高中数学专题讲义-二项式定理-求展开式中的指定项

高中数学专题讲义-二项式定理-求展开式中的指定项
高中数学专题讲义-二项式定理-求展开式中的指定项

1.二项式定理

⑴二项式定理

()

()011222...n

n n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N

这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项

011222...n n n n n

n n n n C a C a b C a b C b --++++叫做()n

a b +的二项展开式,其中的系数

()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,

即通项为展开式的第1r +项:1r n r r

r n

T C a b -+=. ⑶二项式展开式的各项幂指数

二项式()n

a b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n .

②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意

①通项1r n r r

r n

T C a b -+=是()n

a b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()n

b a +的展开式的第1r +项r n r r

n C b a -是有区别的,应用二项式

定理时,其中的a 和b 是不能随便交换的.

③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.

④通项公式是()n

a b +这个标准形式下而言的,如()n

a b -的二项展开式的通项公式是

()11r

r n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r

r n T C a b -+=是不同的,在这

知识内容

求展开式中的指定项

里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1r

r n C -,一个是r n C ,可看出,二项式系数与项的系数是不同的概念.

⑤设1,a b x ==,则得公式:()12211......n

r r n n

n n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r r

n

C a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素, 只要知道其中四个即可求第五个元素.

⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值.

2.二项式系数的性质

⑴杨辉三角形:

对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算.

杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.” ⑵二项式系数的性质:

()

n

a b +展开式的二项式系数是:012,,,...,n

n n n n C C C C ,从函数的角度看r n C 可以看成是r 为自

变量的函数()f r ,其定义域是:{}0,1,2,3,...,n . 当6n =时,()f r 的图象为下图:

这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质. ①对称性:与首末两端“等距离”的两个二项式系数相等.

事实上,这一性质可直接由公式m n m n n C C -=得到.

②增减性与最大值

如果二项式的幂指数是偶数,中间一项的二项式系数最大; 如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大.

由于展开式各项的二项式系数顺次是 ()01

211,,112

n n n n n n C C C -===

?, ()()3

12123

n n n n C --=

??,..., ()()()

()

112...2123....1k n n n n n k C k ----+=

????-,()()()()

()12...21123...1k

n

n n n n k n k C k k

---+-+=???-,...,

1n

n C =.

其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如,1,2,...n n n --),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以

一个大于1的数则变大,而乘以一个小于1的数则变小,从而当k 依次取1,2,3,…等值时,r n C 的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间. 当n 是偶数时,1n +是奇数,展开式共有1n +项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为2n n

C .

当n 是奇数时,1n +是偶数,展开式共有1n +项,所以有中间两项. 这两项的二项式系数相等并且最大,最大为1

122n n n

n

C

C

-+=.

③二项式系数的和为2n ,即012......2r n n n

n n n n C C C C C ++++++=. ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即

024135

1......2n n n n n n n C C C C C C -+++=+++=.

常见题型有:

求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.

【例1】 6

32x ?

- ?

的展开式中的第四项是 .

【例2】 6

y x ??

的展开式中,3x 的系数等于_ ___.

典例分析

【例3】 ((3

5

11+的展开式中x 的系数是

A .4-

B .2-

C .2

D .4

【例4】 若9

a x x ?

?- ??

?的展开式中3x 的系数是84-,则a = .

【例5】 5

a x x ?

?+ ??

?()x ∈R 展开式中3x 的系数为10,则实数a 等于

A .1-

B .

1

2

C .1

D .2

【例6】 若2012(12)n n n x a a x a x a x -=++++L ,则2a 的值是( )

A .84

B .84-

C .280

D .280-

【例7】 8()x -的展开式中62x y 项的系数是( )

A .56

B .56-

C .28

D .28-

【例8】 若()5

54541031x a x a x a x a +=++???++,则2a 的值为( )

A .270

B .2702x

C . 90

D .902x

【例9】 64(1(1-+的展开式中x 的系数是_______(用数字作答).

【例10】 在25(42)x x ++的展开式中,x 的系数为_______(用数字作答).

【例11】 在25(42)x x ++的展开式中,2x 的系数为_______(用数字作答).

【例12】 在25(42)x x ++的展开式中,3x 的系数为_______(用数字作答).

【例13】 求294(31)(21)x x x +-+展开式中含2x 项系数.

