了大量用于新药筛选的各类模型,在新药发现和研究中发挥了积极作用。药物筛选模型研究经历了三个不同的发展阶段:整体动物模型、组织器官水平的筛选模型和细胞、分子水平药物筛选模型,每一种模型都源于一种新技术的诞生。这些模型各有利弊,要根据具体的试验选择合适的模型。

(一)整体动物模型

整体动物模型就是以动物作为药物筛选的观察对象,以动物对药物的反应,证明某些物质的药理作用,评价其药用价值。由于正常动物并不能充分反应药物在病理条件下的治疗作用,在药物筛选中应用更多的是动物病理模型。理想的动物模型应具备的基本条件是病理机制与人类疾病的相似性、病理表现的稳定性和药物作用的可观察性。

整体动物筛选模型的最大优点是可以从动物身上直观地反应出药物的治疗效果、不良反应以及毒副作用。由动物模型获得的筛选结果,对预测被筛选样品的临床效果、毒副作用和应用前景具有十分重要的价值。

整体动物筛选法的缺点:由于动物的特殊性,决定了药物筛选过程主要依赖于手工操作,而且只能对有限的样品进行筛选,使动物模型筛选新药具有明显的局限性,效率低、成本高。

(二)组织器官水平的筛选模型

随着现代医学和现代药理学的发展,采用动物的组织、器官制备的药物筛选模型越来越多,如离体血管实验,心脏灌流实验、组织培养实验等方法。通过观察药物对特定组织或器官的作用,可以分析药物作用原理和可能具有的药理作用。组织、器官水平的筛选模型可以反映生理条件下的药物作用,也可以制备成病理模型,观察药物对病理条件下组织器官的作用。应用组织器官模型筛选药物,是药物筛选技术的一大进步。

离体组织器官模型的优点:降低了筛选样品的用量;降低劳动强度,扩大筛选规模;减少动物用量,特别是有些模型仅使用一小部分组织器官(如血管条实验法) ,同一时间内可以进行多样品的筛选,提高了筛选效率,降低了筛选成本;减少了影响药物作用的因素,易于评价药物作用。

应用组织器官水平的筛选模型进行药物筛选也存在明显的缺点:规模小、效率低、反应药物作用有限、不易实现一药多筛。此外,人工操作技术要求高等也是影响其在药物筛选中应用的主要原因之一。

(三)细胞、分子水平药物筛选模型

由于近年来分子生物学技术和细胞生物学技术的快速发展,分子药理学研究也不断深入,新的药物作用靶点、功能蛋白质、基因表达的变化,生物活性成分等不断发现,为药物筛选提供了大量新的靶点,如新的有受体、酶等。这些新的靶点为新药筛选提供了新的信息和机会。细胞分子水平药物筛选模型的应用为自动化操作奠定了基础,使药物筛选由传统的手工筛选形式转变为由计算机控制的自动化大规模筛选的新技术体系,形成了高通量药物筛选。

高通量药物筛选的优点:实现了药物筛选的规模化,较大限度地利用了药用物质资源,提高了药物发现的概率,同时提高了发现新药的质量;筛选实验是在微量筛选系统中完成的,样品用量一般在微克级(μg) ,节省了样品资源,奠定了“一药多筛”的物质基础,同时节省了实验材料,降低了单药筛选成本;高通量药物筛选为高度自动化操作减少了操作误差的发生,降低了劳动强度,而且提高了药物筛选的效率和结果的准确性;具有多学科理论和技术结合的特点。

高通量药物筛选的缺点:高通量筛选所采用的主要是分子、细胞水平的体外实验模型,任何模型都不可能充分反映药物的全面药理作用;用于高通量筛选的模型总是有限的,要建立反映机体全部生理机能或药物对整个机体作用的理想模型,也是不现实的。

药物筛选模型是发现新药的重要条件。新模型的建立将会带动新型药物的出现。分子生物学、细胞生物学、计算机科学的发展,特别是人类基因组计划的完成,为医药研究带来了良好的机遇,也为建立新的药物筛选模型,提供了理论、技术、材料等多方面的优势条件。因此,我们应充分利用各学科的发展技术建立更多新的筛选模型,促进新药的发现。

08级药理学硕士研究生:秦慧迪

2008-11-28

关于药物筛选模型征集的通知

关于药物筛选模型征集的通知 依据广东省新药筛选重点实验室的要求,为药学院的药物筛选和新药发现提供保证,现计划从药学院现有药物筛选模型和相关资源中发掘和开发特色药物筛选模型。 1、药学院药理学相关课题组向广东省新药筛选重点实验室提供本领域的特色筛选模型,按照1000元/种的标准给予资助。 每种筛选模型需提供两个版本,一个详细操作的PROTOCOL版本(筛选中心在获得全部细胞和试剂后,按此规程操作,能重复实验结果),一个是挂网宣传的版本。 2、提供的筛选模型必须保证其稳定性和有效性,广东省新药筛选重点实验室全套备份筛选模型,并在网上挂出。 3、成立新药筛选模型评估委员会,负责审核课题组提交的新药筛选模型,并及时将审核结果反馈给课题组。 4、筛选平台可提供实体和虚拟两种筛选平台,虚拟筛选平台的资助标准为实体筛选平台的1/5。 5、广东省新药筛选重点实验室在未获得药物筛选模型提交课题组PI或者实验室负责人知情时,不得向任何人提供筛选平台的详细流程和相关使用材料信息。

注意: 1、本表一式两份,双面打印。一份课题组保存,一份广东省新药筛选重点实验室保存,供年终评估使用。 2、电子版发广东省新药筛选重点实验室,可添加纸双面打印。

化合物征集办法 为了响应广东省新药筛选重点实验室的要求,为药学院的药物筛选和新药发现提供保证,现计划从药学院现有合成的药物资源中征集新的小分子实体。 1、以课题组为单位向广东省新药筛选重点实验室提交小分子化合物每种10-100 mg,并提供相应完整谱图,按照100元/个(合成化合物),200元/个(天然产物)的基准向提供课题组提供资助。若与购买的商品化合物库中化合物重复,资助标准减半;若证明为全新化合物,资助标准翻倍。 2、同一化合物入库遵从先到先入原则,每个化合物入库需要跟库里已有的化合物查重。 3、采用ISIS25软件进行登记,化合物提供纯度和检测说明。 4、由广东省新药筛选重点实验室负责,审核课题组提交的小分子实体,并及时将审核结果反馈给课题组。 5、广东省新药筛选重点实验室在未获得小分子实体提交课题组PI或者实验室负责人知情时不能提供任何结构信息。 6、合乎筛选要求的化合物(国家新药筛选中心标准) 普遍要求:分子量介于175和800之间的固体有机化合物。 杂环和稠(杂)环 饱和非芳香性杂环:需带有两个或以上取代基团 桥连双环化合物:二环可全部由碳原子组成,或含有氧、硫、氮

