信号分析方法总结

信号分析方法总结
信号分析方法总结

信号分析方法总结

随机信号:不能用明确的数学表达式来表示,它反映的通常是一个随机过程,只能用概率和统计的方法来描述。

随机现象的单个时间历程称为样本函数。随机现象可能产生的全部样本函数的集合,称为随机过程

振动信号的时域分析方法

时间历程

描述信号随着时间的变化情况。

时间(s)

幅值(g )

试验速度:350km/h

平均值 ∑=-

=

N

i i x N

x 1

1

均方值用来描述信号的平均能量或平均功率 ∑=-=

N

i i

x

N

x 1

22

1

均方根值(RMS )为均方值的正平方根。是信号幅度最恰当的量度 方差表示信号偏离其均值的程度,是描述数据的动态分量∑=---=N

i i x

x x N 1

22

)(11σ 斜度α反映随机信号的幅值概率密度函数对于纵坐标的不对称性∑==

N

i i

N

x

1

31

α

峭度β对大幅值非常敏感。当其概率增加时,β值将迅速增大,有利于探测奇异振动信号

∑==

N

i i N

x 1

14β

信号的预处理:

1 预滤波

2 零均值化:消除数据中的直流分量

)()()(^n x

n x n x -

-=。 3 错点剔除:以标准差为基础的野点剔除法

4 消除趋势项

相关分析

1 自相关分析a=xcorr(x)

自相关函数描述一个时刻的信号与另一时刻信号之间的相互关系

?+?=T

xx dt t x t x T R 0

)()(1)(ττ

工程上利用自相关函数检查混杂在随机噪声中有无周期性信号

2 互相关函数a=xcorr(x,y)

?+?=T

xy dt t y t x T R 0

)()(1)(ττ

利用互相关函数所提供的延迟信号,可以研究信号传递通道和振源情况,也可以检测隐藏在外界噪声中的信号

振动信号的频域分析方法 1 自功率谱密度函数(自谱)

自功率谱描述了信号的频率结构,反映了振动能量在各个频率上的分布情况,因此在工程上应用十分广泛

?+∞

--=τττπd e R f S f j xx xx 2)()(

试验速度:350km/h

频率Hz

幅值

2 互功率谱密度函数(互谱)

互谱不像自谱那样具有比较明显的物理意义,但它在频率域描述两个随机过程的相关性是有意义的。

?+∞

∞--=τττπd e R f S f j xy xy 2)()(

试验速度:350km/h

频率Hz

幅值g 2/H z

3 频响函数

)

()()(f S f S f H xx xy =

它是被测系统的动力特性在频域内的表现形式

4 相干函数

表示整个频段内响应和激励之间的相关性)(2

f yx γ=0表示不相干,)(2

f yx γ=1完全相干,

即响应完全由激励引起,干扰为零。相干函数可以用来检验频响函数和互谱的测量精度和置信水平,也可以用来识别噪声的声源和非线性程度。一般认为相干值大于0.8时,频响函数的估计结果比较准确可靠。

)

()(|)(|)(22f S f S f S f xx yy yx yx ?=

γ

试验速度:350km/h

频率Hz

幅值

5 倒频谱分析 z=rceps(y)

倒频谱变换是频域信号的傅里叶积分变换再变换。时域信号经过傅里叶变换可转换为频率函数或功率谱密度函数,如果频谱图上呈现出复杂的周期结构而难以分辨时,对功率谱密度取对数后,再进行一次傅里叶积分变换,可以使周期结构呈便于识别的谱线形式。

1000

2000

Frequency

|F F T )

|

5001000

Frequency(Hz)

|p s d ()

|

12ms

|C e p s t r u m |

6 细化分析 czt

细化也称为带选傅里叶分析。其基本原理是对所需细化频段的信号进行频移,滤波,重采样处理,使该频段内的谱线变密

直接利用FFT 变换后的频谱

频率__f

v a l u e

利用CZT 变换后的细化频谱

7 三分之一倍频程谱

将全频域按几何等比级数的间隔划分,使得中心频率fc 取做带宽上、下限f1、f2的几何平均值,且带宽h =f2-f1 总是和中心频率fc 保持一常数关系,h =v×fc 。如果v 等于根号二的倒数(0.707),那么f2=2f1,则定义这样的频率带宽叫倍频程带宽;如果v 等于三倍根号二的倒数(0.236),那么h =0.236fc ,则定义这样的频率带宽为1/3倍频程带宽。

8 多相干分析

多相干分析是指利用相干函数信号间频率上的因果关系进行判断分析,具体的说,就是利用相干函数对某些信号在特定的频段对另一信号的贡献大小进行判断分析。

时频分析

基于傅里叶变换的信号揭示了信号在频域的特征,它们在传统的信号分析与处理的发展史上发挥了极其重要的作用。但是傅里叶变换是一种整体变换也就是说频谱F(w)的任一频率点的值都是由时间历程f(t)在整个时域上的贡献所决定,反之,过程f(t)某一时刻的状态也是由其频谱F(w)在整个频域上的贡献所决定,因此傅里叶变换建立的只是一个域到另一个域的桥梁,并没有把时域和频域组合在一起。这对于平稳信号的分析来说是足够的,但是对于分平稳信号来说就无能为力了。

时频分析的基本思想是设计时间和频率的联合函数用它同时描述信号在不同时间和频率的

能量密度或强度。时间和频率的这种联合函数称为时频分布。时频分析法将时域和频域组合成一体,这就兼顾到非平稳信号的要求。它的主要特点在于时间和频域的局域化,通过时间轴和频率轴两个坐标组成的时频平面,可以得到整体信号在局部时域内的频率组成,或者可以看出整体信号各个频带在局部时间上的分布和排列情况。

短时傅里叶变换STFT

短时傅里叶变换的基本思想是,在传统傅里叶变换的框架中,把非平稳信号看成是一系列短时平稳信号的叠加,而短时性则通过时域上的加窗来实现,并通过一个平移参数来覆盖整个时域,由于它的窗函数是固定的,因此不能解决时间分辨力和频率分辨力的矛盾。

魏格纳—维尔分布

目前对于非平稳信号的分析方法可以分为两类:一类为核函数分解,如短时傅里叶变换,小波变换,核函数分解也称线性时频描述。另一类为能量分布,也称时频能量密度如魏格纳—维尔分布(WVD),科恩类(Cohen)类,与短时傅里叶变换相比,时频能量密度函数具有更好的时频分辨率,但是也会产生交叉项的影响。

