(完整版)阿氏圆问题归纳

(完整版)阿氏圆问题归纳
(完整版)阿氏圆问题归纳

阿氏圆题型的解题方法和技巧

以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.

具体内容如下:

阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离

之比等于定比n m (≠1),则P 点的轨迹,是以定比n m

内分和外分定线段AB 的两个分点的连

线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.

定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.

PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型

阿氏圆基本解法:构造母子三角形相似

【问题】在平面直角坐标系xOy 中,在x 轴、y 轴分别有点C(m ,0),D(0,n).点P 是平面内一动点,且OP=r ,求PC+kPD 的最小值.

阿氏圆一般解题步骤:

第一步:确定动点的运动轨迹(圆),以点O 为圆心、r 为半径画圆;(若圆已经画出则可省略这一步) 第二步:连接动点至圆心O(将系数不为1的线段的固定端点与圆心相连接),即连接OP 、OD ; 第三步:计算出所连接的这两条线段OP 、OD 长度; 第四步:计算这两条线段长度的比k ;

第五步:在OD 上取点M ,使得OM:OP=OP:OD=k ;

第六步:连接CM ,与圆O 交点即为点P .此时CM 即所求的最小值.

习题

【旋转隐圆】如图,在Rt △ABC 中,∠ACB=90°,D 为AC 的中点,M 为BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始终保持点M 为BD 的中点),若AC=4,BC=3,那么在旋转过程中,线段CM 长度的取值范围是___________.

1.Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+

3

2BD 的最小值为_______.

2.如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+

2

3

PD 的最小值为________.

3.如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+

1

PC 的最小值为_________.

6.如图,边长为4

7.如图,边长为4的正方形,点P 是正方形内部任意一点,且BP=2,则PD+2

1

PC 的最小值为______;2PD+4PC 的最小值为______.

8.在平面直角坐标系xOy 中,A(2,0),B(0,2),C(4,0),D(3,2),P 是△AOB 外部的第一象限内一动点,且∠BPA=135°,则2PD+PC 的最小值是_______.

9.在△ABC 中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P 是⊙A 上的动点,连接PB 、PC ,则3PC+2PB 的最小值为_______.

10.如图,在Rt △ABC 中,∠A=30°,AC=8,以C 为圆心,4为半径作⊙C . (1)试判断⊙C 与AB 的位置关系,并说明理由;

(2)点F 是⊙C 上一动点,点D 在AC 上且CD=2,试说明△FCD ~△ACF ; (3)点E 是AB 上任意一点,在(2)的情况下,试求出EF+

2

1

FA 的最小值.

11.(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求PD+

21PC 的最小值和PD-2

1

PC 的最大值; (2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD+

32PC 的最小值为______,PD-3

2

PC 的最大值为______. (3)如图3,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,点P 是圆B 上的一个动点,那么PD+

21PC 的最小值为______,PD-2

1

PC 的最大值为________.

2PA+PB 的最小值.

【二次函数结合阿氏圆题型】

13.如图1,抛物线y=ax 2+(a+3)x+3(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点E (m ,0)(0<m <4),过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM ⊥AB 于点M .

(1)求a 的值和直线AB 的函数表达式; (2)设△PMN 的周长为C1,△AEN 的周长为C2,若

5

6

21=C C ,求m 的值; (3)如图2,在(2)条件下,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°),连接E ′A 、E ′B ,求E ′A+

3

2

E ′B 的最小值.

问题背景:如图1,在△ABC中,BC=4,AB=2AC.

问题初探:请写出任意一对满足条件的AB与AC的值:AB=_____,AC=_______.问题再探:如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决:求△ABC的面积的最大值.

1.小明的数学探究小组进行了系列探究活动.

类比定义:类比等腰三角形给出如下定义:有一组邻边相等的凸四边形叫做邻等四边形.探索理解:

(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请你协助小明用两种不同的方法画出格点D,连接DA、DC,使四边形ABCD为邻等四边形;

尝试体验:

(2)如图2,邻等四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.

解决应用:

(3)如图3,邻等四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,BD=4.

小明爸爸所在的工厂,需要裁取某种四边形的材料板,这个材料板的形状恰巧是符合如图3条件的邻等四边形,要求尽可能节约.你能求出这种四边形面积的最小值吗?如果能,请求出此时四边形ABCD面积的最小值;如果不能,请说明理由.

2.我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.

(1)如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.

(2)如图2,等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC、BD为对角线,AC=2 AB,试探究BC,BD的数量关系.

(3)如图3,等邻边四边形ABCD中,AB=AD,AC=2,∠BAD=2∠BCD=60°,求等邻边四边形ABCD 面积的最小值.