【例14】 在26(1)(1)(1)x x x ++++++L 的展开式中,2x 项的系数是 .(用数字作答)

【例15】 2345(1)(1)(1)(1)(1)x x x x x ---+---+-的展开式中2x 的系数等于________.(用

数字作答)

【例16】 29

1()2x x

-

展开式中9x 的系数是_______(用数字作答)

【例17】 在8(1)(1)x x -+的展开式中5x 的系数是( )

A .?14

B .14

C .?28

D .28

【例18】 在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( )

A .15-

B .85

C .120-

D .274

【例19】 在56789(1)(1)(1)(1)(1)x x x x x -+-+-+-+-的展开式中,含3x 项的系数是

(用数字作答)

【例20】 求26(1)x x +-展开式中5x 的系数.

【例21】 64(1(1-+的展开式中x 的系数是_______(用数字作答).

【例22】 在25(42)x x ++的展开式中,x 的系数为_______(用数字作答).

【例23】 在25(42)x x ++的展开式中,2x 的系数为_______(用数字作答).

【例24】 在25(42)x x ++的展开式中,3x 的系数为_______(用数字作答).

【例25】 求294(31)(21)x x x +-+展开式中含2x 项系数.

【例26】 在26(1)(1)(1)x x x ++++++L 的展开式中,2x 项的系数是 .(用数字作答)

【例27】 2345(1)(1)(1)(1)(1)x x x x x ---+---+-的展开式中2x 的系数等于________.(用

数字作答)

【例28】 29

1()2x x

-

展开式中9x 的系数是_______(用数字作答)

【例29】 在8(1)(1)x x -+的展开式中5x 的系数是( )

A .?14

B .14

C .?28

D .28

【例30】 在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( )

(A )15- (B )85 (C )120- (D )274

【例31】 在56789(1)(1)(1)(1)(1)x x x x x -+-+-+-+-的展开式中,含3x 项的系数是

(用数字作答)

【例32】 求26(1)x x +-展开式中5x 的系数.

【例33】 在二项式5

21x x ?

?- ??

?的展开式中,含4x 的项的系数是( )

A .10-

B .10

C .5-

D .5

【例34】 34(12)(1)x x +-的展开式中x 的系数是______,2x 的系数为______.

【例35】 411(1)x x ??++ ??

?的展开中含2

x 的项的系数为( )

A .4

B .6

C .10

D .12

【例36】 ()()

6

4

11x

x -+的展开式中x 的系数是( )

A .4-

B .3-

C .3

D . 4

【例37】 求()()310

11x x -+展开式中5x 的系数;

【例38】 在二项式5

21x x ?

?- ??

?的展开式中,含4x 的项的系数是( )

A .10-

B .10

C .5-

D .5

【例39】

6(2)x +的展开式中3x 的系数是( ) A .20

B .40

C .80

D .160

【例40】 在4(1的展开式中,x 的系数为 (用数字作答)

【例41】 在((3

3

3

(1)11x +++的展开式中,x 的系数为 _____ (用数字作答)

【例42】 9

1x x ??- ??

?的二项展开式中含3x 的项的系数为( ) A .36-

B .84-

C .36

D .84

【例43】 若261()x ax +

的二项展开式中3x 的系数为5

,2

则a = .

(用数字作答)

【例44】 设常数0a >,24(ax

展开式中3x 的系数为

3

2

,则a =_____.

【例45】 已知26(1)kx +(k 是正整数)的展开式中,8x 的系数小于120,则k = .

【例46】 已知5(cos 1)x θ+的展开式中2x 的系数与45

()4

x +的展开式中3x 的系数相等

cos θ= .

【例47】 10

的二项展开式的第6项的系数为( )

A .210-

B .252-

C .210

D .252

【例48】 若261()x ax +

的二项展开式中3x 的系数为5

,2

则a =__________.

(用数字作答)

【例49】 若21()n x m ++与2(1)(*0)n mx n m +∈≠N ,

的展开式中含n x 的系数相等,则实数m 的取值范围是( )

A .12(]23,

B .2[1)3

, C .

(0)-∞, D .(0)+∞,

【例50】 已知()π

0sin cos a x x dx =+?,则二项式6

? ?

展开式中含2x 项的系数

是 .

