行列式和矩阵从概念到运算的联系与区别 江兵兵

行列式和矩阵从概念到运算的联系与区别      江兵兵
行列式和矩阵从概念到运算的联系与区别      江兵兵

行列式与矩阵从概念到运算的联系与区别

江兵兵

(天水师范学院数学与统计学院甘肃天水74100)

摘要:行列式与矩阵是两个相对独立的基本理论结果,是两个完全不同的概念,

那么它们之间有着怎样的联系与区别,本文通过详细举例论证对行列式与矩阵从其概念的定义到有关运算方面的联系与区别做了详细说明,使读者对行列式与矩阵有了进一步的认识,达到灵活熟练的运用相关知识解决有关问题。

关键字:行列式;矩阵;概念;运算;转置

The determinant and the relationship and difference matrix

from concept to operation

Jiang Bingbing

(School of Mathematics and Statistics tianshui Normal University, Tianshui 74100)

Abstract:determinant and matrix is basic theory of two relatively independent as a result, are two entirely different concepts, so the relationship and difference between them have how, for example demonstrated in this article, through detailed determinant and matrix from the definition of the concept to the operation made detailed aspects of the relation and distinction between, make readers to have further understanding of the determinant and matrix, to achieve flexible use of related knowledge skilled to solve the problem.

Key words: the determinant; Matrix; Concept; Calculations; transpose

引言 (1)

一概念方面 (1)

1 联系 (1)

矩阵概念的产生的观点来源于行列式 (2)

2 区别 (2)

(1)定义方面相区别 (2)

表示方法 (5)

(2)矩阵的子式 (8)

有关区别 (10)

1)加(减)法方面 (10)

(2)乘法方面 (10)

(3)数乘方面 (11)

转置方面 (12)

(5)变换方面相区别 (12)

【参考文献】 (13)

行列式和矩阵从概念到运算的联系与区别

引言

行列式与矩阵是两个相对独立的基本理论结果,是两个不同的概念,但是我们在学习行列式与矩阵时,可以说一个行列式是几行几列的,也可以说一个矩阵是几行几列的,可见矩阵与行列式之间是既有区别也有一定联系的.本文阐述矩阵与行列式相关概念以及运算方面的规律,并对知识点列举一定的典型例题,通过分析总结,归纳出矩阵与行列式从概念性质到运算方面的联系与区别。

一 概念方面

1 联系

(1)由矩阵概念可推广得到行列式的概念

由n m ?个数)......2,1,......

2,1(n j m i a ij ==(i=1,2,......m,j=1,2,......n)排成m 行n 列的数表称为m 行n 列矩阵,简称n m ?矩阵,记为

??

?

?

?

??

??a a

a a

a a a a a mn m m n n

2

1

222

21

11211

其中数a ij 称为矩阵位于i 行j 列处的元素,矩阵可简记为A . 当n m =时,A 称为n 阶方程或是n 阶矩阵.这时有

A =??

?

?

?

??

??a a

a a

a a a a a mn m m n n

2

1

222

21

11211

其中n 阶行列式

a

a

a

a a a a a a mn

m m n

n

2

1

222

21

11211

称为矩阵A 的行列式,记作A 或者det A .

矩阵概念的产生的观点来源于行列式

凯雷是公认的矩阵论创始人,他在1955年一篇文章中谈到矩阵概念的起源,说“我绝不是通过四元数而获得矩阵概念的;它或是从行列式的概念而来,或是作为方程组

??

???+=+=dy cx y by ax x '' 的表达式而来的。”可见,行列式理论对矩阵理论的产生和发展起促进作用,矩

阵概念产生的一种观点就是来源于行列式。

凯雷给出了逆矩阵的定义:设???

?

??=d c b a A ,则A 的逆矩阵A A A

*

'1

=

,其

中A 是矩阵A 的行列式。可见,逆矩阵的原始定义是离不开行列式的。 由此可见,矩阵理论得以迅速发展,其原因之一就在于矩阵与行列式的密切关系.

2 区别

(1)定义方面相区别

行列式的相关定义

对于二元线性方程组???