人教版九年级数学上册第24章圆经典练习题及答案

圆的相关练习题(含答案) 1、已知:弦AB 把圆周分成1:5的两部分,这弦AB 所对应的圆心角的度数为 。 2、如图:在⊙O 中,∠AOB 的度数为1200,则 的长是圆周的 。 3、已知:⊙O 中的半径为4cm ,弦AB 所对的劣弧为圆的3 1,则弦AB 的长为 cm , AB 的弦心距为 cm 。 4、如图,在⊙O 中,AB ∥CD , 的度数为450,则∠COD 的度数为 。 5、如图,在三角形ABC 中,∠A=700,⊙O 截△ABC 的三边所得的弦长相等,则 ∠BOC=( )。 A .140° B .135° C .130° D .125° (第2题图) (第4题图) (第5题图) 6、下列语句中,正确的有( ) (1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦; (3)长度相等的两条弧是等弧; (4) 圆是轴对称图形,任何一条直径都是对称轴 A .0个 B .1个 C .2个 D .3个 7、已知:在直径是10的⊙O 中, 的度数是60°,求弦AB 的弦心距。 8、已知:如图,⊙O 中,AB 是直径,CO ⊥AB ,D 是CO 的中点,DE ∥AB , 求证:

600 9. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么? 10. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽 AB=600mm ,求油面的最大深度。 11. 如图所示,AB 是圆O 的直径,以OA 为直径的圆C 与圆O 的弦AD 相交于点E 。你认为图中有哪些相等的线段?为什么? B

答案:1.60度 2. 3 2 3. 13 4 4.90度 5.D 6.A 7.2.5 8.提示:连接OE,求出角COE的度数为60度即可 9.略 10.100毫米 11.AC=OC,OA=OB ,AE=ED

圆中的最值问题

圆中的最值问题 Prepared on 24 November 2020

圆中的最值问题 【考题展示】 题1 (2012年武汉中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 题2 (2013年武汉元调)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧AB上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,求a b +的最大值.(有修改) 题3 (2013年武汉四调)如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为_________. 题4 (2013年武汉五模)在△ABC中,120 A BC=.若△ABC的内切圆半径为r,则r的最 ∠=?,6 大值为_________.(有修改) 题5 (2013年武汉中考)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF 交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是 _________. 题1图题2 图题3 图

题4图题5图 【典题讲练】 类型1(相关题:题5) 如图,边长为a的等边△ABC的顶点A,B分别在x轴正半轴和y轴正半轴上运动,则动点C到原点O的距离的最大值是_________. 在直角坐标系中,△ABC满足,∠C=90°,AC=8,BC=6,点A,B分别在x轴、y轴上,当A点从原点开始在正x轴上运动时,点B随着在正y轴上运动(下图),求原点O到点C的距离OC的最大值,并确定此时图形应满足什么条件. 如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动. (1)当A在原点时,求点B的坐标; (2)当OA=OC时,求原点O到点B的距离OB; (3)在运动的过程中,求原点O到点B的距离OB的最大值,并说明理由.

人教版九年级数学上册《第24章圆》单元测试含答案

第二十四章圆单元测试 一、单选题(共10题;共30分) 1、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为() A、40° B、30° C、45° D、50° 2、下列说法: ①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线; ⑤三角形的内心到三条边的距离相等。 其中不正确的有()个。 A、1 B、2 C、3 D、4 3、如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是() A、80° B、100° C、60° D、40° 4、已知Rt△ACB,∠ACB=90°,I为内心,CI交AB于D,BD=,AD=,则S△ACB=() A、12 B、6 C、3 D、7.5 5、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为() A 、 B 、C、D 、6、如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F,∠E=α,∠F=β,则∠A=() A、α+βB 、C、180﹣α﹣βD 、 7、如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是() A、2 B、2+ C、2 D、2+ 8、如图,已知AB是⊙O的直径,∠CAB=50°,则∠D的度数为() A、20° B、40° C、50° D、70° 9、已知A、B、C三点在⊙O上,且AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,则∠BAC的度数为() A、15°或105° B、75°或15° C、75° D、105° 10、如图,在⊙O中,∠ABC=52°,则∠AOC等于() A、52° B、80° C、90° D、104° 二、填空题(共8题;共25分) 11、如图,⊙O 是ABC 的外接圆,OCB=40°,则A的度数等于________°.