【例51】 在7(1)ax +的展开式中,3x 的系数是2x 的系数与4x 的系数的等差中项,若实数

1a >,那么_______a =.

【例52】 已知26(1)kx +(k 是正整数)的展开式中,8x 的系数小于120,则k =______.

【例53】

4(的展开式中33x y 的系数为 .

【例54】 若(1)n x +的展开式中,3x 的系数是x 的系数的7倍,求n ;

【例55】

10()x y -的展开式中,73x y 的系数与37x y 的系数之和等于__________.

【例56】 已知a 为实数,10()x a +展开式中7x 的系数是15-,则a =_______.

【例57】 二项式41n

x ?

? ??

?的展开式中第三项系数比第二项系数大44,求第4项的系数.

【例58】 求9

1x x ?

?- ??

?的二项展开式中含3x 的项的二项式系数与系数.

【例59】 若12n

x x ?

?+ ??

?的展开式中前三项的系数成等差数列,则展开式中4x 项的系数为

_______.

【例60】 令n a 为1()(1)n n f x x +=+的展开式中含1n x -项的系数,则数列1

{}n

a 的前2009项和为

______.

【例61】 在7(1)ax +(1)a >的展开式中,3x 的系数是2x 的系数与4x 的系数的等差中项,

求a 的值.

【例62】 已知()5

2551110ax x bx a x +=++++L ,则b = .

【例63】 在()1n

x +展开式中,3x 与2x 的系数分别为a b ,

,如果3a

b =,那么b 的值为( ) A .70

B .60

C .55

D .40

【例64】 若5(1)ax -的展开式中3x 的系数是80-, 则实数a 的值是_______.

【例65】 设常数0a >,4

2ax

?+ ?

展开式中3

x 的系数为32,则a = .

【例66】 若12n

x x ?

?- ??

?展开式中含21x 项的系数与含41x 项的系数之比为5-,则n 等于

( )

A .4

B .6

C .8

D .10

【例67】 设n a 为1()(1)n n f x x +=+的展开式中含1n x -项的系数,则数列1n a ??

????

的前n 项和为

_____

【例68】 已知12n

x x ?

?+ ??

?展开式的第二项与第三项的系数比是1:2,则n =________.

【例69】 在220(1)x -的展开式中,如果第4r 项和第2r +项的二项式系数相等,则第4r 项

为______

【例70】 若在二项式10(1)x +的展开式中任取一项,则该项的系数为奇数的概率是_____.

【例71】 已知lg lg 2(21)x n x ++展开式中最后三项的系数的和是方程2lg(7272)0y y --=的正

数解,它的中间项是410+x 的值.

【例72】 设数列{}n a 是等比数列,31

1232C m m m a +-=Α,公比q 是4

21()4x x

+

的展开式的第二项. ⑴用n x ,表示通项n a 与前n 项和n S ;

⑵若1212C C C n n n n n n A S S S =+++L 用n x ,表示n A

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

(完整word)高中数学二项式定理练习题

选修2-3 1.3.1 二项式定理 一、选择题 1.二项式(a +b )2n 的展开式的项数是( ) A .2n B .2n +1 C .2n -1 D .2(n +1) 2.(x -y )n 的二项展开式中,第r 项的系数是( ) A .C r n B . C r +1n C .C r -1n D .(-1)r -1C r -1n 3.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610 B .27 C 410 C .-9C 610 D .9C 410 4.(2010·全国Ⅰ理,5)(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4 5.在? ?? ??2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( ) A .3 B .5 C .8 D .10 6.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297 B .-252 C .297 D .207 7.(2009·北京)在? ?? ??x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3 B .4 C .5 D .6 8.(2010·陕西理,4)(x +a x )5(x ∈R )展开式中x 3的系数为10,则实数a 等于 ( ) A .-1 B.12 C .1 D .2

9.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是 ( ) A.112<x <15 B.16<x <15 C.112<x <23 D.16<x <25 10.在? ????32x -1220的展开式中,系数是有理数的项共有( ) A .4项 B .5项 C .6项 D .7项 二、填空题 11.(1+x +x 2)·(1-x )10的展开式中,x 5的系数为____________. 12.(1+x )2(1-x )5的展开式中x 3的系数为________. 13.若? ?? ??x 2+1ax 6的二项展开式中x 3的系数为52,则a =________(用数字作答). 14.(2010·辽宁理,13)(1+x +x 2)(x -1x )6的展开式中的常数项为________. 三、解答题 15.求二项式(a +2b )4的展开式. 16.m 、n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数. 17.已知在(3x -123x )n 的展开式中,第6项为常数项.