==++b x a x a b x a x a 2

2221211212111,用消元法来解这个方程组可得

?????-=--=-b a b a x a a a

a b a b a x a a a a 1

212112211222

11

212122*********)(

)(,

0211222

11

≠-a a a

a 时,此方程组有唯一解,即

)/()(21

12

22

11

2

12

1

22

1

a

a a a

b a b a x --=,

)/()(211222*********

a a a a

b a b a x

--=,

我们称a a a a 21122211-为二阶行列式,用符号表示为

a

a

a a a a a

a 22

21

1211211222

11

=

-

二阶行列式是2!项的代数和,其中每一项是位于不同行,不同列的元素的乘积,把这两个元素按行指标的自然序列排好,其列指标所成排列是偶排列时,该项为正;奇排列时为负。于是二阶行列式

∑-=a

a a

a

a a j j j j j n 2

1

212

1

)

,(

22

21

1211)

1(

n 阶行列式

a

a

a

a a a a a a mn

m m n

n

2

1

222

21

11211

是n !项的代数和,其中每一项都是位于不同行不同列元素的乘积,把这n 个元素以行指标为自然序列排好位置,当列指标构成的排列是偶排列时,该项为正;是奇排列时,该项为负,即

∑-?=

j j j j j j j j j n

n

n a a

a a

a

a

a a a a a a n mn

m m n

n

212

1

212

1

)

,(

2

1

222

21

11211)

1(

其中j j j n 21,是n 元排列,

j j j n

21,表示对所有n 元排列求和.上式称为n 阶行列式

的完全展开式。

综上所述,n 阶行列式A n 是按一定顺序排成的n 行n 列元素按照某一个特定的规则确定的!n 项的代数和,归根结低是一个数.

矩阵的相关定义

在解析几何中考虑坐标变换时,如果只考虑坐标系的转轴(逆时针方向的转轴),那么平面直角坐标变换的公式为

??

???+=-=θθθθc o s s in s in c o s ``

`

`

y x y y x x s

其中θ为x 轴与x '

轴的夹角,显然新旧坐标之间的关系完全通过系数所所排成的22?矩阵

???

?

??-θθθθc o s s i n s i n c o s

表示出来。

在空间的情形,保持原点不动的坐标系的变换公式是

???????++=++=++=z a y a x a z z a y a x a y z a y a x a x `

33`32

`31`

23`22`21`13`12

`11

同样,矩阵

????

?

??a

a a a a a a a a 3332

3132222113

1211

就称为坐标变换的矩阵。

有n m ?个数......)2,1......;2,1(==j i a ij 排成m 行n 列的数表称为m 行n 列矩阵,简称n m ?矩阵,记为

??????

?

??a a a a

a a a a a mn m m n n

212222111211

其中数a ij 称为矩阵位于i 行j 列处的元素,矩阵可简记为A .

综上所述,A n m ?矩阵是n m ?个数按一定方式排成的m 行n 列数表,归根结底是一个数表.

表示方法

根据行列式的定义知,书写行列式时在数表的两端加;书写矩阵时在数

表两端加[]或(). 例,

d

c b a 表示行列式.

???

? ?

?d c

b a

表示矩阵.

(3)行数和列数的关系

根据行列式的定义知,行列式中行数和列数必须相同,即行数必须等于列数,

正因为如此,所以将行列式称为n 阶行列式,n 即为行列式中的行数或列数。由

矩阵的定义知,矩阵中行数和列数无丝毫关系,即行数和列数可以相同,也可以不同.

例,

a a a a a a a a a mn m m n

n

212222111211

如果此数表要称为行列式,则必须m 等于n;如果m 不等于n,则此数表无意义.

????

??

? ??a a a a a a a a a mn m m n n 212222111211

这个数表被称为m 行n 列矩阵,这里m 与n 可以相等,也可以不等.

(4)比较大小方面

根据行列式的定义知,因为行列式是一个数,任意两个数之间可以比较大小,所以说任意两个行列式也可以比较大小。由矩阵的定义知,矩阵是由多个数排成的数表,因为任意两个数表之间无法比较大小,所以说矩阵之间是无法比较大小的。 例如,

A=2011020

21=-6 ,

B=0121202

01=-9 ,

比较可知,行列式A 大于行列式B 。

而对于

A=2

011020

21 ,

B=???

?? ??012120201 ,

矩阵A 与矩阵B 之间无法比较大小.

(5)相等关系方面

根据行列式的定义知,行列式可以最终确定为一个数,因此表面上看似两个完全不同的行列式有可能是相等的,故判断两个行列式是否相等,绝对不能凭主观想象,而是要根据最终得到的具体的数来判定.由矩阵的定义知,矩阵是由许多个数排成的数表,故两个矩阵当且仅当表面上完全一致时才叫相等,因此说两个零矩阵也并不完全相等. 例如,

A =1011100

11=2,

B =1

100111

01=2,

由此可知,两个表面看似不相同的行列式A 与B 却是相等的.