(完整版)圆最值问题题型归纳

x 圆中最值问题 类型一 圆上一点到直线距离的最值问题 例1 已知P 为直线y=x +1上任一点,Q 为圆C : 22(3)1x y -+=上任一点,则PQ 的最小值为 . 变题1:已知A (0,1),B (2,3),Q 为圆C 22 (3)1x y -+=上任一点,则QAB S V 的最小值为 . 变题2:由直线y=x +1上一点向圆C :22 (3)1x y -+=引切线,则切线长的最小值为 变题3:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则当PC= 时,APB ∠最大. 变题4:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则四边形PACB 面积的最小值为 . 例2已知圆C :222430x y x y ++-+=,从圆C 外一点11(,)P x y 向该圆引一条切线,切点为M ,O 为坐标原点,且有PM=PO ,求使得PM 取得最小 值的点P 坐标. 类型二 利用圆的参数方程求最值(或几何意义) 例3若实数x 、y 满足22240x y x y ++-=,求x-2y 的最大值. 如在上例中,改为求 12 y x --,22(2)(1)x y -+-,1x y --的取值范围,该怎么求解? 类型三:转化成函数或不等式求最值 例4已知圆O :22 1x y +=,PA 、PB 为该圆的两条切线,A 、B 为两切点,则PA PB ?u u u r u u u r 的最小值为

例5已知圆C : 22+24x y +=(), 过点(1,0)A -做两条互相垂直的直线12l l 、,1l 交圆C 与E 、F 两点,2l 交圆C 与G 、H 两点, (1)EF +GH 的最大值.(2) 求四边形EGFH 面积的最大值. 6、已知e C 过点)1,1(P ,且与e M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称. (Ⅰ)求e C 的方程; (Ⅱ)设Q 为e C 上的一个动点,求PQ MQ ?u u u r u u u u r 的最小值; (Ⅲ)过点P 作两条相异直线分别与e C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由. 7、如图,在矩形ABCD 中,3,1AB BC ==,以A 为圆 心1为半径的圆与AB 交于E (圆弧DE 为圆在矩形内的部 分) (Ⅰ)在圆弧DE 上确定P 点的位置,使过P 的切线l 平分 矩形ABCD 的面积; (Ⅱ)若动圆M 与满足题(Ⅰ)的切线l 及边DC 都相切, 试确定M 的位置,使圆M 为矩形内部面积最大的圆. l P E C M

初三数学第24章圆导学案范文整理

初三数学第24章圆导学案 数学课题24.1.2垂直于弦的直径 课型新授班级九年级姓名 学习 目标1.理解圆的轴对称性; 2.了解拱高、弦心距等概念; 3.使学生掌握垂径定理,并能应用它解决有关弦的计算和证明问题。; 沉默是金难买课堂一分,跃跃欲试不如亲身尝试! 学法指导合作交流、讨论、 一、自主先学————相信自己,你最棒! ⒈叙述:请同学叙述圆的集合定义? ⒉连结圆上任意两点的线段叫圆的________,圆上两点间的部分叫做_____________, 在同圆或等圆中,能够互相重合的弧叫做______________。 课本P80页有关“赵州桥”问题。 二、展示时刻——集体的智慧是无穷的,携手解决下面的问题吧! )、动手实践,发现新知 ⒈同学们能不能找到下面这个圆的圆心?动手试一试,

有方 法的同学请举手。 ⒉问题:①在找圆心的过程中,把圆纸片折叠时,两个半圆_______ ②刚才的实验说明圆是____________,对称轴是经过圆心的每 一条_________。 )、创设情境,探索垂径定理 ⒈在找圆心的过程中,折叠的两条相交直径可以是哪样一些位置关系呢? 垂直是特殊情况,你能得出哪些等量关系? ⒉若把AB向下平移到任意位置,变成非直径的弦,观察 一下,还有与刚才相类似的结论吗? ⒊要求学生在圆纸片上画出图形,并沿cD折叠,实验后提出猜想。 ⒋猜想结论是否正确,要加以理论证明引导学生写出已知,求证。 然后让学生阅读课本P81证明,并回答下列问题: ①书中证明利用了圆的什么性质? ②若只证AE=BE,还有什么方法? ⒌垂径定理: 分析:给出定理的推理格式