高中数学知识清单完整版

一、集合的含义与表示 (1)集合中元素的三个特征:确定性、互异性、无序性。 (2)元素与集合的关系有且仅有两种:属于(用符号“∈”表示)和不属于(用符号“?”表示)。 (3)常用数集及其表示符号 (4)集合的表示法:列举法;描述法;图示法。 二、集合间的基本关系 三、集合的基本运算 x x } x B ∈ x x } x B ∈ (1)A A ?=; (2)A A A =; A B B = B A =? A (1)A?=? (2)A A A =; A B B = (4)A B A =? A B ? () U C A= () U U C A= (4)()( U C A B= (5)()( U C A B= 知识拓展: 设有限集合A中元素的个数为n,则(1) (1)A的子集个数是2n; (2)A的真子集个数是2n-1; (3)A的非空子集个数是2n-1; (4)A的非空真子集个数是2n-2。

一、不等式的定义 用数学符号“>、<、≤、≥、≠”连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,称为不等式。 二、不等式的基本性质 三、比较大小的基本方法 作差法: 理论依据:0;0;0a b a b a b a b a b a b ->?>-?? >?的解集为}{x x b >;(2)x a x b ?? ?的解集为? 2、二次函数、一元二次方程与一元二次不等式 2y ax bx =+(0)a >的图像3、绝对值不等式 (1)当0a >时,有{ x a x x a >?>或}x a <;{ }x a x a x a ?≠;0x

高三数学 二项式定理

二项式定理 1. 知识精讲: (1)二项式定理:()n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(* ∈N n ) 其通项是=+1r T r r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555 156b a C T T n n -+== 亦可写成:=+1r T r n r n a b a C )( ()()()n n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=---ΛΛ(*∈N n ) 特别地:()n n n r n r n n n n n x C x C x C x C x +++++=+-ΛΛ101(* ∈N n ) 其中,r n C ——二项式系数。而系数是字母前的常数。 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 解:设n n n n n n n C C C C S 13 21393-++++=Λ,于是: n n n n n n n C C C C S 333333 3221++++=Λ=133333 32210 -+++++n n n n n n n C C C C C Λ 故选D 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求91 ()x x -的展开式中3 x 的系数及二项式系数解:(1)7 (12)x +的展开式的第四项是333317(2)280T C x x +==, ∴7 (12)x +的展开式的第四项的系数是280. (2)∵9 1()x x -的展开式的通项是9921991 ()(1)r r r r r r r T C x C x x --+=-=-, ∴923r -=,3r =, ∴3x 的系数339(1)84C -=-,3 x 的二项式系数3984C =. (2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的 二项式系数相等,即ΛΛ,,,,22110k n n k n n n n n n n n n n C C C C C C C C ---==== ②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。如果

(完整word版)高考数学二项式定理专题复习专题训练)

二项式定理 1.二项式定理:)*()(011111100N n b a C b a C b a C b a C b a n n n n n n n n n n n ∈++???++=+---. 2.二项式定理的说明: (1)()n a b +的二项展开式是严格按照a 的降次幂(指数从n 逐项减到0)、 b 的升次幂(数从0逐项减到n )排列的,其顺序不能更改,且各项关于a 、b 的指数之和等于n 。所以()n a b +与()n b a +的二项展开式是不同的。 (3)二项式项数共有(1)n +项,是关于a 与b 的齐次多项式。 (4)二项式系数:展开式中各项的系数为1-r n C ,1,...,3,2,1+=n r . (5)二项式通项:展开式中的第r 项记作r T , )(1,...,3,2,11 11+==--+-n r b a C T r r n r n r ,共有(1)n +项。 (6)正确区分二项式系数与项的系数:二项式系数依次是 012,,,,,,.r n n n n n n C C C C C ?????? 项的系数是a 与b 的系数(包括二项式系数)。 如:n n r r n n n n n n n n b C b a C b a C b a C a C b a )()()()()(----n r 2221110+???++???+++=---的 第2项的二次项系数为1n C ,而第2项的系数为1 n C -. (7)常见二项式: 令1,,a b x ==)*()1(111100N n x C x C x C x C x n n n n n n n n n ∈++???++=+--; 令1,,a b x ==-)*()1()1(221100N n x C x C x C x C x n n n n n n n n ∈-+???++-=-. 3.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等: 即k n n k n n n n n n n C C C C C C --=???==,,,110 .