抑制肿瘤细胞增殖的药物筛选方法

抑制肿瘤细胞增殖的药物筛选方法 09级生科3班余振洋200900140156 一、【实验原理】 1.关于恶性肿瘤和抗肿瘤药物: 恶性肿瘤是一种常见病,严重威胁着人类的生存质量,被称为人类健康的第一杀手。多年来人类一直在不断的进行抗肿瘤药物的研究,抗肿瘤药物的筛选是整个研究过程中很重要的个环节,而进行药物的筛选首先离不开合理的筛选方法和系统。寻找选择性强、对实体瘤有效的新型抗肿瘤药物,是摆在抗肿瘤药物研究人员面前的重要任务。世界各国对抗肿瘤药物的筛选都非常重视,投入了大量的人力、物力、财力,每年都有大量的化合物(合成药、天然产物和微生物发酵产物)待筛,抗肿瘤药物筛选方法的发展经历了一个探索的过程。 8O年代中期以前,普遍采用的筛选方法是以体内小鼠白血病/淋巴瘤模型P388和L1210为基础的 J,所有化合物在进一步的临床研究之前必须通过这种小鼠肿瘤模型的筛选。即小鼠白血病P388和L1210作为第一轮初筛,能通过第一轮初筛的化合物才能被允许进入第二轮筛选。这种方法有一个很明显的缺陷就是一些在临床上有活性的药物将被筛选掉,无法保证所有具有抗肿瘤作用的药物都能通过筛选。鉴于以前的筛选方法存在较大的缺陷,1985年之后以NCI为首的一些研究单位普遍开始采用针对疾病的筛选方法来代替针对化合物的筛选方法,即放弃体内小鼠筛选,代之为体外代表各种常见实体瘤的人类肿瘤细胞株筛选。这种筛选系统是一种高通量的抗肿瘤筛选体系,其主要优势有两点:其一是多种细胞株初筛有可能筛选出对特殊的人类肿瘤或对特殊组织亚型有活性的物质;其二是这种体外筛选尤其适合于复杂天然产物提取物中有效成份的证实,过去动物筛选需较大量的天然产物,而现在天然产物的需要量就大大减少,可以指导有效成份的进一步分离纯化,使得从天然产物中发现新的抗肿瘤药物更加便利。 2.关于筛选方法: 下面为现阶段较为普遍采用的一些抗肿瘤药物的筛选方法的实验原理。 1)以端粒酶活性为作用靶点筛选抗肿瘤药物 端粒是染色体特殊结构,起着保护染色体的完整和稳定性的作用,端粒酶是一种核糖核蛋白返转录酶,由RNA和蛋白质组成,可以以自身的RNA为模板合成端粒末端。已发现在正常的体细胞和良性肿瘤组织中端粒酶活性是阴性,而在人体恶性肿瘤组织和人的肿瘤细胞株中都表达了很高的活性。因此,认为端粒酶与恶性肿瘤的发生发展有密切的关系,有可能成为肿瘤治疗的靶点。 2)应用快速荧光素测定法筛选抗肿瘤药物 快速荧光素测定法是一种近几年发展起来的应用非常广泛的体外药物敏感性测定方法,其原理为采用一些特殊的荧光染料,对细胞的特定成份进行染色或标记。或通过细胞酶的作用使无荧光性的材料分解或转换为荧光材料,通过测定荧光强度从而测定出活细胞的量。现在普遍采用一种特殊的荧光染 FDAL1u(Fluoreseein diacetate),在正常情况下它不具有荧光,但当它加人到具有完整细胞膜的肿瘤细胞的营养液中时,由于细胞分泌的水解酶的作用,FDA

抗癌药物的研究和发展

抗癌药物的研究与发展 陆志红罗伯特·巴.·戴安修 美国伯明翰阿拉巴马大学药理与毒理学系、临床药理学部癌症是当今世界上大多数国家的主要死因之一。尽管到目前为止已有数十种化疗或辅助抗癌药物可以用于临床治疗,但大多数药物只能使病情缓解,无法达到治愈的目的。虽然一些儿童的癌症或成人皮肤肿瘤有治愈或长期缓解的可能,但大多数死亡率很高而又很常见的癌症如胃癌、食道癌、肺癌等仍缺乏有效的抗癌药物。近年来,各国都在抗癌药物的研究与发展上投入了大量的人力、物力,希望在不久的将来能有所突破。本章就抗癌药物的研究与发展的分子生物学基础、药物的筛选与评价以及非临床研究和临床试验的特点作一综述,以帮助读者对这一领域的进展有所了解。 第一节抗癌药物研究的分子生物学基础 抗癌药物研究的依据是人们对癌症生物学的理解。早期人们对于癌症的了解限于细胞水平,所以大多数药物的发展着眼于细胞分裂分化和免疫等环节。近年来,肿瘤生物学的进展非常迅速,人们对癌症的了解深入到了分子水平,比如癌基因的发现,细胞凋亡学说的形成,肿瘤抑制基因的发现等为抗癌药物的研究与发展提供了新的分子生物学基础。以下简述这些方面的研究进展。 一、细胞分裂 自50年代,人们认为肿瘤细胞比正常细胞分裂快,并应用这一概念发展了一系列的抗癌药物用于干扰或阻止细胞的分裂。主要包括破坏细胞脱氧核糖核酸(DNA)以及蛋白

质代谢的药物。比如烷化剂(Alkylating Agents),DNA拓扑异构酶抑制剂(Topoisomerase Inhibitors)以及抗生素类(Antibiotics)。通过对细胞周期的仔细研究,现在我们知道肿瘤细胞并不比正常细胞分裂得快,只是在任何时间都有较高比例的肿瘤细胞处于分裂期。 二、细胞增殖周期调控中国医药资讯网https://www.360docs.net/doc/c19064038.html, 因为肿瘤细胞失去了正常细胞的控制机制,在癌组织中的细胞更倾向处于细胞分裂期。根据这一理论,许多抗癌药物作用于处于分裂期的细胞。如抑制DNA合成的抗代谢药物(Antimetabolites)和抑制微小管有丝分裂形成的微小管蛋白结合剂(Tubulin—Binding Atents)就是根据此概念发展而来的。 三、肿瘤抗原 研究表明某些癌症组织在免疫学上不同于正常细胞,癌症细胞在一定程度上是“异物”,或者是去分化的细胞,且可能存在特异的肿瘤抗原,这一发现是肿瘤免疫治疗的基础。根据这一概念,人们试图用各种特异及非特异的方法,提高人体对肿瘤的免疫功能。比如用细胞毒性免疫细胞、单克隆抗体、细胞因子(Cytokins)以及核受体结合剂(VitaminD3 、Retinoids)等治疗癌症。 四、癌基因及其活化 80年代以来的研究发现,在某些肿瘤细胞中,一些癌基因被激活。若能抑制癌基因的激活,应可治疗癌症。例如研究发现ras癌基因蛋白的激活需要farnesyl蛋白转移酶的存在,因此farnesyl蛋白转移酶抑制剂被发展成为抗癌药物。另外,许多人类肿瘤,如膀