而对于

A =???

?? ??000000000,

B =???

?

? ??000000,

其中A 矩阵和B 矩阵都是零矩阵,但他们是两个完全不相同的数表.

二 运算方面 1 联系

(1)方阵的行列式

对任何一个行数等于列数的矩阵,即方阵,我们可以求此方阵的行列式,叫方阵的行列式,书写方式与行列式完全相同,利用它可以判断方阵是否可逆,即逆运算.

例,判断

A=???

?? ??-011213112,

此矩阵是否可逆?

解:因为

A =0112131

12-=2≠0,

由此可知矩阵A 是可逆的.

(2)矩阵的子式

对任意矩阵A n m ?,任取k 行k 列},min{n m k ≤,按元顺序排列的一个方阵

A

k

可求此方阵的行列式,叫做A 的k 阶子式,利用它可判断A 的秩等一些性质.

例如,设

A =???

?? ??-----251112120311,

取定A 的第3行第1列,相交处元素可构成一阶子式11-=-;取定A 的第2,1行,第2,1列,可得一个二阶子式

1

2

11--= -1≠0,

对于A 的所有三阶子式,因为

5

1121

2311

-----=0,

21111

2011

----=0,

2511220

3

1

---=0,

2511210

31---=0,

由此可知,矩阵A 的秩为2,记作2)(=A r .

有关区别

1)加(减)法方面

由定义,对于行列式来说是一个确定的数,所以任何两个行列式都可以进行相加减。对于矩阵来说,当且仅当两个同型矩阵(行数和列数都相同的矩阵)才可以进行相加减,并且是对应元素的相加减.

例如,

A =2

112, 1

113=

B ,

A +

B =

1112+

1

113523=+=,

A=???? ??2112, B=???

?

??1113,

A+B=???? ??2112+???? ??1113=???? ??++++12111132=????

?

?3225,

(2)乘法方面

任何两个行列式都可以相乘(数的相乘),最终结果是一个数。如果两个矩阵相乘就需要满足左边矩阵的列数要等于右边矩阵的行数,最终结果是一个新的矩阵,不仅矩阵的元素是新的,并且在类型上也有新的变化,得到新矩阵的行数等于原有左边矩阵的行数,列数等于原有右边矩阵的列数.

例如,

A =2

112, B =

1

113,

A ×

B =2

112×

1

113623=+=

A =()21,

B =???

?

??211112,

B A ?=()21×???

?

??211112=(1×2 +2×1 1×1 +2×1 1×1 +2×2)

=(4 3 5)

注:

?

????

??????? ??2111211123225 是无意义的.

(3)数乘方面

行列式的数乘等于数乘以这个行列式的某一行或者数乘以这个行列式的某一列.对于矩阵来说,数乘等于数乘以这个矩阵中的每一个元素. 例如,

2

1125?=

2

1

5152?? =

2

1

51015=

或者

2

1125? =

2

5

1152?? =

2

5

110=15

而对于矩阵来说

???? ???21125=???? ??????52515152=????

?

?105510

转置方面

对于行列式来说,转置后行列式的最终结果与原行列式的最终结果相等;对于矩阵来说,转置后的矩阵与原矩阵不一定相等,要视具体情况而定。 例如,

4

312=

A

=5

A T 4

13

2=

=5

由此说明A 与A T 最终结果是相等的.

而对于矩阵来说

A =???

?

??143312,

A

T

????

?

??=134132

显然,矩阵A 与A T

是两个完全不同的数表.

注:并不是所有矩阵与它的转置不相同,例如特殊情况下

???

?

?????? ??=21122112T

(5)变换方面相区别

利用行列式的性质可以对行列式进行一些恒等变换,恒等变换的两个行列式

之间用“=”连接,行列式经过恒等变换后,计算更加简便;矩阵中也可以进行一些初等变换,变换过程中的两个矩阵之间要用“→”连接,矩阵经过初等变换,可以得到一种特殊矩阵,如对角矩阵。 例如,

1

21

11

2

11

2

--r r 1

00

1

22

1

-+r r =-1

而对于矩阵来说

???? ??-??→????? ??-1021112112r r ???

? ??-???→?+100122

1r r 结束语

以上是行列式与矩阵从概念到性质的有关联系与区别的具体阐述,通过对行列式与矩阵的对比学习,可以更加熟练的掌握二者的概念性质及其算法,达到事半功倍的效果.