高中数学 2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2, ,).r n r r r n T C a b r n -+== 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C ++ += (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02 213 21 12.r r n n n n n n n C C C C C C +-++ ++ =++ ++ = (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

(完整版)二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,123121-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类 似地,100 3)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5 510C x ;用 3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

(推荐)高中数学二项式定理

二项式定理 【2011?新课标全国理,8】51()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为( ). A .-40 B .-20 C .20 D .40 【答案】D 【最新考纲解读】 二项式定理 (1)能用计数原理证明二项式定理. (2)会用二项式定理解决与二项展开式有关的简单问题. 【回归课本整合】 1.二项式定理的展开式 011()n n n r n r r n n n n n n a b C a C a b C a b C b --+=+++++,其中组合数r n C 叫做第r +1项的二 项式系数;展开式共有n +1项. 注意:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1 时,系数就是二项式系数。如在()n ax b +的展开式中,第r+1项的二项式系数为r n C ,第

3.项的系数和二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等( m n m n n C C- = ). 【方法技巧提炼】

(2)()()n m a b c d ++结构:①若n 、m 中一个比较小,可考虑把它展开得到多个;②观察()()a b c d ++是否可以合并;③分别得到()()n m a b c d ++、 的通项公式,综合考虑. 例2 61034(1)(1)x x 展开式中的常数项为( ) A .1 B .46 C .4245 D .4246

答案: D 例3 5 )2 1 2 (+ + x x 的展开式中整理后的常数项为 .

答案: 632 例5 若对于任意实数x,有 323 0123 (2)(2)(2) x a a x a x a x =+-+-+- ,则2 a的值为()

高考数学 《二项式定理》

二项式定理 主标题:二项式定理 副标题:为学生详细的分析二项式定理的高考考点、命题方向以及规律总结。 关键词:二项式定理,二项式系数,项系数 难度:2 重要程度:4 考点剖析: 1.能用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题. 命题方向: 1.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题. 2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n项; (2)求二项展开式中的特定项; (3)已知二项展开式的某项,求特定项的系数. 规律总结: 1个公式——二项展开式的通项公式 通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点: (1)C r n a n-r b r是第r+1项,而不是第r项; (2)通项公式中a,b的位置不能颠倒; (3)通项公式中含有a,b,n,r,T r+1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”. 3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”; (2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法; (3)展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.

知 识 梳 理 1.二项式定理 二项式定理 (a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *) 二项展开式 的通项公式 T r +1=C r n a n -r b r ,它表示第r +1项 二项式系数 二项展开式中各项的系数C 0 n ,C 1n ,…,C n n 2.二项式系数的性质 (1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n . (2)二项式系数先增后减中间项最大 当n 为偶数时,第n 2 +1项的二项式系数最大,最大值为2n n C ;当n 为奇数时,第n +1 2项和n +3 2项的二项式系数最大,最大值为21 -n n C 或21 +n n C . (3)各二项式系数和:C 0 n +C 1n +C 2n +…+C n n =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1.

专题26二项式定理(原卷版)

专题26 二项式定理(原卷版) 易错点1:混淆通项公式1r n r r r n T C a b -+=与展开式中的第r 项 易错点2:混淆二项式展开式中a,b 排列顺序设置陷阱 易错点3:混淆二项式系数和项的系数 易错点4:混淆二项式最大项与展开式系数最大项 考点1 求二项展开式中特定项或指定项的系数 题组一 1.10)21(x +的展开式的第4项是 . 题组二 2.(2016年全国I)5(2x +的展开式中,x 3的系数是 .(用数字填写答案) 3.(2018全国卷Ⅲ)252()x x +的展开式中4 x 的系数为( ) A .10 B .20 C .40 D .80 4.6(42)x x --(x ∈R)展开式中的常数项是______. 题组三 5.(2019全国III 理4)24(12)(1)x x ++的展开式中x 3的系数为( ) A .12 B .16 C .20 D .24 6.(2017新课标Ⅲ)621 (1)(1)x x ++展开式中2x 的系数为( ) A .15 B .20 C .30 D .35 7.64(1)(1)x x -+的展开式中x 的系数是_____.(用数字作答). 题组四 8.25()x x y ++的展开式中, 52x y 的系数为_______.(用数字作答). 9.(2017新课标Ⅲ)5()(2)x y x y +-的展开式中33x y 的系数为