药物筛选细胞模型的种类

药物筛选细胞模型的种类 目前用于药物筛选的细胞模型可分为三大类:基于靶点的细胞模型、基于表型的细胞模型和抗病毒药物筛选的细胞模型等。 1. 基于靶点的细胞模型建立基于靶点的细胞模型,要明确药物可能作用的靶点,进而建立靶点过表达的细胞,筛选对靶点有明确作用的药物。基于靶点的细胞模型是目前用于药物筛选的细胞模型的主要类型,可以分为四类。 (1)以受体为靶点的细胞模型:如以维甲酸受体为靶点的药物筛选细胞模型。 (2)以通道为靶点的细胞模型:如囊性纤维化相关的氯离子通道CFTR激活剂/抑制剂筛选细胞模型。 (3)以信号通路为靶点的细胞模型:如NF2κB信号通路的抗阿尔茨海默病药物筛选细胞模型。 (4)以报告基因和其他类型联用为靶点的细胞模型:事实上前三种药物筛选细胞模型通常是和报告基因联用来建立的,这样能够比较快速直观地观察到药物作用后细胞的变化。目前常用的报告基因有绿色荧光蛋白(GFP)和分泌型碱性磷酸酶(SEAP)等。 由人胎盘基因编码的分泌型碱性磷酸酶,能分泌至细胞外,无须裂解细胞就能进行检测,有较强的耐热性,通过热处理就可以排除细胞内源性碱性磷酸酶的干扰。在用碱性磷酸酶做报告基因时,通常是将其与要检测的靶点通过基因重组构建共表达的载体,然后稳定转染到细胞内,在筛选药物时,通过检测SEAP,就可以达到检测药物靶点检测水平的目的。 绿色荧光蛋白的发现,特别是在其基础上通过改造形成的,如黄色荧光蛋白(YFP)、增强型绿色荧光蛋白(EGFP)及其他突变体的产生,极大促进了药物筛选细胞模型的发展。绿色荧光蛋白是一类对离子变化敏感的荧光蛋白分子。将绿色荧光蛋白与目的药靶稳定共转染于细胞模型中,药物作用于药靶后,会引起细胞内环境的变化,从而使荧光强度发生改变。通过荧光测定装置来捕捉用药前后的荧光强度变化,可以快速直观地观察到药物与药靶的作用情况。 2.基于表型的细胞模型基于表型的药物筛选模型通过筛选那些能造成细胞产生期望的生理变化的化合物,将有助于新蛋白、新靶点的发现。如目前在2 型糖尿病药物筛选中应用较多的有胰岛素抵抗细胞模型和葡萄糖消耗运转细胞模型、用于抗 I 型超敏反应药物筛选的肥大细胞模型等。

抗菌药物筛选的实验方法与技术

抗菌药物筛选的实验方法与技术 博哥 (中山大学化学与化学工程学院,广州510275) 摘要为了筛选出活性更好的抗菌药物,本实验采用微量稀释法通过体外实验对44种化合物进行了筛选,测定其对大肠杆菌和金黄色葡萄球菌的最小抑菌浓度或IC50来评定药物活性。结果显示,样品1(环丙沙星)对二者有杀菌作用,最小抗菌浓度都为1.56 μmol·L-1。样品30仅对大肠杆菌有杀菌作用,最小抗菌浓度为1.56 μmol·L-1。样品17、19、20、24、26、28,表现出对大肠杆菌较好的抑制作用,其中抑制活性最好的为样品28(2,5-二羟基苯甲基-N-4-羟基苯基亚胺),IC50值为1.72 μmol·L-1。样品31、42表现出对金黄色葡萄球菌较好的抑制活性,IC50值分别为11.04 μmol·L-1和24.44 μmol·L-1。 关键词抗菌药物筛选体外实验微量稀释法 1 引言 一个新的化合物或分离提取的有效成分是否有抗菌作用,需要药理实验来证实。一般采用体外实验方法,观察试验物对细菌有无杀灭作用或抑制作用。药物对细菌代谢的影响、可以使 细胞呼吸量减低,或酶系统受到抑制等,因而出现细菌不生长或部分抑制,可借以判断药物对 细菌有无抗菌作用,或抗菌范围。因此,体外实验是筛选抗菌药物或测试新药抗菌性能的重要 环节。体外实验的重要性在于方法简便,用药量少,短时间内能判断药物抗菌的广度和强度, 为深入体外实验和体内药效研究提供数据。但是,体外实验是细菌与药物直接接触,没有机体 诸因素参与,故体外和体内实验的结果不一定完全一致,需两方面综合分析进行评价。 本实验进行微生物培养基的配置、灭菌与接种等操作,以熟悉细菌培养的过程,并采用微量稀释法通过体外实验对44种化合物进行了筛选,测定其对大肠杆菌和金黄色葡萄球菌的最 小抑菌浓度或IC50来评定药物活性。 2实验部分 2.1药品 牛肉膏、蛋白胨、NaCl、胰蛋白胨、琼脂、1mol/L NaOH、1mol/L HCl溶液、DMSO以44种化合物(见表1)。

抗肿瘤药物体内筛选试验标准操作规程(SOP)

抗肿瘤药物体内筛选标准操作规程概述: 抗肿瘤药物是指能够直接杀伤或抑制肿瘤细胞生长或增殖的一类药物,作用机制包括抑制肿瘤细胞核酸或蛋白质的合成、干扰大分子物质代谢、干扰微管系统、抑制拓扑异构酶等。 本操作规程包括与抗肿瘤药物申请临床试验和申请上市有关的非临床有效性和安全性研究的内容,其中着力强调非临床有效性和安全性之间的关联性,以及非临床研究和临床试验之间的关联性。旨在一方面为抗肿瘤药物的非临床研究提供技术参考;另一方面,通过技术要求引导科学有序的研发过程,使国内此类药物的研发更趋规范和合理。 本操作规程仅代表目前对抗肿瘤药物非临床研究的一般性认识。具体药物的非临床研究应在本指导原则的基础上,根据药物的自身特点制订研究方案。 研究目的: 建立一套包括抗肿瘤药物体内作用的药效学研究和评价体系及相应的标准操作规程以 及抗肿瘤药物安全性和作用新机制的研究。 ①有效性研究 抗肿瘤药物有效性研究的目的主要在于探索受试物的作用机制、作用强度、抗瘤谱等,为之后的安全性评价以及临床试验中适应症、给药方案的选择提参考信息。 ②安全性评价 安全性评价的目的主要包括:(1)估算 I 期临床试验的起始剂量;(2)预测药物的毒性靶器官或靶组织;(3)预测药物毒性的性质、程度和可逆性;(4)为临床试验方案的制订提供参考。 研究计划: (a)小鼠急性毒性测试