【参考文献】

[1]白芬兰.高等代数.清华大学出版,2012.8

[2]丘维声.大学高等代数课程创新教材.高等代数(上册).清华大学出版社

[3]王青梅.浅谈“行列式”与“矩阵”区别和联系[j].太原城市职业技术学 报.2006(6)155-156

[4]卜玉成.线性行列式与矩阵的辩证关系[A].镇江高等学报.文章编号,10 08-8148(2008)101——0051-03

[5]王萼芳,石生明.高等代数(第三版).高等教育出版社 ,2003

[6]同济大学数学系.工程数学·线性代数(第五版).高等教育,2007 [7]王卿文.线性代数核心思想及应用.科学出版社,2012

[8]中外数学简史编写组.外国数学简史.上东教育出版社,1987

致谢

在两个多月的课题研究和论文撰写过程中,我非常感谢我的指导教师——李明图老师。无论是在课题立项还是在课题的研究阶段,李老师都给了我很大的帮助。在论文修改的这段时间中,李老师不仅是我在论文写作上有了很大的提高,而且言传身教,使我学到了作为一名大学生所应具备的那种踏实勤恳、一丝不苟的优良品质和学习作风。在我进行课题内容的研究中,从理论上给予了我很大的帮助和支持,而且在论文的最后评阅过程中,也给我提出了非常有价值的意见,使我获益极深。衷心地谢谢您李老师!

最后,对所有在这四年里的学习和生活中,给予我各种关心帮助的人们,我仅表达我最衷心的谢意!谢谢你们!

行列式跟矩阵的关系

行列式跟矩阵的关系 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。 矩阵由数组成,或更一般的,由某元素组成。就是m×n 矩阵就是mn个数排成m个横行n个竖列的阵式。n×n矩阵的行列式是通过一个定义,得到跟这个矩阵对应的一个数,具体定义可以去看书。注意,矩阵是一个阵式,方阵的行列式是跟一个方阵对应一个数。行列式的值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。 也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

矩阵的定义及其运算规则

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母 A 、B …来表示。例如一个m 行n 列的矩阵可以简记为: ,或 。即: (2-3) 我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此

都相等且均为1,如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)表示矩阵A及B的和,则有: m ×n 式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵的乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则: (1)k(A+B)=kA+kB (2)(k+h)A=kA+hA (3)k(hA)=khA

上海版教材 矩阵与行列式习题(有问题详解)

矩阵、行列式和算法(20131224) 成绩 一、填空题 1.行列式 cos sin 3 6 sin cos 3 6 π π π π 的值是 . 2.行列式 a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =?? +=??+=? 写成系数矩阵形式为 . 4.若由命题A :“ 2 2031x x ”能推出命题B :“x a >”,则a 的取值围是 . 5.若方程组111 222a x b y c a x b y c +=??+=?的解为2,1==y x ,则方程组 ?? ?=++=++03520 352222 111c y a x b c y a x b 的解为x = ,y = . 6.方程21 24 1 013 9 x x ≤-的解集为 . 7.把 22111133 33 22 2 4 x y x y x y x y x y x y +- 表示成一个三阶行列式为 . 8.若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 .

9.在函数()211 1 2 x f x x x x x -=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 11.矩阵的一种运算,???? ??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵??? ? ??d c b a 的作用下 变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵??? ? ??11b a 的作用下变换成曲线10x y --=,则a b +的值为 . 12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n = 二.选择题 13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必 要条件 14.下列选项中错误的是( ). A. b d a c d b c a - = B. a b c d d b c a = C. d c d b c a 33++ d c b a = D. d c b a d b c a ----- =