A .-80 B .-40 C .40 D .80 10.(2014新课标1)8 ()()x y x y -+的展开式中27x y 的系数为 .(用数字填写答案) 考点2 已知二项展开式某项的系数求参数 题组五 11.(2014新课标2)()10x a +的展开式中,7x 的系数为15,则a =___.(用数字填写答案) 12.()()511ax x ++的展开式中的系数为5, ______. 13.(2015新课标2)4()(1)a x x ++ 的展开式中x 的奇数次幂项的系数之和为32, 则a =______. 题组六 14.若n x x )2(-二项展开式的第5项是常数项,则自然数n 的值为______. 15.二项式1(n x -的展开式中含有x 4的项,则n 的一个可能值是( ). A .4 B .6 C .8 D .10 16.(13)(6)n x n N n +∈其中且≥的展开式中5x 与6x 的系数相等,则n =_____. 17.若)(13N n x x n ∈??? ? ?-的展开式中第3项为常数项,则展开式中二项式系数最大的是第____项. 18.若1()n x x +的展开式中第3项与第7项的二项式系数相等,则该展开式中 2 1x 的系数为___. 考点3 二项式各项系数的和与二项式系数的区别 题组七 19.5 12a x x x x ????+- ???? ???的展开式中各项系数的和为2,则该展开式中常数项为____

高中数学知识清单完整版

一、集合的含义与表示 (1)集合中元素的三个特征:确定性、互异性、无序性。 (2)元素与集合的关系有且仅有两种:属于(用符号“∈”表示)和不属于(用符号“?” 表示)。 (3)常用数集及其表示符号 (4)集合的表示法:列举法;描述法;图示法。 二、集合间的基本关系 三、集合的基本运算

x x }x B ∈ x x }x B ∈ (1)A A ?=(2)A A A =; A B B =A B A =? (1)A ?=?(2)A A A =; A B B =; (4) A B A =? A B ? ()U C A =()U U C A =(4)()(U C A B =(5)U C 知识拓展: 设有限集合A 中元素的个数为n ,则(1) (1)A 的子集个数是2n ; (2)A 的真子集个数是2n -1; (3)A 的非空子集个数是2n -1; (4)A 的非空真子集个数是2n -2。 一、不等式的定义 用数学符号“> 、< 、≤ 、≥ 、≠ ”连接两个数或代数式以表示它 们之间的不等关系,含有这些不等号的式子,称为不等式。 二、不等式的基本性质

三、比较大小的基本方法 作差法: 理论依据:0;0;0 a b a b a b a b a b a b ->?>- ? ? > ? 的解集为} {x x b>;(2)x a x b < ? ? < ? 的解集为} {x x a<; (3)x a x b > ? ? < ? 的解解为} {x a x b <<;(4) x a x b < ? ? > ? 的解集为? 2、二次函数、一元二次方程与一元二次不等式 二次函 2 y ax bx =+

二项式展开式专题

二项式展开式专题 一、基础知识: 1、二项式()()n a b n N *+∈展开式 () 011222n n n n r n r r n n n n n n n a b C a C a b C a b C a b C b ---+=++++++,从恒等式中我们 可以发现这样几个特点 (1)()n a b +完全展开后的项数为()1n + (2)展开式按照a 的指数进行降幂排列,对于展开式中的每一项,,a b 的指数呈此消彼长的特点。指数和为n (3)在二项式展开式中由于按a 的指数进行降幂排列,所以规定“+”左边的项视为a ,右边的项为b ,比如:()1n x +与()1n x +虽然恒等,但是展开式却不同,前者按x 的指数降幂排列,后者按1的指数降幂排列。如果是()n a b -,则视为()n a b +-????进行展开 (4)二项展开式的通项公式1r n r r r n T C a b -+= (注意是第1r +项) 2、二项式系数:项前面的01,,,n n n n C C C 称为二项式系数,二项式系数的 和为2n 二项式系数的来源:多项式乘法的理论基础是乘法的运算律(分配律,交换律,结合律),所以在展开时有这样一个特征:每个因式都必须出项,并且只能出一项,将每个因式所出的项乘在一起便成为了展开时中的某项。对于()n a b +可看作是n 个()a b +相乘,对于n r r a b - 意味着在这n 个()a b +中,有()n r -个式子出a ,剩下r 个式子出b ,那么这种出法一共有r n C 种。所以二项式展开式的每一项都可看做是一个组合问题。而二项式系数便是这个组合问题的结果。