按照急性毒性测试的常规方法,选用昆明种小鼠,通过腹腔注射方式给药,测定体外抗肿瘤活性突出的化合物的半数致死量(LD50),参考给药小鼠体重变化情况,评价化合物的急性毒性,并确定小鼠体内抗肿瘤活性测试的给药剂量。 (b)小鼠体内抗肿瘤活性测试 根据动物体内抗肿瘤活性测试的标准方法,选用昆明种小鼠,皮下接种肉瘤S180或肺癌H22瘤株,选择体外活性突出且急性毒性较低的化合物,设定合适的剂量通过腹腔注射方式给药,以临床常用抗肿瘤药物环磷酰胺作为阳性对照药物,测定肿瘤生长抑制作为体内活性评价指标。 (c)专利保护范围内的化合物的继续合成 申请保护范围较大的专利,合成部分可能具有良好活性的新的化合物,拓展研究范围,发现活性更强的化合物,并申请新的发明专利。并可针对具体化合物申请从属专利,延长高活性化合物的保护期限。 (d)体外抗肿瘤活性的广泛筛选 采用MTT法或台盼蓝染色法,测定化合物对多种人肿瘤细胞株的增殖抑制活性,确定化合物在不同瘤株间抗肿瘤活性的选择性,为裸鼠模型实验提供依据。 (e)抗肿瘤作用机理的深入研究 根据抗肿瘤(f)人癌裸鼠移植瘤模型实验活性化合物作用机理特征,选用微管蛋白聚合等实验从分子水平确认化合物的作用机理;利用人脐静脉血管内皮细胞探讨化合物对内皮细胞骨架的影响及诱导凋亡的途经,从细胞水平上阐明化合物的作用机理。 根据抗肿瘤新药审批办法的要求,采用裸小鼠皮下接种模型和/或原位移植瘤模型,以相对肿瘤增值率和生存时间为指标,确定化合物的抗肿瘤活性。 (g)动物体内药物代谢动力学实验

抗肿瘤药物体内筛选试验标准操作规程(SOP)

抗肿瘤药物体内筛选标准操作规程 概述: 抗肿瘤药物是指能够直接杀伤或抑制肿瘤细胞生长或增殖的一类药物,作用机制包括抑 制肿瘤细胞核酸或蛋白质的合成、干扰大分子物质代谢、干扰微管系统、抑制拓扑异构酶等。 本操作规程包括与抗肿瘤药物申请临床试验和申请上市有关的非临床有效性和安全性 研究的内容,其中着力强调非临床有效性和安全性之间的关联性,以及非临床研究和临床试 验之间的关联性。旨在一方面为抗肿瘤药物的非临床研究提供技术参考;另一方面,通过技术要求引导科学有序的研发过程,使国内此类药物的研发更趋规范和合理。 本操作规程仅代表目前对抗肿瘤药物非临床研究的一般性认识。具体药物的非临床研究 应在本指导原则的基础上,根据药物的自身特点制订研究方案。 研究目的: 建立一套包括抗肿瘤药物体内作用的药效学研究和评价体系及相应的标准操作规程以 及抗肿瘤药物安全性和作用新机制的研究。 ①有效性研究 抗肿瘤药物有效性研究的目的主要在于探索受试物的作用机制、作用强度、抗瘤谱等, 为之后的安全性评价以及临床试验中适应症、给药方案的选择提参考信息。 ②安全性评价 安全性评价的目的主要包括:(1)估算I期临床试验的起始剂量;(2)预测药物的毒性靶器官或靶组织;(3)预测药物毒性的性质、程度和可逆性;(4)为临床试验方案的 制订提供参考。 研究计划: (a)小鼠急性毒性测试 按照急性毒性测试的常规方法,选用昆明种小鼠,通过腹腔注射方式给药,测定体

外抗肿瘤活性突出的化合物的半数致死量(LD5o),参考给药小鼠体重变化情况,评价化合物的急性毒性,并确定小鼠体内抗肿瘤活性测试的给药剂量。 (b)小鼠体内抗肿瘤活性测试 根据动物体内抗肿瘤活性测试的标准方法,选用昆明种小鼠,皮下接种肉瘤 S180或肺癌H22瘤株,选择体外活性突出且急性毒性较低的化合物,设定合适的剂量通过腹腔注射方式给药,以临床常用抗肿瘤药物环磷酰胺作为阳性对照药物,测定肿瘤生长抑制作为体内活性评价指标。 (c)专利保护范围内的化合物的继续合成 申请保护范围较大的专利,合成部分可能具有良好活性的新的化合物,拓展研究范围, 发现活性更强的化合物,并申请新的发明专利。并可针对具体化合物申请从属专利,延长高活性化合物的保护期限。 采用MTT法或台盼蓝染色法,测定化合物对多种人肿瘤细胞株的增殖抑制活性,确 定化合物在不同瘤株间抗肿瘤活性的选择性,为裸鼠模型实验提供依据。 (e)抗肿瘤作用机理的深入研究 根据抗肿瘤(f)人癌裸鼠移植瘤模型实验活性化合物作用机理特征,选用微管蛋白 聚合等实验从分子水平确认化合物的作用机理;利用人脐静脉血管内皮细胞探讨化合物对内 皮细胞骨架的影响及诱导凋亡的途经,从细胞水平上阐明化合物的作用机理。 根据抗肿瘤新药审批办法的要求,采用裸小鼠皮下接种模型和/或原位移植瘤模型, 以相对肿瘤增值率和生存时间为指标,确定化合物的抗肿瘤活性。 (g )动物体内药物代谢动力学实验 选择在人癌裸鼠移植瘤模型实验中活性良好的化合物,开展动物体内药物代谢动力学实验,考查化合物的吸收、分布、代谢、排泄性质。 (h)动物亚急性,长毒实验 根据抗肿瘤新药审批办法的要求,测定动物亚急性、长毒性质,进行药物安全性评价。 基本方法: ①小白鼠的灌胃法

菌种的分离与筛选

一、微生物工业对菌种的要求 (一)、微生物工业的生产水平由三个要素决定:生产菌种的性能、发酵及提纯工艺条件、生 产设备。其中生产菌种的性能是最重要的因素。 (二)、微生物工业对菌种的要求是: (1)菌株高产,在较短的时间内发酵产生大量发酵产物的能力; (2)在发酵过程中不产生或少产生与目标产品相近的副产品及其他产物; (3)生长繁殖能力强,较强的生长速率,产孢子的菌种应该具有较强的产孢子能力; (4)能够高效地将原理转化为产品; (5)能利用广泛的原材料,并对发酵原料成分的波动敏感性小; (6)对需要添加的前体物质有耐受能力,并且不能将这些前体物质作为一般碳源利用; (7)在发酵过程中产生的泡沫要少; (8)具有抗噬菌体的能力; (9)遗传稳定性, 二、工业用微生物菌种的来源及选育 (一)微生物菌种的来源 一般通过以下几个途径收集菌种、采集样品和分离筛选: (1)是根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买; (2)从大自然中采集样品分离; (3)从一些发酵制品中分离筛选目的菌株。 当前发酵工业所用菌种总趋势是从野生菌转向变异菌,自然选用转向代谢育种,从诱发基因突变转向基因重组的定向育种。 (二)微生物工业菌种的分离 1、野生菌株的分离、筛选过程 (1)新菌种分离与筛选的步骤 菌种分离的流程如下: 标本采集→标本材料的预处理→富集培养→菌种初筛→ 菌种复筛→性能鉴定→ 菌种保藏①采样 采样季节:以温度适中,雨量不多的秋初为好。 采土方式:在选好适当地点后,用小铲子除去表土,取离地面5-15cm处的土约10g,盛入清洁的牛皮纸袋或塑料袋中,扎好,标记,记录采样时间、地点、环境条件等,以备查考。 为了使土样中微生物的数量和类型尽少变化,宜将样品逐步分批寄回,以便及时分离。 ②标本预处理 ④纯种分离:采用划线分离法、稀释分离法等纯化方法获取单菌落。 ⑤高产菌株的筛选:这一步是采用与生产相近的培养基和培养条件,通过三角瓶的容量进行 小型发酵试验,获得适合于工业生产用菌种。还要对菌种进行发酵性能测定, ⑥毒性试验:据有的国家规定,微生物中除啤酒酵母、脆壁酵母、黑曲霉、米曲霉和枯草杆 菌作为食用无须作毒性试验外,其他微生物作为食用,均需通过两年以上的毒性试验。 2、菌种的分离方法 (1)施加选择性压力分离法 主要是利用不同种类的微生物其生长繁殖对环境和营养的要求不同,如温度、pH、渗透压、氧气、碳源、氮源等,人为控制这些条件,使之利于某类或某种微生物生长,而不利于其他 种类微生物的生存,以达到使目的菌种占优势.而得以快速分离纯化的目的。如可以控制培