HHT 变换

HHT 的实现包含两大部分:经验模式分解(Em-pirical Mode Decomposition ,EMD )和Hilbert 谱分析(Hilbert Spectral Analysis ,HSA )。 EMD 分解

该分解过程基于一个最基本的假设,即采集的数据是由许多基本的内在模态叠加而成,每一种模态对应于一种物理过程,它们或线性或非线性,并且具有相同数目的极值点与过零点,即要求在横坐标轴上下对称分布。不同时间尺度的各种模态根据其特征尺度进行分离。对任意给定时间段,可能同时存在许多运动模态,它们互相叠加得到原始的复杂信号。分离之后每种模态是相互独立的,在连续的过零点之间不存在其他的极值点。 本征模态函数IMF 所要满足的判断条件:

(1)整组数据极的值点和过零点的数目相同或者最多相差一个; (2)局部极大值包络线和与局部极小值包络线的平均值为0。 Hilbert 谱

对于满足条件的任意时间信号f (t ),Hilbert 变换y (t )定义为:

1

()

()f y t P d t ττπ

τ∞

-∞=

-? (9) 1

()

()y f t P d t ττπ

ζ∞

-∞

=-

-?

(10) 式中:P 是Cauchy 主值;式(9)是Hilbert 正变换;式(10)是Hilbert 反变换。(ft )

和y (t )可以组成一个共轭复数对,于是得到对应于实信号(ft )一个复解析信号z (t ):

()()()()()j t z t f t jy t a t e θ=+= (11) 221/2()|()()|z t f t y t =+ (12)

()

()arctan

()

y t t x t θ= (13) 幅度函数a (t )和相位函数兹(t )都是时间的实函数,称之为Hilbert 变换的瞬时幅度和瞬时相位,它们能很好的描述一个信号的局部特性,瞬时相位()t θ对时间的导数,可以定义为瞬时频率:

()

()d t t dt

θω=

(14) 对采样信号进行周期拓延,可以为了有效的抑制进行HHT 时产生的端点效应,对其做自相关处理,可以克服噪声的干扰、凸现特征信号。由于信号经过EMD 分解后会产生一些虚假的IMF 分量,尤其在低频部分,对IMF 分量进行相关系数判断,以达到去除伪分量的目的。

构建仿真信号如下:

y=sin(10*pi*t)+sin(20*pi*t)+rand(1,length(t)) t=0:0.01:1;

先进行周期拓延

时间s

幅值

时间历程

图2(a )周期拓延后的时间历程

自相关函数

时间s

幅值

自相关函数

图2(b )自相关函数时间历程

EMD 分解

IMF 分量

c 1

c 2

c 3

c 4

c 5

时间s

2(c )IMF 分量时间历程

利用相关系数除去虚伪分量

emd 分量后产生了5个IMF 分量,计算各个IMF 分量和自相关时间历程的相关系数,

所以认为IMF4,IMF5为虚假分量,计算IMF1,IMF2,IMF3的瞬时频率,并计算边际谱,如图2(d ),2(e )所示。

时间s

频率H z

瞬时频率

图2(d )自相关去除伪分量后的瞬时频率

频率 / Hz

幅值

hilbert 边际谱

图2(e )自相关去除伪分量后的边际谱

从图2(d ),2(e )中可以看出周期拓延后的自相关序列在去除虚伪分量后具有很好的边界效果,并且剔除了噪声信号对特征信号提取的影响,特征信号在图中得到很好的表达。说明了此方法的可行性

材料分析方法课后答案(更新至第十章)

材料分析方法课后练习题参考答案 2015-1-4 BY:二专业の学渣 材料科学与工程学院

3.讨论下列各组概念的关系 答案之一 (1)同一物质的吸收谱和发射谱; 答:λk吸收〈λkβ发射〈λkα发射 (2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。 答:λkβ发射(靶)〈λk吸收(滤波片)〈λkα发射(靶)。任何材料对X射线的吸收都有一个Kα线和Kβ线。如Ni 的吸收限为0.14869 nm。也就是说它对0.14869nm波长及稍短波长的X射线有强烈的吸收。而对比0.14869稍长的X射线吸收很小。Cu靶X射线:Kα=0.15418nm Kβ=0.13922nm。 (3)X射线管靶材的发射谱与被照射试样的吸收谱。 答:Z靶≤Z样品+1 或Z靶>>Z样品 X射线管靶材的发射谱稍大于被照射试样的吸收谱,或X射线管靶材的发射谱大大小于被照射试样的吸收谱。在进行衍射分析时,总希望试样对X射线应尽可能少被吸收,获得高的衍射强度和低的背底。 答案之二 1)同一物质的吸收谱和发射谱; 答:当构成物质的分子或原子受到激发而发光,产生的光谱称为发射光谱,发射光谱的谱线与组成物质的元素及其外围电子的结构有关。吸收光谱是指光通过物质被吸收后的光谱,吸收光谱则决定于物质的化学结构,与分子中的双键有关。 2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。 答:可以选择λK刚好位于辐射源的Kα和Kβ之间的金属薄片作为滤光片,放在X射线源和试样之间。这时滤光片对Kβ射线强烈吸收,而对Kα吸收却少。 6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少? 答:eVk=hc/λ Vk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv) λ0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm) 其中h为普郎克常数,其值等于6.626×10-34 e为电子电荷,等于1.602×10-19c 故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。 7、名词解释:相干散射、非相干散射、荧光辐射、吸收限、俄歇效应 答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。 ⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。

分析方法总结及优缺点

一、德尔菲法 优点: 1、能充分发挥各位专家的作用,集思广益,准确性高。 2、能把各位专家意见的分歧点表达出来,取各家之长,避各家之短。 3、权威人士的意见影响他人的意见; 4、有些专家碍于情面,不愿意发表与其他人不同的意见; 5、出于自尊心而不愿意修改自己原来不全面的意见。 缺点: 德尔菲法的主要缺点是过程比较复杂,花费时间较长。 适用范围:项目规模宏大且环境条件复杂的预测情境。 二、类比法 优点:1、它不涉及任何一般性原则,它不需要在“一般性原则”的基础上进行推理。它只是一种由具体情况到具体情况的推理方式,其优越性在于它所得出的结论可以在今后的超出原案例事实的情况下进行应用。 2、类比法比其他方法具有更高的精确性; 3、类比过程中的步骤可以文档化以便修改。 缺点: 1 严重依赖于历史数据的可用性; 2 能否找出一个或一组好的项目范例对最终估算结果的精确度有着决 定性的影响; 3 对初始估算值进行调整依赖于专家判断。 适用范围:类比法是按同类事物或相似事物的发展规律相一致的原则,对预测目标事物加以对比分析,来推断预测目标事物未来发展趋向与可能水平的一种预测方法。类比法应用形式很多,如由点推算面、由局部类推整体、由类似产品类推新产品、由相似国外国际市场类推国内国际市场等等。类比法一般适用于预测潜在购买力和需求量、开拓新国际市场、预测新商品长期的销售变化规律等。类比法适合于中长期的预测。 三、回归分析法