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

二项式定理专题复习教学内容

二项式定理知识点、题型与方法归纳 一.知识梳理 1.二项式定理:)()(*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+--ΛΛ.其中) ,,2,1,0(n r C r n Λ=叫二项式系数.式中的r r n r n b a C -叫二项展开式的通项,用1+r T 表示,即通项r r n r n r b a C T -+=1. 2.二项展开式形式上的特点: (1)项数为n +1; (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n . (3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0n ,C 1 n ,一直到C n - 1n ,C n n . 3.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n r n n C C -= (2)增减性与最大值:二项式系数C k n ,当k <n +1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项1122n n n n C C -+=取得最大值. (3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5 n +…=2 n - 1. 一个防范 运用二项式定理一定要牢记通项T r +1=C r n a n -r b r ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 两种应用 (1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等. (2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质 (1)对称性;(2)增减性;(3)各项二项式系数的和; 二.题型示例 【题型一】求()n x y +展开特定项 例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( ) B A.6 B.7 C.8 D.9

高中数学拓展知识一戴德金分割

高中数学拓展知识 戴德金分割 无理数引发的数学危机一直延续到19世纪。直到1872年,德国数学家戴德金(Dedekind )从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。 事实上,实数系的逻辑结构问题在19世纪后叶才引起数学家的重视。欧几里得(Euclid )关于比的理论的发展,两个无公度比的相等,只是在几何上可以适用。尽管如此,他的理论已经具备定义无理数的基本思想了。实际上,戴德金(Dedekind )定义无理数的方法确实借鉴了这种思想。 戴德金(Dedekind )是在直线划分的启发下来定义无理数的。他注意到把直线上的点划分为两类,使一类中的每一个点位于另一类中每一个点的左边,就必有一个且只有一个点产生这个划分。这一事实使得直线是连续的。他把这个思想运用到数系上来,就得到戴德金(Dedekind )划分。 将一切有理数的集合划分为两个非空不相交的子集1A 和2A ,使得1A 中的每一个元素小于2A 中的每一个元素,这时戴德金把这个划分定义为有理数的一个分割。即(1A ,2A )表示这个分割。 用数学语言表述戴德金分割:设1A 和2A 是满足以下三个条件的Q 的两个子集: (1)1A 和2A 都不是空集; (2)1A ∪2A Q =; (3)若1α∈1A ,2α∈2A ,则21αα<(从而1A ∩2A =φ)。

我们称序对(1A ,2A )为一个分割,并分别称1A 和2A 为该分割的下类和上类。 在一些分割中,或者1A 有最大数,或者2A 有最小数,这样的分割由一个有理数确定。 例如,对任一Q α∈,令A 1={x ∈Q|x<α},2A x Q|x α={∈≥},则(1A ,2A )显然是一个分割。 又令1B x Q|x α={∈≤},2B x Q|x α={∈>},显然(1B ,2B )也是一个分割。其中,(1A ,2A )的上类A 2有最小数α,(1B ,2B )的下类有最大数α,我们把这种分割称为有端分割。 有端分割对应所有的有理数。 下类无最大数且上类无最小数的分割称为无端分割。 无端分割是存在的。例如213C x Q|x ={∈<},223C x Q|x ={∈>}。 显然(C 1,C 2)的下类C 1无最大数,上类C 2无最小数。 对每一个可能的Q 的无端分割,都定义一个新数来填补Q 中的空隙;反之,每一个新数()Q α?也可对应Q 的一个无端分割: {}A x Q x α=∈<, {}A x Q x α'=∈>。 正是因为无端分割与新数一一对应的,所以不妨把无端分割本身用来充当新数。 我们称Q 的全体分割为分割集,用R 表示。 其中R 中任意两个元素(,)A A α'=与(,)B B β'=之间的序关系可定义如下: 在下类A 与B 都无最大元的约定下,若A B ≠ ?,则说αβ<;若A B =,则说αβ=;若A B ≠ ?,则说αβ>。