高通量药物筛选模型031121

高通量药物筛选模型* 姚佳杨建波杨洁* (南京大学生命科学院生物化学系,医药生物技术国家实验室,南京210093) 摘要:本文介绍了可用于药物筛选的三种新的快速高通量筛选方法,包括基于反酵母双杂交的筛选系统;细胞平台伤的高通量筛选系统以及动物水平的筛选系统。并对其应用原理,应用情况和有缺点进行了阐述。 关键词:高通量筛选(HTS),酵母双杂交,靶点,受体 Abstract: This article mainly deals with three new dominant plat forms of HTS(High-Throughput Screen) which are fairly useful in drug screen——the reverse yeast two hybrid system, the cell-based screen and the animal platform, including their principles, their appliance and their advantages together with disadvantages. Key Words: High-Throughput Screen, yeast two-hybrid system, target, receptor 学科分类号:Q7 药物筛选模型研究经历了三个不同的发展阶段:最初意义上的筛选方法、分子生物学筛选方法和高通量筛选方法,而每一个阶段都源于一种新技术的诞生。最初的药物筛选是直接利用动物组织或天然产物进行的,并不涉及到疾病发生的分子机制。在这样粗略的筛选系统中只有有限的样品得到筛选,而且大多数样品只是基于疾病表征而非靶点的筛选。因此,药物的发现会带有偶然性。1980年以来,随着有机化学和分子生物学的发展,更加系统化的筛选方法应用到药物研究与开发中。一方面,有机化学的飞速发展为筛选提供了庞大的人工合成小分子库;另一方面,分子生物学为筛选提供了靶蛋白。通过比较正常人群与疾病患者间在机体组织细胞分子上的差异以及阐明模型组织中相应蛋白质的功能,从而正确地选择、描述并确认某些靶蛋白,有助于更加理性地进行药物筛选,不足的是上述过程往往费时耗财。而基因组学的发展对这个问题提供了很好的解决方法,基因组学能够更加有效地验证潜在的靶蛋白,并通过功能基因组研究能够快速有效地确认与特定疾病有关的靶蛋白[ 1 ]。 *本课题为国家自然科学基金资助项目(项目编号30171094和30271497)。联系人:杨洁,南京大学生命科学学院,医药生物技术国家重点实验室,南京210093,中国;电话:86-25-3594060,传真:86-25-3324605;Email:luckyjyj@https://www.360docs.net/doc/c19064038.html,。

国家新药筛选中心模型

国家新药筛选中心筛选模型 模型编号模型名称筛选目的化合物需要量送样备注筛选周期 是否接收 免费初筛 抗肿瘤药物筛选 C003白血病细胞株(HL-60)白血病 2 mg;混合物 15 mg初筛细胞株2个月否C004白血病细胞株(K-562)白血病 2 mg;混合物 15 mg至少10个样品2个月否C084白血病细胞株(Molt-4)白血病 2 mg;混合物 15 mg初筛细胞株2个月否C005白血病细胞株(Raji)白血病 2 mg;混合物 15 mg至少10个样品2个月否C002白血病细胞株(U-937)白血病 2 mg;混合物 15 mg至少10个样品2个月否C020大肠癌细胞株(HCT-116)大肠癌 2 mg;混合物 15 mg至少10个样品2个月否C026大肠癌细胞株(HCT-15)大肠癌 2 mg;混合物 15 mg至少10个样品2个月否C023大肠癌细胞株(HT-29)大肠癌 2 mg;混合物 15 mg至少10个样品2个月否C022大肠癌细胞株(LoVo)大肠癌 2 mg;混合物 15 mg至少10个样品2个月否C021大肠癌细胞株(SW-1116)大肠癌 2 mg;混合物 15 mg至少10个样品2个月否C025大肠癌细胞株(WiDr)大肠癌 2 mg;混合物 15 mg至少10个样品2个月否C006肺癌细胞株(A-549)肺癌 2 mg;混合物 15 mg初筛细胞株2个月否C096肺癌细胞株(NCI-H187)肺癌 2 mg;混合物 15 mg至少10个样品2个月否C010肺癌细胞株(NCI-H23)肺癌 2 mg;混合物 15 mg至少10个样品2个月否C030肝癌细胞株(BEL-7402)肝癌 2 mg;混合物 15 mg初筛细胞株2个月否C027肝癌细胞株(BEL-7404)肝癌 2 mg;混合物 15 mg至少10个样品2个月否C097肝癌细胞株(Hep3B)肝癌 2 mg;混合物 15 mg至少10个样品2个月否C028肝癌细胞株(HepG2)肝癌 2 mg;混合物 15 mg至少10个样品2个月否C029肝癌细胞株(SMMC-7721)肝癌 2 mg;混合物 15 mg至少10个样品2个月否C041宫颈癌细胞株(HELA)宫颈癌 2 mg;混合物 15 mg至少10个样品2个月否C042鳞癌细胞株(A-431)鳞癌 2 mg;混合物 15 mg至少10个样品2个月否C039鳞癌细胞株(KB)鳞癌 2 mg;混合物 15 mg至少10个样品2个月否C035卵巢癌细胞株(3AO)卵巢癌 2 mg;混合物 15 mg至少10个样品2个月否C034卵巢癌细胞株(AO)卵巢癌 2 mg;混合物 15 mg至少10个样品2个月否C033卵巢癌细胞株(HO-8910)卵巢癌 2 mg;混合物 15 mg至少10个样品2个月否C088卵巢癌细胞株(OVCAR-3)卵巢癌 2 mg;混合物 15 mg至少10个样品2个月否C098卵巢癌细胞株(SK-OV-3)卵巢癌 2 mg;混合物 15 mg至少10个样品2个月否 C053内皮细胞增殖试验:采用人皮肤微 血管内皮细胞(HMEC) 血管生成抑制 2 mg;混合物 15 mg至少10个样品2个月否 C092人前列腺癌(PC-3)前列腺癌 2 mg;混合物 15 mg至少10个样品2个月否C044乳腺癌细胞株(MCF-7)乳腺癌 2 mg;混合物 15 mg至少10个样品2个月否C073乳腺癌细胞株(MDA-MB-231)乳腺癌 2 mg;混合物 15 mg至少10个样品2个月否C089乳腺癌细胞株(MDA-MB-435)乳腺癌 2 mg;混合物 15 mg至少10个样品2个月否C074乳腺癌细胞株(MDA-MB-468)乳腺癌 2 mg;混合物 15 mg至少10个样品2个月否C090乳腺癌细胞株(SK-BR-3)乳腺癌 2 mg;混合物 15 mg至少10个样品2个月否C085胃癌细胞株(AGS)胃癌 2 mg;混合物 15 mg至少10个样品2个月否C016胃癌细胞株(MKN-1)胃癌 2 mg;混合物 15 mg至少10个样品2个月否C014胃癌细胞株(MKN-28)胃癌 2 mg;混合物 15 mg至少10个样品2个月否C017胃癌细胞株(MKN-45)胃癌 2 mg;混合物 15 mg至少10个样品2个月否C015胃癌细胞株(SGC-7901)胃癌 2 mg;混合物 15 mg至少10个样品2个月否 C108酪氨酸激酶活性测定(c-Kit)酪氨酸激酶 2 mg;混合物 15 mg 至少10个样品, 需咨询 1个月否 C109酪氨酸激酶活性测定(c-Src)酪氨酸激酶 2 mg;混合物 15 mg 至少10个样品, 需咨询 1个月否 C051酪氨酸激酶活性测定(表皮生长因 子受体EGFR) 酪氨酸激酶 2 mg;混合物 15 mg 至少10个样品, 需咨询 1个月否