“隐圆”最值问题习题

B M C D A E F D C B A B E D C F A “隐圆”最值问题 重难点:分析题目条件发现题目中的隐藏圆,并利用一般的几何最值求解方法来解决问题 【例1】在平面直角坐标系中,直线y = - x + 6分别与x 轴、y 轴交于点A 、B 两点,点C 在y 轴的左边,且∠ACB = 90°,则点C 的横坐标x C 的取值范围是__________. 分析:在构造圆的前提下 考虑90°如何使用。直角对直径所以以AB 为直径画圆。使用垂径定理即可得到3-20c x ≤<3 【练】(2013-2014·六中周练·16)如图,已知Rt △ABC 中,∠ACB = 90°,AC = 3,BC = 4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF = 90°,则EF 长度的最小值是__________. 分析:过D 点作DE 垂直AB 交AC 于点M 可证△FBD ∽△ECD 即可 求出最小值 【例2】如图,在Rt △ABC 中,∠ACB = 90°,D 是AC 的中点, M 是BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始 终保持点M 是BD 的中点),若AC = 4,BC = 3,那么在旋转 过程中,线段CM 长度的取值范围是_______________. 分析:将线段AD 绕A 点任意旋转隐藏着以A 为圆心AD 为半径的圆构造 出来。接下来考虑重点M 的用途即可。中点的用法可尝试下倍长和中位线。 此题使用中位线。答案是 3722 c x ≤≤ 【练】已知△ABC 和△ADE 都是等腰直角三角形,∠ACB =∠ADE = 90°,AC = 22,AD = 1,F 是BE 的中点,若将△ADE 绕点A 旋转一周,则线段AF 长度的取值范围是 4242 22 AC -+≤≤. 分析:同例题 【例3】如图,已知边长为2的等边△ABC ,两顶点A 、B 分别在平面直角

2019中考数学压轴题突破解析圆的双动点最值问题

第 1 页 共 6 页 2019中考数学压轴题突破 圆的双动点最值问题 1.如图,在Rt △ABC 中,∠C =90°,AC =6, BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是_____. 分析:本题中,要求点P 到边AB 距离的最小值,先要确定点P 的运动轨迹.因为FP =FC =2,所以点P 的运动轨迹是以点F 为圆心,2为半径的圆弧(如图),过点F 作FQ ⊥AB ,以F 为圆心的弧与FQ 的交点为满足条件的点P . 答案: 6/5 这是动点轨迹为圆弧的一种类型,动点满足到定点的距离等于定长,确定动点的运动轨迹为以定点为圆心,定长为半径的圆(或一段弧). 2. 如图,点P 是正方形ABCD 的对角线BD 上的一个动点(不与B 、D 重合),连结AP ,过点B 作直线AP 的垂线,垂足为H ,连结DH ,若正方形的 边长为4,则线段DH 长度的最小值是 _______.

分析:要求线段DH长度的最小值,先要确定动点H的运动轨迹。在点P的运动过程中,∠AHB=90°,点H的运动轨迹是以AB为直径的半圆,题目转化为圆外一点到圆上一点之间的最小距离的问题(如图),连结点D和AB中点O,与半圆O交于点H,此时DH长度最小. 答案: 这一类动点满足与定线段构成一个直角三角形,且为直角顶点,则这个动点的轨迹是以定线段为直径的圆(或圆弧)。由特殊到一般,如果动点与定线段构成的三角形中,以动点为顶点的角度确定,这个动点的运动轨迹是以定线段为弦的圆(或圆弧). 3. 如图,正方形OABC的边长为4,以O为圆心,EF为直径的半圆经过点A,连接AE,CF 相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是() 第 2 页共6 页

圆中有关最值问题一.doc

圆中有关最值问题(1)教学设计 一、设计思路: 圆中有关最值问题是中考数学中的重要内容,是综合性较强的问题,它贯穿初中数学的 始终,是中考的热点问题。其运用性质有:圆中直径是最长的弦、垂线段最短、三边关系定 理、对称法等。本节课以例题入手来研究圆中的有关最值问题。 二、学情分析 学生知识技能基础:学生在前面几节课已经认识了圆,学习了圆的有关知识,以及数学 的基本结论:圆中直径是最长的弦、垂线段最短、三角形三边关系等基本知识,这些为本节 课的学习奠定了良好的知识技能基础。 学生活动经验基础:通过以往的数学学习,学生已经具有了一些数学活动经验的基础; 另一方面,在以往的数学活动中,学生已经经历了很多合作交流的学习过程,具有了一定的 合作学习的经验,具备了一定的合作交流的能力。 三、教学目标 知识与技能: 1、会利用直径是圆中最长的弦这一基本结论解决有关最值问题; 2、会利用圆外一点与圆上各点的连线中最短与最近距离这一基本事实,解决圆中有关最值问题。 方法与途径: 通过观察、操作、想象、推理、交流等活动,发展空间观念,培养学生动手动脑、发现 问题及解决问题的能力,以及推理能力和有条理的表达能力。 情感与评价: 通过实际操作、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思 维变得更加灵活。 现代教学手段: 多媒体和几何画板的合理应用,增加了课时内容,激发了学生学习的积极性,突破了教 学重点、难点的同时,更重要的是使复杂问题更加简单化,通过清楚的动画演示,使学生进 一步感受何时取得最大值问题。 四、教学重点与难点 教学重点:将试题转化为最值中的有关模型 教学难点:将试题转化为最值中的有关模型的方法