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素

高三数学-二项式定理

10.3二项式定理强化训练 【基础精练】 1.在二项式(x 2-1 x )5的展开式中,含x 4的项的系数是 ( ) A .-10 B .10 C .-5 D .5 2.(2009·北京高考)若(1+2)5=a +b 2(a ,b 为有理数),则a +b = ( ) A .45 B .55 C .70 D .80 3.在( 1x + 51 x 3 )n 的展开式中,所有奇数项的系数之和为1 024,则中间项系数 是 ( ) A .330 B .462 C .682 D .792 4.如果? ?? ?? 3x 2-2x 3n 的展开式中含有非零常数项,则正整数n 的最小值为 ( ) A .10 B .6 C .5 D .3 5.在? ? ??? 2x -y 25的展开式中,系数大于-1的项共有 ( ) A .3项 B .4项 C .5项 D .6项 6.二项式41(1)n x +-的展开式中,系数最大的项是 ( ) A .第2n +1项 B .第2n +2项 C .第2n 项 D .第2n +1项和第2n +2项 7.若(x 2+1 x 3)n 展开式的各项系数之和为32,则其展开式中的常数项是________. 8.( x +2 x 2)5的展开式中x 2的系数是________;其展开式中各项系数之和为________.(用 数字作答) 9.若? ? ? ??2x - 229 的展开式的第7项为214,则x =________. 10.已知(x - 124 x )n 的展开式中,前三项系数的绝对值依次成等差数列.

(1)证明:展开式中没有常数项; (2)求展开式中所有有理项. 11.设(2x-1)5=a0+a1x+a2x2+…+a5x5,求: (1)a0+a1+a2+a3+a4; (2)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|; (3)a1+a3+a5; (4)(a0+a2+a4)2-(a1+a3+a5)2. 【拓展提高】 1.在(3x-2y)20的展开式中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.

二项式定理练习题

10.3二项式定理 【考纲要求】 1、能用计数原理证明二项式定理. 2、会用二项式定理解决与二项展开式有关的简单问题. 【基础知识】 1、二项式定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( 二项式的展开式有1n +项,而不是n 项。 2、二项式通项公式:r r n r n r b a C T -+=1 (0,1,2,,r n =???) (1)它表示的是二项式的展开式的第1r +项,而不是第r 项 (2)其中r n C 叫二项式展开式第1r +项的二项式系数,而二项式展开式第1r +项的 系数是字母幂前的常数。 (3)注意0,1,2,,r n =??? 3、二项式展开式的二项式系数的性质 (1)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。即 m n C =m n n C - (2)增减性和最大值:在二项式的展开式中,二项式系数先增后减,且在中间取得最大值, 如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等且最大。 (3)所有二项式系数的和等于2n ,即n n n n n n n n n n C C C C C C 212210=++++++--ΛΛ 奇数项的二项式系数和与偶数项的二项式系数和相等,即 15314202-=+++=+++n n n n n n n C C C C C C ΛΛΛΛ 4.二项展开式的系数0123,,,,n a a a a a ???的性质: 对于2012()n n f x a a x a x a x =++++g g g 0123(1)n a a a a a f ++++???+=, 0123(1)(1)n n a a a a a f -+-+???+-=- 5、证明组合恒等式常用赋值法。 【例题精讲】 例1 若,,......)21(2004200422102004R x x a x a x a a x ∈++++=-求(10a a +)+(20a a +)+……+(20040a a +) 解:对于式子:,,......)21(2004200422102004R x x a x a x a a x ∈++++=- 令x=0,便得到:0a =1

二项式定理的十一种考题解法

二项式定理的十一种考题解法 1.二项式定理: 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用 1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n , 是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是 012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等, 即0n n n C C =,···1k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为 0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11 222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???=?=L ④奇数项的系数和与偶数项的系数和: ⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项 式系数1 2n n C -,12n n C +同时取得最大值。 ⑥系数的最大项:求()n a bx +展开式中最大的项,一般采用待定系数法。设 展开式中各项系数分别 为121,,,n A A A +???,设第1r +项系数最大,应有112 r r r r A A A A +++≥??≥?,

相关文档
最新文档