抗菌药物筛选的实验方法与技术

抗菌药物筛选的实验方法与技术 一、实验原理 体外实验是筛选抗菌药物或测试新药抗菌性能的重要环节。药物对细菌代谢的影响、可以使细胞呼吸量减低,或酶系统受到抑制等,因而出现细菌不生长或部分抑制,可借以判断药物对细菌有无抗菌作用,或抗菌范围。 培养基是指利用人工方法将适合微生物生长繁殖成积累代谢产物的各种营养物质混合配制而成的营养基质。主要用于微生物的分离、培养、鉴定以及菌种保藏等方面。培养基一般应含有微生物生长繁殖所需要的碳源、氮源、能源、无机盐、生长因子和水等营养成分。此外,为了满有微生物生长繁殖或积累代谢产物的要求,还必须控制培养基的pH。 按培养基的物理状态,可将培养基分为固体培养基、半固体培养基和液体培养基。固体培养基是指在液体培养基中加入一定量的凝固剂(常加1.5%-2%的琼脂)经融化冷凝而成。半固体培养这是指在液体培养基中加入0.8%-1%左右的琼脂,经融化冷凝而成。液体培养基是指培养基中不加凝固剂琼脂,培养基呈液体状态。 正确掌握培养基的配制方法是从事微生物学实验工作的重要基础。由于微生物种类及代谢类型的多样性,因而用于培养微生物培养基的种类也很多,它们的配方及配制方法虽各有差异。但一般培养基的配制程序却大致相同,例如器皿的准备,培养基的配制与分装,棉塞的制作,培养基的灭菌,斜面与平板的制作以及接菌等基本环节大致相同。 微量稀释法常用于测定细菌对药物敏感性或新药对细菌的抗菌活性试验。一般应用96孔微量稀释板,孔底呈U型,每孔容量为0.20-0.30ml。本法操作较便,用培养基量少,可作大批量药敏试验。 二、材料与方法 1,药品 牛肉膏、蛋白胨、NaCl、胰蛋白胨、琼脂等。1mol/L NaOH、1mol/L HCl溶液。 2,材料与仪器 天平、高压蒸汽灭菌锅、生化培养箱、超净工作台、酒精灯、移液器、试管、烧杯、量筒、锥形瓶、培养皿、玻璃漏斗、药匙、称量纸、pH试纸、记号笔、棉花、纱布、线绳、塑料试管、报纸、96孔板等。 3,实验方法

药物筛选

药物筛选 药物筛选是现代药物开发流程中检验和获取具有特定生理活性化合物的一个步骤,系指通过规范化的实验手段从大量化合物或者新化合物中选择对某一特定作用靶点具有较高活性的化合物的过程。药物筛选的过程从本质上讲就是对化合物进行药理活性实验的过程,随着药物开发技术的发展,对新化合物的生理活性实验从早期的验证性实验,逐渐转变为筛选性实验,即所谓的药物筛选。作为筛选,需要对不同化合物的生理活性做横向比较,因此药物筛选的实验方案需具有标准化和定量化的特点。随着组合化学和计算化学的发展,人们开始有能力在短时间内大规模合成和分离多种化合物,因而在现代新药开发流程中药物筛选逐渐成为发现先导化合物的主要途径之一。 筛选模型: 筛选模型就是在药物筛选实验中所应用的药理实验模型,由于药物筛选要求实验方案有标准化和定量化的特征,因而在传统药理实验中常见的动物实验在药物筛选中较少应用,根据实验模型的不同,药物筛选可以分为生化水平的筛选和细胞水平的筛选。 生化水平的药物筛选用拟开发药物作用的靶点设计实验,一般而言这种作用靶点是具有特定生理功能的蛋白质,如酶和受体等,此外一些编码功能明确的DNA也越来越多地成为药物作用的靶点。候选化合物与靶点混合后,可以通过酶连免疫、荧光显色、核磁共振等方法定量测定化合物与靶点的相互作用,从而成为筛选化合物的依据。 细胞水平的药物筛选是更接近生理条件的一种药物筛选模型,其模型是拟设计药物作用的靶细胞,应用细胞培养技术获取所需细胞,将这些细胞与候选化合物相互作用,通过与生化水平筛选类似的检测技术测定化合物的作用能力,从而对化合物进行筛选。 生化水平的药物筛选操作相对简单,成本较低,但是由于药物在体内的作用并不仅仅取决于其与靶酶的作用程度,吸收、分布、代谢、排泄均会对药物的作用产生极大的影响,仅仅一道薄薄的细胞膜就能够阻挡住许多候选化合物成为药物的道路,因而生化水平的药物筛选不确定因素更多,误筛率更高。细胞水平的药物筛选模型更接近生理条件,筛选的准确率更高,但是需要建立细胞模型,操作更复杂,成本更高,数据之间的平行形较差,另外由于技术的限制,有些靶标还不能进行细胞水平的药物筛选。 高通量筛选 高通量筛选最初是伴随组合化学而产生的一种药物筛选方式。1990年代末,组合化学的出现改变了人类获取新化合物的方式,人们可以通过较少的步骤在短时间内同时合成大量化合物,在这样的背景下高通量筛选的技术应运而生。高通量筛选技术可以在短时间内对大量候选化合物完成筛选,经过近十年的发展,已经成为比较成熟的技术,不仅仅应用于对组合化学库的化合物筛选,还更多地应用于对现有化合物库的筛选。目前世界各大药物生产商都建立有自己的化合物库和高通量筛选机构,对有潜力形成药物的化合物进行篦梳式的筛选。 一个高通量药物筛选体系包括微量和半微量的药理实验模型、样品库管理系统、自动化的实验操作系统、高灵敏度检测系统以及数据采集和处理系统,这些系统的运行保证了筛选体系能够并行操作搜索大量候选化合物。高通量筛选技术结合了分子生物学、医学、药学、计算科学以及自动化技术等学科的知识和先进技术,成为当今药物开发的主要方式。完整的高通量筛选体系由于高度的整合和自动化,因而又被称作“药物筛选机器人系统”