人教版数学九年级上册《第24章圆》全章测试含参考答案.doc

第24章 圆 全章测试 班级 姓名 学号 成绩 一 . 选择题(每小题 4分,共 8 道题) 1.如图,点 A 、 B 、 C 是⊙ O 上的点,∠ 70°,则∠ 的度数是( ) AOB= ACB .30° .35° .45° .70° A B C D 2.下列说法错误 的是( ) .. A .直径是圆中最长的弦 B .圆的内接平行四边形是矩形 C .90°的圆周角所对的弦是直径 D .平分一条弦的直径也垂直于该弦 3. 在直角坐标系中,如果⊙ O 是以原点O( 0, 0)为圆心,以 5 为半径的圆,那么点 A ( -3 ,4)的 位置( ) A. 在⊙ O 内 B. 在⊙ O 外 C. 在⊙ O 上 D. 不能确定 4.如图所示,直线 l 与半径为 5cm 的⊙ O 相交于 A 、B 两点,且与半径 OC 垂直, 垂足为 H , AB =8 cm ,若要使直线 l 与⊙ O 相切,则 l 应沿 OC 方向向下平移 ( ) O A .1cm B . 2cm C .3 cm D . 4cm A H l C B 5.如图 , 点 C 、O 在线段 AB 上,且 AC=CO=OB =5, 过点 A 作以 BC 为直径 D 的⊙ O 切线, D 为切点,则 AD 的长为() A .5 B .6 C .5 3 D . 10 A C O B 6.如图,⊙ 的半径为 5, AB 为弦,点 C 为 ⌒ 的中点,若 ∠ ABC 30°,则弦 AB O AB 的长为 ( ) A . 1 B . 5 C . 5 3 D . 5 3 2 2 7.现有一扇形纸片,圆心角∠ AOB 为 120°,半径 R 的长为 3 cm ,用它围成一个圆锥 的侧面(接缝忽略不计) ,则该圆锥的侧面积为() B O C A A . B . C . 2 D . 12 3 3 8.如图,动点 P 从点 A 出发,沿线段 AB 运动至点 B 后,立即按原路返回 . 点 P 在运动过程中速度始终保持 不 变,则以点 A 为圆心,线段 长为半径的圆的面积 S 与点 P 的运动时间 t 之间的函数图象大致为 AP ( ) A. B. C. D. 二 . 填空题(每小题 4 分,共 6 道题) C A O B

圆中的最值问题

圆中的最值问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

圆中的最值问题 【考题展示】 题1 (2012年武汉中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是 _________. 题2 (2013年武汉元调)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O 为圆心OA长为半径作⊙O,C为半圆弧AB上的一个动点(不与A、B两点重 合),射线AC交⊙O于点E,BC=a,AC=b,求a b +的最大值.(有修改) 题3 (2013年武汉四调)如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P 为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两 点,连接DE,则线段DE长度的最大值为_________. 题4 (2013年武汉五模)在△ABC中,120 BC=.若△ABC的内切圆半径为r,则 ∠=?,6 A r的最大值为_________.(有修改) 题5 (2013年武汉中考)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是_________.

题1图题2 图题3 图 题4图题5图 【典题讲练】 类型1(相关题:题5) 如图,边长为a的等边△ABC的顶点A,B分别在x轴正半轴和y轴正半轴上运动,则动点C到原点O的距离的最大值是_________. 在直角坐标系中,△ABC满足,∠C=90°,AC=8,BC=6,点A,B分别在x轴、y轴上,当A点从原点开始在正x轴上运动时,点B随着在正y轴上运动(下图),求原点O到点C的距离OC的最大值,并确定此时图形应满足什么条件.

第24章圆第10课时弧长和扇形面积-人教版九年级数学上册讲义

人教版九年级数学上册讲义 第二十四章圆 第10课时弧长和扇形面积 教学目的掌握运用扇形面积公式进行一些有关的计算. 教学重点掌握运用扇形面积公式进行一些有关的计算. 教学内容 知识要点 1.弧长的计算公式 公式:(n°表示圆心角的度数,R为半径). 2.扇形的面积公式 扇形:由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.计算公式:(1)S扇形=(n°表示圆心角的度数,R为半径); (2)S扇形=(其中l为扇形的弧长,R为半径). 对应练习 1.半径为8cm的圆中,72°的圆心角所对的弧长为______; 2.半径为5cm的圆中,若扇形面积为 2 cm 3 π 25 ,则它的圆心角为______. 3.若半径为6cm的圆中,扇形面积为9πcm2,则它的弧长为______. 4.如图,Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为( ). A. π 4 25 B. π 8 25 C. π 16 25 D. π 32 25