优点:1、从收入动因的高度来判断收入变化的合理性,彻底抛弃了前述“无重大波动即为正常”的不合理假设。并且,回归分析不再只是简单的数据比较,而是以一整套科学的统计方法为基础。 、运用回归方法对销售收入进行分析性复核,可以考虑更多的影响因素作为解释变量,即使被审计单位熟悉了这种方法,其粉饰和操纵财务报表的成本也十分高昂。 缺点:需要掌握大量数据, 应用:社会经济现象之间的相关关系往往艰以用确定性的函数关系来描述,它们大多是随机性的,要通过统计观察才能找出其中规律。回归分桥是利用统计学原理描述随机变量间相关关系的一种重要方法。 四、时间序列分析法 优点:根据市场过去的变化趋势预测未来的发展,根据客观事物发展的这种连续规律性,运用过去的历史数据,通过统计分析,进一步推测市场未来的发展趋势。 缺点:运用时间序列分析进行量的预测,实际上将所有的影响因素归结到时间这一因素上,只承认所有影响因素的综合作用,并在未来对预测对象仍然起作用,并未去分析探讨预测对象和影响因素之间的因果关系。由于事物的发展不仅有连续性的特点,而且又是复杂多样的。。 适用范围:中短期预测 五、弹性系数分析法 优点:简单易行,计算方便,计算成本低;需要的数据少,应用灵活广泛。 缺点:1、分析带有一定的局部性和片面性。只考虑两个变量间的关系,忽略了其他相关变量的影响; 2、结果比较粗糙,很多时候要根据弹性系数的变动趋势对弹性系数进行 修正。 应用:应用利用弹性系数预测未来时期能源需求时,可以通过对未来产业结构变化趋势、技术节能潜力等因素的分析,以及参照世界大多数国家发展历程中所皇现的共同规律,给出未来年份能源消费弹性系数的变化趋势或构想方案,以预测未来的能源需求量。

元素分析知识总结

元素分析知识总结 第一章.原子吸收光谱 1·共振线,第一共振线 共振吸收线:原子由基态跃迁到激发态所吸收的谱线。 第一共振线:由基态跃迁到能量最低的激发态所吸收的谱线。这条谱线强度最大, 灵敏度最高。 2·原子吸收谱线的自然宽度、中心频率、半峰宽 原子吸收线并非是一条严格的几何线,而是占据着极窄的频率范围,具有一定 的自然宽度。原子吸收光谱的轮廓以原子吸收谱线的中心频率和半宽度来表征。 半宽度(Δv):是指在极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差。 海森堡测不准原理:当核外电子跃迁到激发态时,激发态的能级和电子在激发态 停留的时间是测不准的,具有不确定度。即: E1 :E1 ±ΔE t1 : t1 ±Δt ΔE·Δt≥h/2π 只有当Δt→∞,ΔE→0 ,此时激发态的能量E1 才有定值,但是电子在激发态的时间只有约10-8,所以激发态的能量E1 是测不准的,只能是一个范围。 而电子在基态是稳定的,所以电子在基态停留时间的Δt→∞,所以ΔE→0 , 基态能量E0具有定值。所以V= (E1 - E0)/h 是测不准的,中心频率具有不 确定度,所以原子吸收线具有自然宽度。自然宽度(ΔυN)一般为10-5nm数量 级。 中心频率半峰宽 3·为什么原子吸收线具有自然宽度? 根据海森堡测不准原理:ΔE·Δt≥h/2π 电子在基态是稳定的,所以电子在基态停留时间的Δt→∞,所以ΔE→0 , 基态能量E0具有定值。而电子在激发态的时间只有约10-8,所以激发态的能量 E1 是测不准的,只能是一个范围。所以谱线的频率V= (E1 - E0)/h 是测不准 的,中心频率具有不确定度,所以原子吸收线具有自然宽度。自然宽度(Δυ N)一般为10-5nm数量级。

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

材料测试分析方法(究极版)

绪论 3分析测试技术的发展的三个阶段? 阶段一:分析化学学科的建立;主要以化学分析为主的阶段。 阶段二:分析仪器开始快速发展的阶段 阶段三:分析测试技术在快速、高灵敏、实时、连续、智能、信息化等方面迅速发展的阶段4现代材料分析的内容及四大类材料分析方法? 表面和内部组织形貌。包括材料的外观形貌(如纳米线、断口、裂纹等)、晶粒大小与形态、各种相的尺寸与形态、含量与分布、界面(表面、相界、晶界)、位向关系(新相与母相、孪生相)、晶体缺陷(点缺陷、位错、层错)、夹杂物、内应力。 晶体的相结构。各种相的结构,即晶体结构类型和晶体常数,和相组成。 化学成分和价键(电子)结构。包括宏观和微区化学成份(不同相的成份、基体与析出相的成份)、同种元素的不同价键类型和化学环境。 有机物的分子结构和官能团。 形貌分析、物相分析、成分与价键分析与分子结构分析四大类方法 四大分析:1图像分析:光学显微分析(透射光反射光),电子(扫描,透射),隧道扫描,原子力2物象:x射线衍射,电子衍射,中子衍射3化学4分子结构:红外,拉曼,荧光,核磁 获取物质的组成含量结构形态形貌及变化过程的技术 材料结构与性能的表征包括材料性能,微观性能,成分的测试与表征 6.现代材料测试技术的共同之处在哪里? 除了个别的测试手段(扫描探针显微镜)外,各种测试技术都是利用入射的电磁波或物质波(如X射线、高能电子束、可见光、红外线)与材料试样相互作用后产生的各种各样的物理信号(射线、高能电子束、可见光、红外线),探测这些出射的信号并进行分析处理,就课获得材料的显微结构、外观形貌、相组成、成分等信息。 9.试总结衍射花样的背底来源,并提出一些防止和减少背底的措施 衍射花样要素:衍射线的峰位、线形、强度 答:(I)花材的选用影晌背底; (2)滤波片的作用影响到背底;(3)样品的制备对背底的影响 措施:(1)选靶靶材产生的特征x射线(常用Kα射线)尽可能小的激发样品的荧光辐射,以降低衍射花样背底,使图像清晰。(2)滤波,k系特征辐射包括Ka和kβ射线,因两者波长不同,将使样品的产生两套方位不同得衍射花样;选择浪滋片材料,使λkβ靶<λk滤<λkα,Ka射线因因激发滤波片的荧光辐射而被吸收。(3)样品,样品晶粒为50μm左右,长时间研究,制样时尽量轻压,可减少背底。 11.X射线的性质; x射线是一种电磁波,波长范围:0.01~1000à X射线的波长与晶体中的原子问距同数量级,所以晶体可以用作衍射光栅。用来研究晶体结构,常用波长为0.5~2.5à 不同波长的x射线具有不同的用途。硬x射线:波长较短的硬x封线能量较高,穿透性较强,适用于金属部件的无损探伤及金属物相分析。软x射线:波长较长的软x射线的能量较低,穿透性弱,可用干分析非金属的分析。用于金属探伤的x射线波长为0.05~0.1à当x射线与物质(原子、电子作用时,显示其粒子性,具有能量E=h 。产生光电效应和康普顿效应等 当x射线与x射线相互作用时,主要表现出波动性。 x射线的探测:荧光屏(ZnS),照相底片,探测器