抗肿瘤药物筛选及临床实验

抗肿瘤药物筛选及临床实验 责任编辑:luanchaojibing,作者:佚名文章来源:本站原创点击数:更新时间:2005-10-24 14:54:02 (—)抗肿瘤药物的筛选 1.体内筛选方法体内筛选方法是药物应用于有移植性肿瘤的动物进行实验的方法。肿瘤模型是进行药物筛选的先决条件。一个理想的用于药物筛选的肿瘤模型应具备的条件是:①对临床疗效有预告性;②快速、经济;③指标明确、客观;④重现性好,结果可信赖。常用于鼠类,近年来在体内试验方面,裸鼠被广泛应用于抗肿瘤药物的筛选,目前已成功地将官颈癌、卵巢癌、乳腺癌、结肠癌、肺癌等10余种人体肿瘤移植于裸鼠,国内已成功地建立了卵巢癌裸鼠皮下移植瘤和腹水瘤模型,并已用于科研和临床。 在体内试验方面需注意:①给药途径。因腹腔给药假阳性较多见,因此要筛选一种药物是否对一种移植肿瘤确实有效,需应用两种以上不同的给药途径,并且三次实验结果均显示标准抗癌活性时才能判定有效。②在每一种给药途径中,还需观察不同剂量的抗肿瘤活性,以揭示有效抗肿瘤药物的量效关系。 2.体外筛选方法因体内筛选需要的技术条件高,故大批筛选或粗选时多采用体外筛选。 (1)人肿瘤集落形成法:该方法是将单细胞悬液,接种到含软琼脂的培养基中,培养一定时间后一部分肿瘤细胞能够在琼脂中生长,形成集落。通过药物处理组和对照组的细胞集落生成数量比较,可作为肿瘤化疗的药物敏感试验。每次可用多个平面筛选8一10种药物,以找出对肿瘤细胞最敏感的药物。此法快速、经济、选择性高,而且结果可靠,故在临床用药选择和抗肿瘤药物开发上将得到广泛应用。该方法缺点是活肿瘤组织单细胞悬液的制备比较困难,并且集落形成的成功率不够高,故在方法学上需待完善。 ALberts等以此法指导69例复发转移卵巢癌的治疗,结果临床有效率为54%;经验治疗组的有效率为20%;而以。HCTA中抗药的药物治疗的有效率为8%。 (2)三磷酸腺苷生物发光法(ATP法):其基本原理是ATP为细胞内能量的基本来源,其浓度与活细胞量有关。细胞死后ATP的产生立即终止。利用荧光素.荧光素酶试剂定量测定细胞内ATP,其水平与活细胞数呈线性关系。检测许多抗癌药物的体外结果显示,ATP水平与药物对细胞的毒性作用之间有很好的相关性。 Sevin等对22例卵巢癌的研究表明,ATP法的药物体外敏感性与体内疗效之间有效符合率为’100%,而体外抗药及体内无效率为66.7%,其中11例体外高度敏感病例,临床8例获CR,3例获PR,6例体外中度敏感病人临床均获PR。Andreotti等以多点浓度分析顺铂的体外敏感性与卵巢癌临床化疗效果关系,结果ATP法的准确率达90%以上。

药物筛选

一.高通量药物筛选在新药研发中的应用 高通量药物筛选的原理,就是药物多是通过特异地作用于体内的靶点蛋白质(受体、酶、离子通道等)而重新调整病人的生理状态,达到治疗目的。该技术是指以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行试验过程,以灵敏快速的检测仪器采集实验结果数据,以计算机对实验数据进行分析处理,同一时间对数以千万样品检测,并以相应的数据库支持整体系运转的技术体系。高通量筛选在创新先导物的发现过程中具有高效、快速、微量等特点。 高通量药物筛选的基本模式是以单一的筛选模型对大量样品的生物活性进行评价,从中发现针对某一靶点具有活性的样品。随着人类基因组计划的完成,潜在药物靶点不断被发现,新的药物靶点不断出现,不仅为创新药物的发现提供了机遇,也对高通量筛选效率提出新的要求。 1 高通量药物筛选开发新药的基本过程 药物筛选与新药发现的基本过程由于高通量筛选获得的结果是分子水平或细胞水平的活性结果,多数情况下只能反映出样品的作用机制的信息,并不能完全证明对某种疾病具有防治作用,这是其与传统筛选方法的重要区别。传统的药理学研究一般是首先研究其客体作用进而研究作用机制。而采用高通量筛选方法则是从分子水平开始,这一过程又称作反向药理学。采用高通量筛选方法发现和开发药物一般要经过药物的初筛和复筛、深入筛选、确证筛选过程。 1.1 初筛和复筛 是在分子或细胞水平筛选样品,证明某一样品对该靶点具有药理活性(或亲和力)。初筛以后,选择具有活性的化合物,采用系列浓度,进行同一模型的复筛,阐明其对该靶点的作用特点、作用强度和量效关系,由此发现活性化合物(样品)。 1.2 深入筛选 在初筛和复筛的基础上,将得到的样品,采用与初筛不同但相关的分子、细胞模型作进一步的筛选,包括证明样品的选择性、细胞毒性,以及其他性质。经过深入筛选,为比较全面地评价活性化合物的药用价值提供更充分的实验资料。根据这些资料,并结合活性化合物的化学结构、性质特点,进行综合分析,确定在结构和作用方面具有新颖性和开发价值的化合物,作为先导化合物。同时也可以结合组织器官或整体动物模型,证明其药理作用,为样品提供更加充分的实验依据。 1.3 确证筛选 对深入筛选获得的先导化合物或优化后被选定的活性最好的化合物进行更深入广泛的研究,包括药理作用、药物代谢过程、一般毒性等多方面的筛选,以确定其开发前景。将符合要求的样品确定为药物候选化合物,进入开发研究程序,即临床前研究,为临床研究准备必要的资料。 2 高通量药物筛选技术对药物开发策略的转变 新方法和新技术的应用,必然会对现有的操作方式产生冲击,在药物发现过程中更是如此,由于大量新技术的应用,传统的筛选模式肯定不能适应新技术发挥作用。因此,为了提高成功率和筛选速度,积极应用新技术是必须的,但是,在研究的策略方面不进行调整和改变,就会制约新技术的应用和研究进程的发展,甚至会导致错误的结果。 2.1 随机筛选策略的改变 高通量药物筛选技术的应用,改变了传统的药物发现的模式。由于筛选方法是建立在分子细胞水平,由此来分析药物的治疗作用,必然存在着大量需要解决的问题。分子水平的某点变化,在疾病的病理表现中可能是微不足道的,或是要受到多种干扰。因此,用这种方法发现药物,就必须改变传统的模式,建立全新的新药发现策略建立基于高通量药物筛选技术上的药物发现新模式,需要解决的主要问题是活性的评价、筛选模型与疾病的相关性、影响筛选