5.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为120°,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( ). A .2 πcm 100 B .2 πcm 3400 C .2 πcm 800 D .2 πcm 3800 6.如图,△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F , 点P 是⊙A 上一点,且∠EPF=40°,则圆中阴影部分的面积是( ). A . 9π4- B . 9π84- C .94π 8- D . 98π 8- 7.已知:如图,在边长为a 的正△ABC 中,分别以A ,B ,C 点为圆心,a 21长为半径作 ,,,求阴影部分的面积. 8.已知:如图,Rt △ABC 中,∠C=90°,∠B=30°,,34=BC 以A 点为圆心,AC 长为半径作,求∠ B 与 围成的阴影部分的面积. 课堂总结 扇形面积有关的计算主要是要灵活运用公式转换圆心角、半径、弧的表示方法 不规则面积解题思路:把不规则图形面积转换成几个规则图形面积的和或者差 课后练习

圆中的最值问题

圆中的最值问题 【考题展示】 题1 (2012年武汉中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 题2 (2013年武汉元调)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧AB上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,求 +的最大值.(有修改) a b 题3 (2013年武汉四调)如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P 为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为_________.题4 (2013年武汉五模)在△ABC中,120 BC=.若△ABC的内切圆半径为r,则r的最大值为 A ∠=?,6 _________.(有修改) 题5 (2013年武汉中考)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是_________. 题1图题2 图题3 图

【典题讲练】 类型1(相关题:题5) 1.1 如图,边长为a的等边△ABC的顶点A,B分别在x轴正半轴和y轴正半轴上运动,则动点C到原点O 的距离的最大值是_________. 1。2在直角坐标系中,△ABC满足,∠C=90°,AC=8,BC=6,点A,B分别在x轴、y轴上,当A点从原点开始在正x轴上运动时,点B随着在正y轴上运动(下图),求原点O到点C的距离OC的最大值,并确定此时图形应满足什么条件. 1。3如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动. (1)当A在原点时,求点B的坐标; (2)当OA=OC时,求原点O到点B的距离OB; (3)在运动的过程中,求原点O到点B的距离OB的最大值,并说明理由.

(完整word版)专题:阿氏圆与线段和最值问题(含答案),推荐文档

专题:阿氏圆与线段和最值问题 以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要. 具体内容如下: 阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、 B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m 内分和外分定线段 AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆. 定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型. PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型 阿氏圆基本解法:构造母子三角形相似 例题1、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP +BP 的最小值. (1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有 = =,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴ =,∴PD =BP ,∴AP +BP =AP +PD . 请你完成余下的思考,并直接写出答案:AP +BP 的最小值为 . (2)自主探索:在“问题提出”的条件不变的情况下,AP +BP 的最小值为 . (3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是上一点,求2P A +PB 的最小值. 【分析】(1)利用勾股定理即可求出,最小值为AD = ;

最新版2019-2020年人教版九年级数学上册第24章圆检测试卷有答案-精编试题

第二十四章检测卷 时间:120分钟 满分:120分 班级:__________ 姓名:__________ 得分:__________ 一、选择题(每小题3分,共30分) 1.已知⊙O 的半径是4,OP =3,则点P 与⊙O 的位置关系是( ) A .点P 在圆内 B .点P 在圆上 C .点P 在圆外 D .不能确定 2.如图,在⊙O 中,直径CD⊥弦AB ,则下列结论中正确的是( ) A .AC =AB B .∠C=1 2∠BOD C .∠C=∠B D.∠A=∠BOD 第2题图 第3题图 第5题图 3.如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB =8,则CD 的长是( ) A .2 B .3 C .4 D .5 4.下列说法正确的是( ) A .平分弦的直径垂直于弦 B .半圆(或直径)所对的圆周角是直角 C .相等的圆心角所对的弧相等 D .若两个圆有公共点,则这两个圆相交 5.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A ,C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E.若∠AOB=3∠ADB,则( ) A .DE =E B B.2DE =EB C.3DE =DO D .DE =OB 6.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),