材料分析方法复习总结

X射线:波长很短的电磁波 特征X射线:是具有特定波长的X射线,也称单色X射线。 连续X射线:是具有连续变化波长的X射线,也称多色X射线。 荧光X射线:当入射的X射线光量子的能量足够大时,可以将原子内层电子击出,被打掉了内层的受激原子将发生外层电子向内层跃迁的过程,同时辐射出波长严格一定的特征X射线 二次特征辐射:利用X射线激发作用而产生的新的特征谱线 Ka辐射:电子由L层向K层跃迁辐射出的K系特征谱线 相干辐射:X射线通过物质时在入射电场的作用下,物质原子中的电子将被迫围绕其平衡位置振动,同时向四周辐射出与入射X射线波长相同的散射X射线,称之为经典散射。由于散射波与入射波的频率或波长相同,位相差恒定,在同一方向上各散射波符合相干条件,称为相干散射 非相干辐射:散射位相与入射波位相之间不存在固定关系,故这种散射是不相干的 俄歇电子:原子中一个K层电子被激发出以后,L层的一个电子跃迁入K层填补空白,剩下的能量不是以辐射 原子散射因子:为评价原子散射本领引入系数f (f≤E),称系数f为原子散射因子。他是考虑了各个电子散射波的位相差之后原子中所有电子散射波合成的结果 结构因子:定量表征原子排布以及原子种类对衍射强度影响规律的参数,即晶体结构对衍射强度的影响 多重性因素:同一晶面族{ hkl}中的等同晶面数 系统消光:原子在晶体中位置不同或种类不同引起某些方向上衍射线消失的现象 吸收限 1 x射线的定义性质连续X射线和特征X射线的产生 X射线是一种波长很短的电磁波 X射线能使气体电离,使照相底片感光,能穿过不透明的物体,还能使荧光物质发出荧光。呈直线传播,在电场和磁场中不发生偏转;当穿过物体时仅部分被散射。对动物有机体能产生巨大的生理上的影响,能杀伤生物细胞。 连续X射线根据经典物理学的理论,一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。 特征X射线处于激发状态的原子有自发回到稳定状态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量的降低。原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。因物质一定,原子结构一定,两特定能级间的能量差一定,故辐射出的特征X射波长一定。 2 x 射线方向理论布拉格方程和艾瓦尔德图解 3 试述解决X射线衍射方向问题常用方法有哪些并进行比较 4 简述材料研究X射线试验方法在材料研究中的主要应用 精确测定晶体的点阵常数物相分析宏观应力测定测定单晶体位相测定多晶的织够问题 5 试推导布拉格方程,解释方程中各符号的意义并说明布拉格方程的应用 假设: 1)晶体视为许多相互平行且d相等的原子面 2)X射线可照射各原子面 3)入射线、反射线均视为平行光 一束波长为λ的平行X射线以θ照射晶体中晶面指数为(hkl)的各原子面,各原子面产生反射。 当Ⅹ射线照射到晶体上时,考虑一层原子面上散射Ⅹ射线的干涉。 当Ⅹ射线以θ角入射到原子面并以θ角散射时,相距为a的两原子散射x射的光程差为: 即是说,当入射角与散射角相等时,一层原子面上所有散射波干涉将会加强。与可见光的反射定律相类似,Ⅹ射线从一层原子面呈镜面反射的方向,就是散射线干涉加强的方向,因此,常将这种散射称

(完整版)材料分析方法期末考试总结

材料分析方法 1.x射线是一种波长很短的电磁波,具有波粒二相性,粒子性往往表现突出,故x射线也可视为一束具有一定能量的光量子流。X射线有可见光无可比拟的穿透能力,可使荧光物质发光,可使气体或其它物质电离等。 2.相干散射:亦称经典散射,物质中的电子在X射线电场的作用下,产生强迫振动。这样每个电子在各方向产生与入射X射线同频率的电磁波。新的散射波之间发生的干涉现象称为相干散射。 3.不相干散射:亦称量子散射,X射线光子与束缚力不大的外层电子,或自由电子碰撞时电子获得一部分动能成为反冲电子,X射线光子离开原来方向,能量减小,波长增加。 4.吸收限:物质原子序数越大,对X射线的吸收能力越强;对一定的吸收体,X射线的波长越短,穿透能力越强,表现为吸收系数的下降,但随着波长的的降低,质量吸收系数并非呈连续的变化,而是在某些波长位置上突然升高,出现了吸收限。 5.荧光辐射:由入射X射线所激发出来的特征X射线称为荧光辐射(荧光X 射线,二次X射线)。 6.俄歇效应:由于光电效应而处于激发态的原子还有一种释放能量的方式,及俄歇效应。原子中一个K层电子被入射光量子击出后,L层一个电子跃入K层填补空位,此时多余的能量不以辐射X光量子放出,而是以另一个L层电子活的能量跃出吸收体,这样的一个K层空位被两个L层空位代替的过程称为俄歇效应,跃出的L层电子称为俄歇电子。 7.光电子:当入射光量子的能量等于或大于吸收体原子某壳体层电子的结合能时,此光量子就很容易被电子吸收,获得能量的电子从内层溢出,成为自由电子,称为光电子。原子则处于激发态,这种原子被入射辐射电离的现象即光电效应。8.滤波片的作用:滤波片是利用吸收限两侧吸收系数差很大的现象制成的,用以吸收不需要的辐射而得到基本单色的光源。 9.布拉格方程只是获得衍射的必要条件而非充分条件。 10.晶面(hkl)的n级反射面(nh nk nl),用符号(HKL)表示,称为反射面或干涉面。 11.掠射角是入射角(或反射角)与晶面的夹角,可表征衍射的方向。 12.衍射极限条件:在晶体中,干涉面的划取是无极限的,但并非所有的干涉面均能参与衍射,因存在关系dsinθ=λ/2,或d>=λ/2,说明只有间距大于或等于X 射线半波长的那些干涉面才能参与反射。 13.劳埃法:采用连续X射线照射不动的单晶体,因为X射线的波长连续可变,故可从中挑选出其波长满足布拉格关系的X射线使产生衍射。 14.周转晶体法:采用单色X射线照射转动的单晶体,并用一张以旋转轴为轴的圆筒形底片来记录。 15.粉末法:采用单色X射线照射多晶体,试样是由数量众多、取向混乱的微晶体组成。 16.吸收因数:由于试样本身对X射线的吸收,使衍射强度的实测值与计算值不符,为了修正这一影响,则在强度公式中乘以吸收因数。 17.温度因数:原子热振动使晶体点阵原子排列的周期性受到破坏,使得原来严格满足布拉格条件的相干散射产生附加的相差,从而使衍射强度减弱。为修正实验温度给衍射强度带来的影响,需要在积分强度公式中乘以温度因数。