天然抗肿瘤药物的筛选方法

物碱,文献报道该类生物碱具有抗肿瘤作用,可治疗皮肤鳞癌、皮肤基层细胞癌等[25,26]。 219 局部麻醉作用:以脊蛙足蹼、豚鼠皮丘、在体蛙坐骨神经丛及蛙、兔椎管等为实验材料的麻醉实验研究证明,不同浓度的菊叶三七水提醇沉液分别具有明显的表面、浸润及传导麻醉作用。椎管注射,脊髓出现先兴奋后抑制现象,有可逆性。其局麻作用强度随着浓度加大而成比例地增强,存在药物浓度2反应依赖关系[27]。 2110 其他作用:菊叶三七还具有明显的镇静、安定、催眠、抗惊厥等中枢神经系统抑制作用[25]。在坦桑尼亚,Shambaa 部族孕妇服一种该属植物土三七根煎剂用以堕胎[28]。2111 毒理研究:该属很多植物中都含有吡咯啶类生物碱,该类生物碱能使肝细胞RNA酶活性下降,RNA、DNA的合成能力下降,细胞不能完成有丝分裂,从而形成多核巨细胞,坏死与RNA合成减少DNA横向断裂有关[25]。以菊三七碱注射液对大鼠进行急性毒性实验,ip50mg/kg,隔日1次, 6次后动物全部死亡,镜检显示肝脏呈广泛急性坏死;在大鼠亚急性实验中肝脏出血、瘀血、变性坏死,并见肝小静脉周围纤维组织增生。菊三七碱剂量与实验持续时间对肝脏病变的程度有显著影响。大剂量短期使用主要引起广泛急性肝坏死,小剂量长期使用除引起肝坏死外,可引起肝小静脉和肝动脉周围组织增生[29]。也有部分该属植物毒性较低,如小鼠po灵菊七,其最大耐受量大于23016g/kg,相当于成人日用量的512倍,说明其毒性极小,口服安全[24]。 3 结语 菊科菊三七草属部分植物,在民间已经被作为药材使用,且具有多方面的药理活性,一方面应注意到该属很多植物中所存在的双稠吡咯啶生物碱对动物和人的肝毒性和致癌作用;另一方面应对除双稠吡咯啶生物碱以外的其他活性成分进行研究。今后应加大对该属植物资源的研究工作为其充分利用提供参考。 参考文献: [1] 广东植物研究所1海南植物志[M]1北京:科学出版社, 19741 [2] 中国科学院植物研究所主编1中国高等植物图鉴[M]1第四 册:北京科学出版社,20021 [3] 唐世蓉,吴余芬,方长森1菊叶三七抗疟成分的提取鉴定 [J]1中草药,1980,11(5):19321951 [4] Russell J,J ameset N,Mabry B,et al113C2NMR Spectros2 copy of pyrrolizidine alkaloids[J]1Phytochemist ry,1982, 21:43924451 [5] 袁珊琴,顾国明,魏同泰1菊叶三七生物碱成分研究[J]1药 学学报,1990,25(3):19121971 [6] Helmut W1Two pyrrolizidine alkaloids from Gy nura scan2 dens[J]1Phytochemist ry,1982,21(11:2767227681 [7] Erhard R,Alexandra E,Helmut W1Pyrrolizidine alkaloids from Gynura divaricata[J]1Planta Med,1996,62(4):3861 [8] Mat heson J R,Robins D J1Pyrrolizidine alkaloids from Gy2 nura sarmentosa[J]1Fitoterapia,1992,63(6):55725611 [9] Ferdinand B,Christa Z1Naturally occurring terpenoid deriv2 atives[J]1Phytochemist ry,1977,16:49424981 [10] Jong T T,Chou H,J u Y1An optically active chromanone from Gy nura f ormosana[J]1Phytochemist ry,1997,44(3): 55325541 [11] Lin W Y,Kuo Y H,Teng C M,et al1Anti2platelet aggrega2 tion and chemical constituent s from t he rhizome of Gy nura j aponica[J]1Planta Med,2003(69):75727641 [12] 胡 勇,李维林,林厚文,等1白背三七地上部分的化学成 分[J]1中国天然药物,2006,4(2):15621581 [13] 卓 敏,吕 寒,任冰如,等1红凤菜化学成分研究[J]1中 草药,2008,39(1):302321 [14] Lin W Y,Teng C M,Tsai I L,et al1Anti2platelet aggrega2 tion constituent s from Gy nura elli ptica[J]1Phytochemis2 t ry,2000,53(8):83328361 [15] Takahira M,K ondo Y,Kusano G,et al1Four new3a2hy2 droxy spirost252ene derivatives from Gy nura j aponica Makino [J]1Tet rahed ron L ett,1977,(41):3647236501 [16] 李丽梅,李维林,郭巧生,等1白背三七化学成分研究[J]1 时珍国医国药,2008,19(1):11821191 [17] 孙凤英,刘晓秋,孙彤伟,等1菊三七化学成分的研究(Ⅱ) [J]1中草药,1992,(2):10221041 [18] 张铭龙,刘文彬,李星元,等1菊三七生物碱的提取以及类 似物的药理活性比较[J]1吉林中医药,1998,4:352381 [19] 李成章1紫背三七止血作用的实验观察[J]1中药通报, 1985,10(9):42624291 [20] 刘贺之,庞 健,王增岭,等1菊三七与参三七对血小板超 微结构影响的研究[J]1药学学报,1982,17(11):80128031 [21] 林 菁,林建忠,李常春,等1红番苋水提物的抗炎作用 [J]1福建中医药,1996,27(2):232241 [22] Zhang X F,Tan B K1Effect s of an et hanolic extract of Gy2 nura p rocumbens on serum glucose cholesterol and triglyceride levels in normal and streptozotocin2induced diabetic rat s[J]1 S ingapore Med J,2000,41(1):92141 [23] 胡 勇,李维林,林厚文,等1白背三七地上部分降血糖作 用研究[J]1西南林学院学报,2007,27(1):552581 [24] 刘 莹,徐向进,陈明珠,等1灵菊七的急性毒性与降糖作 用研究[J]1解放军药学学报,2005,21(5):34023421 [25] 史清水,袁惠南1菊三七研究概况[J]1中草药,1991,22 (8):37723801 [26] 林启寿1中草药成分化学[M]1北京:科学出版社,19771 [27] 刘学韶,刘希智1菊三七的药理作用研究[J]1中草药, 1987,18(6):212241 [28] 余国奠1东非的堕胎和利分娩药用植物[J]1中药通报, 1982,7(5):6281 [29] 刘宝庆,马晋渝,王旭东,等1菊三七碱对动物肝脏毒性的 实验研究[J]1中草药,1984,15(1):272291 天然抗肿瘤药物的筛选方法 顾琳娜1,顾 昊23 (11湖州市药品检验所,浙江湖州 313000;21首都医科大学附属北京朝阳医院,北京 100020) 摘 要:恶性肿瘤是一种严重危害人类健康的疾病。目前发现许多天然药物具有抗肿瘤作用。随着细胞生物学、分子药理学和肿瘤药理学研究的发展,针对细胞和分子靶点的天然药物已成为当今抗肿瘤药物研究的重要方向。在研究过程中,建立合理的抗肿瘤药物筛选方法就显得尤为重要。详细介绍了近年来天然抗肿瘤药物的筛选方 3收稿日期:2008208210

相关文档
最新文档