圆锥的底面圆的直径是80cm ,则这块扇形铁皮的半径是( ) A .24cm B .48cm C .96cm D .192cm 7.一元钱硬币的直径约为24mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( ) A .12mm B .123mm C .6mm D .63mm 8.如图,直线AB ,AD 与⊙O 分别相切于点B ,D ,C 为⊙O 上一点,且∠BCD=140°,则∠A 的度数是( ) A .70° B.105° C.100° D.110° 第8题图 第9题图 第10题图 9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD.若∠A=30°,⊙O 的半径为2,则图中阴影部分的面积为( ) A.4π3- 3 B.4π3-2 3 C .π- 3 D.2π 3 - 3 10.如图,矩形ABCD 中,AB =4,BC =3,连接AC ,⊙P 和⊙Q 分别是△ABC 和△ADC 的内切圆,则PQ 的长是( ) A.52 B. 5 C.5 2 D .2 2 二、填空题(每小题3分,共24分) 11.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠AOB=120°,则∠ACB=________°. 第11题图 第12题图 第13题图 12.如图,过⊙O 上一点C 作⊙O 的切线,交⊙O 的直径AB 的延长线于点D.若∠D =40°,则∠A 的度数为_______. 13.如图,两同心圆的大圆半径长为5cm ,小圆半径长为3cm ,大圆的弦AB 与小圆相切,切点为C ,则弦AB 的长是_________. 14.如图,⊙O 是△ABC 的外接圆,直径AD =4,∠ABC=∠DAC,则AC 的长为

2016年中考压轴题专题:与圆有关的最值问题(附答案)

与圆有关的最值(取值范围)问题 引例1:在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 引例2:如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧上的一个动点(不与A、B两点重合),射线AC交⊙O于点E, ?AB BC=,AC=,求的最大值. a b a b 引例3:如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE 长度的最大值为( ). A.3 B.6 C D. 一、题目分析: 此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接 1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用; 2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用; 3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用; 综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透. 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

苏科版九年级数学上册《圆有关的最值问题》专题(解析版)

圆有关的最值问题 一、求解方法: 1.根据“三角形三边关系”求解: -≤≤+ a b c a b 2.动中有静,抓住不变量求解. 3.旋转必产生圆,很多情况在相切位置产生最值. 4.四点共圆(补充). 五个基本判断方法: (1)若四个点到一个定点的距离相等,则这四个点共圆. (2)若一个四边形的一组对角互补(和为180。),则这个四边形的四个点共圆. (3)若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆. (4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆. (5)同斜边的直角三角形的顶点共圆, 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

三、中考展望与题型训练 例一、圆外一点与圆的最近点、最远点 1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是. 例二、正弦定理 2.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为. 3.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD 的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.例三、不等式、配方法 4.如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接P A、PB,设PC的长为x(2<x<4).当x为何值时,PD?CD的值最大?最大值是多少?

人教版九年级数学上册第24章圆单元测试题

人教版九年级数学上册第24章圆单元测试题 A.长度相等的两条弧是等弧 B.平分弦的直径垂直于弦一?选择题(共30 分) 1 .下列说法,正确的是( A .弦是直径 C.半圆是弧 2.如图,在半径为 B.弧是半圆 D.过圆心的线段是直径 OC X AB 于点C,贝U OC=( ) 5cm的O O中,弦AB=6cm , D 3.—个隧道的横截面如图所示,它的形状是以点中弦CD的中点,EM经过圆心0交O O于点E. A. 4 B. 6 C. O为圆心,5为半径的圆的一部分, 若CD=6,则隧道的高(ME的长) 8 D. 9 M是O O 为() C.直径是同一个圆中最长的弦 D.过三点能确定一个圆 二.填空题(共30分) 11 .如图,AB是O O的直径,CD为O O的一条弦,CD丄AB于点E,已知CD=4,AE=1,则O O的 半径为___________________ . (9题图)(11题图)(12题 图) 4. 如图,AB是O 0的直径,二i= l.,Z COD=34,则/ AEO的度数是( A . 51°B. 56°C. 68°D. 78° 5. 如图,AB、CD是O O的两条弦,连结AD、BC .若/ BCD=70°, 则/ BAD的度数为 () A. 40° B. 50° C. 60° D. 7012 .如图,在△ ABC中,/ G=90 ° / A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,贝U |i的度数为______________ . 13 .如图,四边形ABCD内接于O O,AB为O O的直径,点C为」的中点.若/ A=40°,则/ B= 6. OO的半径为5cm,点A到圆心O的距离OA=3cm,贝U点A与圆O的位置关系为() A .点A在圆上 B .点A在圆内C.点A在圆外 D .无法确定 7.已知O O的直径是10,圆心O到直线I的距离是5,则直线I和O O的位置关系是( A.相离 B .相交C.相切 D .外切 &如图,正六边形分别为()ABCDEF内接于O O,半径为4,则这个正六边形的边心距OM和L二的 长 A c 兀 A . 2,- 3B . 2i:'匚,n C . J D . 2 匚,” 9.如图,四边形ABCD是O O的内接四边形,O O的半径为2,Z B=135 °,则AC 的长( ) A . 2 n B . n C K D .' 23 14 .如图所示,在平面直角坐标系xOy中,半径为2的O P的圆心P的坐标为(-3,0),将 O P沿x轴正方向平移,使O P与y轴相切,则平移的距离为_________________ . 15 .如图,点O是正五边形ABCDE的中心,则/ BAO的度数为___________________ 16 .已知一条圆弧所在圆半径为9,弧长为亍n则这条弧所对的圆心角是__________________ 10 .下列说法正确的是()17 .如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB 边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是 ___________________ (结果保留n. 18 .已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是_____________________ 19 .如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是_________________ . 20 .半径为R的圆中,有一弦恰好等于半径,则弦所对的圆心角为 __________________ .