常见的信号处理滤波方法

低通滤波:又叫一阶惯性滤波,或一阶低通滤波。是使用软件编程实现普通硬件RC 低通滤波器的功能。 适用范围:单个信号,有高频干扰信号。 一阶低通滤波的算法公式为: Y(n)X(n)(1)Y(n 1)αα=+-- 式中: α是滤波系数;X(n)是本次采样值;Y(n 1)-是上次滤波输出值;Y(n)是本次滤波输出值。 滤波效果1: 红色线是滤波前数据(matlab 中生成的正弦波加高斯白噪声信号) 黄色线是滤波后结果。 滤波效果2:

matlab中函数,相当于一阶滤波,蓝色是原始数据(GPS采集到的x(北)方向数据,单位m),红色是滤波结果。 一阶滤波算法的不足: 一阶滤波无法完美地兼顾灵敏度和平稳度。有时,我们只能寻找一个平衡,在可接受的灵敏度范围内取得尽可能好的平稳度。

互补滤波:适用于两种传感器进行融合的场合。必须是一种传感器高频特性好(动态响应好但有累积误差,比如陀螺仪。),另一传感器低频特性好(动态响应差但是没有累积误差,比如加速度计)。他们在频域上互补,所以进行互补滤波融合可以提高测量精度和系统动态性能。 应用:陀螺仪数据和加速度计数据的融合。 互补滤波的算法公式为: 1122Y(n)X (n)(X (n)Y(n 1))αα+=+-- 式中:1α和2α是滤波系数;1X (n)和2X (n)是本次采样值;Y(n 1)-是上次滤 波输出值;Y(n)是本次滤波输出值。 滤波效果 (测试数据): 蓝色是陀螺仪 信号,红色是加 速度计信号,黄 色是滤波后的 角度。

. 互补滤波实际效果: .

卡尔曼滤波:卡尔曼滤波器是一个“optimal recursive data processing algorithm (最优化自回归数据处理算法)”。对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测。 首先,用于测量的系统必须是线性的。 (k)(k 1)(k)(k)X AX BU w =-++ (k)(k)(k)Z HX v =+ (k)X 是系统k 时刻的状态,(k)U 是系统k 时刻的控制量。(k)Z 是系统k 时 刻的测量值。A 和B 为系统参数,(k)w 和(k)v 分别表示过程和测量的噪声,H 是测量系统参数。 在进行卡尔曼滤波时: 首先进行先验预测: (k 1|k)(k |k)(k)(k)X AX BU w +=++ 计算先验预测方差: '(k 1|k)(k |k)(k)P AP A Q +=+ 计算增益矩阵: (k 1)(k 1|k)'/((k 1|k)'(k 1))Kg P H HP H R +=++++ 后验估计值: (k 1|k 1)(k 1|k)(k 1)(Z(k 1)(k 1|k))X X Kg HX ++=++++-+ 后验预测方差: (k 1|k 1)(1(k 1))(k 1|k)P Kg H P ++=-++ 其中,(k)Q 是系统过程激励噪声协方差,(k)R 是测量噪声协方差。 举例说明: (下文中加粗的是专有名词,需要理解) 预测小车的位置和速度的例子(博客+自己理解):

总结分析自身优缺点

总结分析自身优缺点 优点: 1、做人真诚,做事认真负责。 2、喜欢与人交往,善于组织策划活动和项目。 3、积极务实,敢于主动承担自己的责任。 4、能坚持。确定了正确方向,我就能把所有的力气砸向那个方向。有执行能力。 5、勤奋,善于学习自己感兴趣的知识和事物。做事喜欢列个计划,分出轻重缓急。 缺点: 1、性格方面的弱点,有时给自己压力过大,急于求成,过犹不及。 2、在担任团队领导的时候,涉及到队员的利益的时候,有时为队员考虑的太多,导致做决定的时候会花比较多的时间。 3、工作起来,有时会忘记时间。昨天晚上就很晚睡,大概24:00过的样子,一直忙省分行领导给的2009届新入行大学生培训电子杂志的工作。 对未来职业生涯的展望和规划 我,金融学和信息管理与信息系统双学位毕业,对金融有很浓厚的兴趣。我有一个人生目标:做最有影响力的自己。它不是靠哗众取宠能够得来的,而是需要不断提升梦想的高度、拓展心灵的宽度、累积思想的厚度!我相信,我的人生目标在以后的路上会一直影响我的职业生涯。 有了梦想还要有明确的规划,更要有实际的行动。要记住仰望星空,更要在仰望星空的同时看看脚下,从本职做起、从小事做起、从细节做起,不断努力跳跃并尝试触摸自己的梦想。我知道,我们每个人都会分到下边分理处做柜台,我赞同这种安排,我明白,银行中几乎所有的产品都是会通过柜台面向我们的客户,假如没有柜员的锻炼,我相信,把我们分到其他业务岗位,我们很难上手,因为我们少了在柜员岗的锻炼,不熟悉业务和产品。相反,在我们经历了柜员岗的锻炼后,再把我们分到其他岗位上,我相信,那时我们会更加的有自信,也能更好的完成工作。所以,我会珍惜在柜员岗的机会,铆劲提升自身的业务能力,熟练掌握我们的产品。力争做个业务骨干!这是我在柜员岗对自己一个总体要求! 在柜员岗夯实了业务和产品的基础后,我目前的想法是进公司业务部和销售部门(理财和销贷)工作。公司业务部很累,压力很大,很有挑战,我清楚!但我相信自己的做事态度

信号处理知识点总结

第一章信号 1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体 2.信号的特性:时间特性,频率特性 3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号 若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号 4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的 5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限 6.信号的频谱有两类:幅度谱,相位谱 7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析 第二章连续信号的频域分析 1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数 2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位 4.周期信号频谱的特点:离散性,谐波性,收敛性 5.周期信号由无穷多个余弦分量组成 周期信号幅频谱线的大小表示谐波分量的幅值 相频谱线大小表示谐波分量的相位 6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和 7.非周期信号可看成周期趋于无穷大的周期信号 8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少 9.非周期信号频谱的特点:非周期信号也可以进行正交变换; 非周期信号完备正交函数集是一个无限密集的连续函数集; 非周期信号的频谱是连续的; 非周期信号可以用其自身的积分表示 10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号 11.周期信号的傅里叶变换:周期信号:一个周期绝对可积à傅里叶级数à离散谱 非周期信号:无限区间绝对可积à傅里叶变换à连续谱 12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合 脉冲函数的位置:ω=nω0 , n=0,±1,±2, ….. 脉冲函数的强度:傅里叶复指数系数的2π倍 周期信号的傅立叶变换也是离散的; 谱线间隔与傅里叶级数谱线间隔相同 13.信号的持续时间与信号占有频带成反比 14.信号在时域的翻转,对应信号在频域的翻转 15.频域频移,时域只有相移,幅频不变;时域相移,只导致频域频移,相位不变

钯元素测定分析方法验证报告

Palladium Analytical Method Validation Report 钯元素测定分析法验证报告Effective Day 生效日期:

TABLE OF CONTENTS 目录 1PURPOSE 目的 (3) 2SCOPE 围 (3) 3RESPONSIBILITIES^ (3) 4ABBREVIATIONS 缩略语 (3) 5REGULATIONS AND GUIDELINES 法规和指南 (4) 6REFERENCE DOCUMENTS 参考文件 (4) 7CONFIRMATION PREREQUISITES先决条件确认 (4) 8CONFIRM THE TEST RESULT确认检测结果汇总 (5) 9DEVIATION HANDING 偏差处理总结 (8) 10SUMMARY AND CONCLUSION 总结与结论 (8) 11ADVICE (IF ANY) 建议(如有) (8) 12ATTACHMENT LIST附件清单 (8)

1Purpose 目的 本验证报告的目的是通过记录在案的测试,证明原子吸收分光光度法适用于 原料药(API)中钯元素残留进行定量分析。证明此法适用于盐酸伐昔洛韦钯元素含量检测;6.00ppm 的限度本法可以检出。 2Scope 围 本验证报告适用于盐酸伐昔洛韦中钯元素测定分析法的验证。 3Responsibilities 职责 3.1验证委员会负责验证文件的审批。负责验证的协调工作,以保证本确认文件规定项目的 顺利实施。负责验证数据及结果的审核。 3.2质量管理部负责审核验证文件、及数据的最后确认。负责各种取样验证工作。 负责拟订验证文件。负责验证文件相关确认活动的实施。 3.3生产部负责建立设备档案。负责仪器、仪表的校正。 4Abbreviations 缩略语下面表格中规定了本案中使用的缩略语: 5Regulations and Guidelines 法规和指南 为编写本案,参考了以下法规和指南。 5.1法规 食品药品监督管理总局(CFDA ),中国,药品生产质量管理规(2010 年修订),

材料分析方法部分课后习题答案(供参考)

第一章X 射线物理学基础 2、若X 射线管的额定功率为1.5KW,在管电压为35KV 时,容许的最大电流是多少? 答:1.5KW/35KV=0.043A。 4、为使Cu 靶的Kβ线透射系数是Kα线透射系数的1/6,求滤波片的厚度。 答:因X 光管是Cu 靶,故选择Ni 为滤片材料。查表得:μ m α=49.03cm2/g,μ mβ=290cm2/g,有公式,,,故:,解得:t=8.35um t 6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少? 答:eVk=hc/λ Vk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv) λ 0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm) 其中h为普郎克常数,其值等于6.626×10-34 e为电子电荷,等于1.602×10-19c 故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。 7、名词解释:相干散射、不相干散射、荧光辐射、吸收限、俄歇效应 答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。 ⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。 ⑶一个具有足够能量的χ射线光子从原子内部打出一个K 电子,当外层电子来填充K 空位时,将向外辐射K 系χ射线,这种由χ射线光子激发原子所发生的辐射过程,称荧光辐射。或二次荧光。 ⑷指χ射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K 电子从无穷远移至K 层时所作的功W,称此时的光子波长λ称为K 系的吸收限。 ⑸原子钟一个K层电子被光量子击出后,L层中一个电子跃入K层填补空位,此时多余的能量使L层中另一个电子获得能量越出吸收体,这样一个K层空位被两个L层空位代替的过程称为俄歇效应。 第二章X 射线衍射方向 2、下面是某立方晶第物质的几个晶面,试将它们的面间距从大到小按次序重新排列:(123),(100),(200),(311),(121),(111),(210),(220),(130),(030),(221),(110)。 答:立方晶系中三个边长度相等设为a,则晶面间距为d=a/ 则它们的面间距从大小到按次序是:(100)、(110)、(111)、(200)、(210)、(121)、(220)、(221)、(030)、(130)、

分析方法总结及优缺点

一、德尔菲法 优点:1、能充分发挥各位专家的作用,集思广益,准确性高。 2、能把各位专家意见的分歧点表达出来,取各家之长,避各家之短。 3、权威人士的意见影响他人的意见; 4、有些专家碍于情面,不愿意发表与其他人不同的意见; 5、出于自尊心而不愿意修改自己原来不全面的意见。 缺点: 德尔菲法的主要缺点是过程比较复杂,花费时间较长。 适用范围:项目规模宏大且环境条件复杂的预测情境。 二、类比法 优点:1、它不涉及任何一般性原则,它不需要在“一般性原则”的基础上进行推理。它只是一种由具体情况到具体情况的推理方式,其优越性在于它所得出的结论可以在今后的超出原案例事实的情况下进行应用。 2、类比法比其他方法具有更高的精确性; 3、类比过程中的步骤可以文档化以便修改。 缺点: 1 严重依赖于历史数据的可用性; 2 能否找出一个或一组好的项目范例对最终估算结果的精确度有着决 定性的影响; 3 对初始估算值进行调整依赖于专家判断。 适用范围:类比法是按同类事物或相似事物的发展规律相一致的原则,对预测目标事物加以对比分析,来推断预测目标事物未来发展趋向与可能水平的一种预测方