圆最值问题题型归纳

x y O C 圆中最值问题 类型一 圆上一点到直线距离的最值问题 例1 已知P 为直线y=x +1上任一点,Q 为圆C : 22(3)1x y -+=上任一点,则PQ 的最小值为 . 变题1:已知A (0,1),B (2,3),Q 为圆C 22(3)1x y -+=上任一点,则QAB S V 的最小值为 . 变题2:由直线y=x +1上一点向圆C :22(3)1x y -+=引切线,则切线长的最小值为 变题3:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则当PC= 时,APB ∠最大. 变题4:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则四边形PACB 面积的最小值为 . 例2已知圆C :222430x y x y ++-+=,从圆C 外一点11(,)P x y 向该圆 引一条切线,切点为M ,O 为坐标原点,且有PM=PO ,求使得PM 取得最小 值的点P 坐标. 类型二 利用圆的参数方程求最值(或几何意义) 例3若实数x 、y 满足22240x y x y ++-=,求x-2y 的最大值. 如在上例中,改为求 12 y x --,22(2)(1)x y -+-,1x y --的取值范围,该怎么求解? 类型三:转化成函数或不等式求最值 例4已知圆O :22 1x y +=,PA 、PB 为该圆的两条切线,A 、B 为两切点,则PA PB ? 的最小值为

例5已知圆C :22+24x y +=(), 过点(1,0)A -做两条互相垂直的直线12l l 、,1l 交圆C 与E 、F 两点,2l 交圆C 与G 、H 两点, (1)EF +GH 的最大值.(2) 求四边形EGFH 面积的最大值. 6、已知 C 过点)1,1(P ,且与 M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称. (Ⅰ)求 C 的方程; (Ⅱ)设Q 为 C 上的一个动点,求PQ MQ ? 的最小值; (Ⅲ)过点P 作两条相异直线分别与 C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由. 7、如图,在矩形ABCD 中,3,1AB BC ==,以A 为圆 心1为半径的圆与AB 交于E (圆弧DE 为圆在矩形内的部 分) (Ⅰ)在圆弧DE 上确定P 点的位置,使过P 的切线l 平分 矩形ABCD 的面积; (Ⅱ)若动圆M 与满足题(Ⅰ)的切线l 及边DC 都相切, 试确定M 的位置,使圆M 为矩形内部面积最大的圆. l P E C A B M D

圆中的最值问题

拔高专题圆中的最值问题 一、基本模型构建 常见模型 图(1) 图 (2) 思考图(1)两点之间线段最短; 图(2)垂线段最短。 .在直线L上的同侧有两个 点A、B,在直线L上有到A、B 的距离之和最短的点存在,可 以通过轴对称来确定,即作出 其中一点关于直线L的对称 点,对称点与另一点的连线与 直线L的交点就是所要找的点. 二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题 例1:如图,A点是⊙O上直径MN所分的半圆的一个三等分点,B点是弧AN的中点,P点是MN上一动点,⊙O的半径为3,求AP+BP的最小值。 解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′. ∵点A与A′关于MN对称,点A是半圆上的一个三等分点, ∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点, ∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=3, ∴A′B=32.∵两点之间线段最短,∴PA+PB=PA′+PB=A′B=32. 【教师总结】解决此题的关键是确定点P的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条线段,即可计算。

探究点二:直线与圆上点的距离的最值问题 例2:如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),求切线PQ的最小值 解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2-OQ2, ∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=3 2, ∴AB=2OA=6,∴OP= ? OA OB AB =3,∴PQ=22 OP OQ =22. 【变式训练】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y轴相交于点B.求线段AB的最小值. 解:(1)线段AB长度的最小值为4, 理由如下: 连接OP, ∵AB切⊙O于P, ∴OP⊥AB, 取AB的中点C, ∴AB=2OC; 当OC=OP时,OC最短, 即AB最短, 此时AB=4.

相关文档
最新文档