法。类比法应用形式很多,如由点推算面、由局部类推整体、由类似产品类推新产品、由相似国外国际市场类推国内国际市场等等。类比法一般适用于预测潜在购买力和需求量、开拓新国际市场、预测新商品长期的销售变化规律等。类比法适合于中长期的预测。 三、回归分析法 优点:1、从收入动因的高度来判断收入变化的合理性,彻底抛弃了前述“无重大波动即为正常”的不合理假设。并且,回归分析不再只是简单的数据比较,而是以一整套科学的统计方法为基础。 、运用回归方法对销售收入进行分析性复核,可以考虑更多的影响因素作为解释变量,即使被审计单位熟悉了这种方法,其粉饰和操纵财务报表的成本也十分高昂。 缺点:需要掌握大量数据, 应用:社会经济现象之间的相关关系往往艰以用确定性的函数关系来描述,它们大多是随机性的,要通过统计观察才能找出其中规律。回归分桥是利用统计学原理描述随机变量间相关关系的一种重要方法。 四、时间序列分析法 优点:根据市场过去的变化趋势预测未来的发展,根据客观事物发展的这种连续规律性,运用过去的历史数据,通过统计分析,进一步推测市场未来的发展趋势。 缺点:运用时间序列分析进行量的预测,实际上将所有的影响因素归结到时间这一因素上,只承认所有影响因素的综合作用,并在未来对预测对象仍然

《材料分析测试方法A》作业

材料物理专业2013级《材料分析测试方法A 》作业 第一章 电磁辐射与材料结构 一、教材习题 1-1 计算下列电磁辐射的有关参数: (1)波数为3030cm -1的芳烃红外吸收峰的波长(μm ); (2)5m 波长射频辐射的频率(MHz ); (3)588.995nm 钠线相应的光子能量(eV )。 1-3 某原子的一个光谱项为45F J ,试用能级示意图表示其光谱支项与塞曼能级。 1-5 下列原子核中,哪些核没有自旋角动量? 12C 6、19F 9、31P 15、16O 8、1H 1、14N 7。 1-8 分别在简单立方晶胞和面心立方晶胞中标明(001)、(002)和(003)面,并据此回答: 干涉指数表示的晶面上是否一定有原子分布?为什么? 1-9 已知某点阵∣a ∣=3?,∣b ∣=2?,γ = 60?,c ∥a ×b ,试用图解法求r *110与r *210。 1-10 下列哪些晶面属于]111[晶带? )331(),011(),101(),211(),231(),132(),111(。 二、补充习题 1、试求加速电压为1、10、100kV 时,电子的波长各是多少?考虑相对论修正后又各是多 少? 第二章 电磁辐射与材料的相互作用 一、教材习题 2-2 下列各光子能量(eV )各在何种电磁波谱域内?各与何种跃迁所需能量相适应? 1.2×106~1.2×102、6.2~1.7、0.5~0.02、2×10-2~4×10-7。 2-3 下列哪种跃迁不能产生? 31S 0—31P 1、31S 0—31D 2、33P 2—33D 3、43S 1—43P 1。 2-5 分子能级跃迁有哪些类型?紫外、可见光谱与红外光谱相比,各有何特点? 2-6 以Mg K α(λ=9.89?)辐射为激发源,由谱仪(功函数4eV )测得某元素(固体样品) X 射线光电子动能为981.5eV ,求此元素的电子结合能。 2-7 用能级示意图比较X 射线光电子、特征X 射线与俄歇电子的概念。 二、补充习题 1、俄歇电子能谱图与光电子能谱图的表示方法有何不同?为什么? 2、简述X 射线与固体相互作用产生的主要信息及据此建立的主要分析方法。 第三章 粒子(束)与材料的相互作用 一、教材习题 3-1 电子与固体作用产生多种粒子信号(教材图3-3),哪些对应入射电子?哪些是由电子 激发产生的?

问题分析与解决总结

问题的定义:就是当现状与标准,或预期的状态有了差距时,我们就说我们遇到了问题。 问题分为:是什么,为什么,怎么办三类 一、问题是什么: 1、确定问题真实性: (1)自己调查研究(眼见为实,以数据说话) (2)他人说法(多人打听说法跟接近事情原型) “真的吗,谁说的,我来看看怎么回事” 2、界定问题(5W1H):“事情目前是怎么一个状况”(给予目前事情定性) (1)什么时间(when)包括曾经及可能发生 (2)什么地方(where) (3)什么事(what)包括主语、谓语(方法)、宾语(对象)、环境(全面考虑事物所有的因素和优缺点) (4)什么原因(why)--(下一节内容) (5)什么程度(how)量化问题程度以及问题的严重性、紧急性、发展性(“为什么这个问题显得很重要?”“为什么要在这个时候解决这个问题?”“如果什么也不做,会如何?”)(轻重缓急)

1、层别法:二、问题的原因:具体描述造成现象有差异造成现象未差异差异原因 时间 地点主语 方法 宾语 环境 程度 可能原因(可用假设)验证原因 证实未发生证实发生无法证实确定主因(用反正法)暂时对策永久对策 2、鱼骨图(使用创新思维能力): ,注意资料收集:根本问题不在一个层面(漏油)5WHY、3. 三、问题解决:(其他有直觉法、经验法、冷处理法) 1、明确决策目的(必须目标、愿望目标)(短期、长期)

(1)什么时间(when) (2)什么地方(where) (3)什么事(what)包括主语、谓语(方法)、宾语(对象)、环境(4)什么程度(how)量化问题程度 2、评估选择方案(创新能力)采用层别法和鱼骨图 3、评估决策风险:效益性、把握性、困难性 4、做出最终决策(权衡利弊)(制定标准和惩罚机制)

材料分析方法 考前复习总结(一)

一X射线基础 1 X射线:是一种波长很短的电磁波(0.05-0.25nm,可见光390-760nm)。X射线能使气体电离,使照相底片感光,能穿过不透明的物体,还能使荧光物质发出荧光。呈直线传播,在电场和磁场中不发生偏转;当穿过物体时仅部分被散射。 产生条件:产生自由电子;使电子做定向高速运动;在电子运动的路径上设置使其突然减速的障碍物。 产生方式:利用类似热阴极二极管装置,用一定材料制作的板状阳极(靶)和阴极(灯丝)密封在一个玻璃-金属管壳内,阴极通电加热,在两极间加直流高压U,则阴极产生的热电子将在高压电场作用下飞向阳极,在碰撞的瞬间产生X射线。 连续X射线:强度随波长连续变化的谱线,波长从一最小值(短波限)向长波伸展,并在一波长处有强度最大值。受管电压U、管电流I和阳极靶材原子序数Z的作用。U提高,强度提高,短波限和强度最大值对应的波长减小;I提高,强度提高;Z越高,强度越大。根据量子力学,在管电压作用下电子动能为eU,若电子碰撞时把全部能量给予一个光子,则使其获得最大能量,,此光量子的波长即为短波限。。绝大多数到达阳极靶面的电子经多次碰撞消耗能量,每次碰撞产生一个光量子,并以均大于短波限的波长辐射,产生连续谱。 特征X射线:管电压增高到一定值时,在连续谱的某些特定的波长位置会出现一系列强度很高、波长范围很窄的线状光谱,其波长只取决于阳极靶材元素的原子序数,可作为阳极靶材的标志或特征。莫塞莱定律:(Z越大,特征谱波长越短)。经典原子模型,电子分布在一系列量子化壳层上,内层电子被激出后原子将处于激发状态,必然自发向稳态过渡,此时外层电子将填充内层空位,相应伴随着原子能量的降低。原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。物质一定,原子结构一定,两特定能级间的能量差一定,故辐射出的特征X射波长一定。特征谱强度随U和I的提高而增大。 2 X-ray与物质的相互作用 1)散射:相干散射:当X射线与原子中束缚较紧的内层电子相撞时,光子方向改变但能量无损失,产生波长不变的散射线,可发生干涉,是x射线衍射的基础。(汤姆逊散射) 非相干散射:当X射线光子与束缚不大的外层电子或价电子或金属晶体中的自由电子相撞,电子被撞离原子带走一部分光子的能量成为反冲电子,损失了能量的光子被撞偏一个角度。散布于各方向的散射波波长不等,不能发生干涉。(康-吴效应) 2)真吸收(光电效应、俄歇效应和热效应消耗):入射x射线能量足够大时,可将内层电子击出,产生光电效应。被击出的电子为光电子;外层电子向内层跃迁,辐射出波长严格一定的特征x射线,因属于光致发光的荧光现象,成为荧光X射线。 原子外层电子跃迁填补内层空位后释放能量并产生新的空位,这些能量被包括空位层在内的临近原子或较外层电子吸收,受激发逸出原子的电子叫做俄歇电子。(荧光效应用于表层重元素>20的成分分析;俄歇效应用于表层轻元素的成分分析) 3)衰减X射线吸收规律:强度为I的特征X射线在均匀物质内部通过时,强度的衰减与在物质内通过的距离x成比例,即-dI/I=μdx 。 线吸收系数:即为上式中的μ,指在X射线传播方向上,单位长度上的X射线强弱衰减程度。 质量吸收系数:X射线通过单位面积上单位质量物质后强度的相对衰减量,拜托密度影响。 吸收限:当吸收物质一定时,波长越长越容易被吸收,但吸收系数并不随波长减小单调下降,会有几个跳跃台阶(对应荧光辐射吸收)。 ①根据样品化学成分选择靶材:要求尽可能少激发荧光辐射,入射线波长略长于样品的吸收线或短很多。Z靶≤Z样+1或Z靶>>Z样 ②滤片选择:滤去K系谱线中的Kβ线,使其吸收线位于K系谱线直接,尽可能靠近Kα线。Z靶<40,Z滤=Z靶-1;Z靶>40,Z滤=Z靶-2 1分析下列荧光辐射产生的可能性,为什么? 答:根据经典原子模型,原子内的电子分布在一系列量子化的壳层上,在稳定状态下,每个壳层有一定数量的电子,他们有一定的能量。最内层能量最低,向外能量依次增加。根据能量关系,M、K层之间的能量差大于L、K成之间的能量差,K、L层之间的能量差大于M、L层能量差。由于释放的特征谱线的能量等于壳层间的能量差,所以K?的能量大于Ka的能量,Ka能量大于La的能量。因此在不考虑能量损失的情况下:CuKa能激发CuKa荧光辐射;(能量相同)CuK?能激发CuKa荧光辐射;(K?>Ka)CuKa能激发CuLa荧光辐射;(Ka>la)2为什么出现吸收限?K吸收限只有一个而L吸收限有三个?当激发K系荧光Ⅹ射线时,能否伴生L系?当L系激发时能否伴生K系? 一束X射线通过物体后,其强度将被衰减,它是被散射和吸收的结果。并且吸收是造成强度衰减的主要原因。物质对X射线的吸收,是指X射线通过物质对光子的能量变成了其他形成的能量。原子系统中的电子遵从泡利不相容原理不连续地分布在K,L,M,N等不同能级的壳层上,当外来的高速粒子(电子或光子)的动能足够大时,可以将壳层中某个电子击出原子系统之外,从而使原子处于激发态。这时所需的能量即为吸收限,它只与壳层能量有关。即吸收限只与靶的原子序数有关,与管电压无关。 因为L层有三个亚层,每个亚层的能量不同,所以有三个吸收限,而K只是一层,所以只有一个吸收限。 激发K系光电效应时,入射光子的能量要等于或大于将K电子从K层移到无穷远时所做的功Wk。从X射线被物质吸收的角度称入K 为吸收限。当激发K系荧光X射线时,能伴生L系,因为L系跃迁到K系自身产生空位,可使外层电子迁入,而L系激发时不能伴生K系。3计算当管电压为50 kv时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能。 电子静止质量:m0=9.1×10-31kg 光速:c=2.998×108m/s电子电量:e=1.602×10-19C 普朗克常数:h=6.626×10-34J.s 电子从阴极飞出到达靶的过程中所获得的总动能为 E=eU=1.602×10-19C×50kv=8.01×10-18kJ 由于E=1/2m0v02 所以电子与靶碰撞时的速度为v0=(2E/m0)1/2=4.2×106m/s 所发射连续谱的短波限λ0的大小仅取决于加速电压λ0(?)=12400/v(伏) =0.248? 辐射出来的光子的最大动能为 E0=h?0=hc/λ0=1.99×10-15J

相关文档
最新文档