矩阵与行列式的相似与不同

矩阵与行列式的相似与不同 学校:长江大学 院系:信息与数学学院 专业:信息与计算科学 姓名:郑洲 辅导老师:谢老师

【摘要】:本文中主要讨论了高等代数中矩阵和行列式的概念,并且从概念,性质以及运算几个方面阐述了行列式与矩阵的相似与不同。 【关键词】:矩阵.行列式.相似与区别 矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。数学上,一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列.矩阵里的元素可以是数字、符号或数学式。其重要的作用是解线性方程组和表示线性变换。 行列式在数学中,是由解线性方程组产生的一种算式,是由若干数字组成的一个类似于矩阵的方阵。行列式是一个函数,值是一个标量。其值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负取决于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是基数。 我们先看看矩阵和行列式有哪些相似。 1.形式上比较相似:矩阵和行列式看上去比较相似,主要表现在:它们中的元素都有顺序的排成行列表,表面上看起来很相似,导致很多初学者容易把行列式和矩阵弄混淆;其次,它们中的表示方法一致,比如说行列式和 矩阵中第i行第j列的元素都用a ij表示;并且,它们对行列的称呼一致,从 上到下依次称作第一行,第二行…第n行,记作r1,r2,…r n;从左到右依次称为第一列,第二列,…第n列,记作c1,c2…c n。 2.性质上有相同点:在一个不等于0的数乘行列式或矩阵的某一行或某一列时,等于该数乘以此行或此列的每一个元素;行列式和矩阵中把一个不为0的数乘行列式或矩阵的某一行或列后可以加到另一行或列对应的元素上,即某一行(列)的k倍可以加到另一行(列)上。 3.运算上具有相同点:(1)行列式和矩阵都满足叫法交换率和结合律。可以表示为 D1+D2=D2+D1(D1+D2)+D3=D1+(D2+D3) A+B = B+A (A+B)+C = A+(B+C) (2)行列式和矩阵满足乘法结合律,即 D1D2D3=(D1D2)D3 A(BC)=(AB)C (3)行列式适合乘法分配率,矩阵适合乘法左分配率和右分配率,也就是说 D1(D2+D3)=D1D2+D1D3(D2+D3)D1=D2D1+D3D1 A(B + C) = AB + AC (B + C)A=BA + CA 矩阵和行列式虽然说有很多相同点,但它们始终是两个不同的概念,那么矩阵和行列式有什么区别呢。 1.先从概念上可以看出:(1)n阶行列式D n是n2个数按一定顺序排列成的n行n列的方阵,其实际上是一个数,行列式在数表两端加||;而矩阵是m ×n个数按一定方式排列的m行n列数表,归根结底是一个数表,矩阵在数表两端加()或[]。行列式是方形数表中定义,对不上方形的数表,不能讨论任何行列式的问题,而矩阵无此限制(2)行列式和矩阵行列之间存在差

第一讲 矩阵的概念、运算

第一讲 Ⅰ 授课题目(章节): §2.1 矩阵的概念; §2.2 矩阵的计算 Ⅱ 教学目的与要求: 理解矩阵概念; 掌握矩阵的线性运算、乘法、转置及其运算规律。 Ⅲ 教学重点与难点: 矩阵的乘法 Ⅳ 讲授内容: §2.1 矩阵 定义2.1 由n m ?个数),,2,,1;,,2,1(n j m a ij =排成的m 行n 列的数表 mn m m n n a a a a a a a a a 21222 21112 11 称为m 行n 列矩阵,简称n m ?矩阵.为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示它,记作 ??????? ??=?mn m m n n n m a a a a a a a a a A 212222111211 两个矩阵B A ,,如果都是m 行n 列的,称它们是同型矩阵。否则,称它们是不同型的。 n 行n 列的矩阵n n A ?称为n 阶矩阵(或n 阶方阵) ,简记为n A 。 只有一行的矩阵)(21n a a a A =称为行矩阵,又称行向量.只有一列的矩阵 ?????? ? ??=n b b b B 21 称为列矩阵,又称列向量. 定义2.2 如果)()(ij ij b B a A ==与是同型矩阵,并且它的对应元素相等 ,即

),,2,1;,,2,1(,n j m i b a ij ij === 那么就称矩阵A 与B 相等,记作B A =. 元素都是零的m 行n 列矩阵称为零矩阵,记作n m O ?,简记为O .不同型的零矩阵是 不同的. ??????? ??=100010001 n I 称为n 阶单位矩阵,简记作I .这个矩阵的特点是:从左上角到右下角的直线(叫做主对角线)上的元素都是1,其它元素都是0. §2.2 矩阵的运算 1. 矩阵的加法 定义2.3 设有两个n m ?矩阵)(),(ij ij b B a A ==,那么矩阵A 与B 的和记作A +B , 规定为 n m ij ij b a B A ?+=+)( 设矩阵)(),(ij ij a A a A -=-=记,A -称为矩阵A 的负矩阵.显然有 0)(=-+A A . 规定矩阵的减法为)(B A B A -+=-. 2. 数与矩阵相乘: 定义2.4 数λ与矩阵)(ij a A =的乘积记作A λ,规定为n m ij a A ?=)(λλ 数乘矩阵满足下列运算规律(设B A ,为同型矩阵,μλ,为数): )(i )()(A A μλλμ= )(ii A A A μλμλ+=+)( )(iii B A B A λλλ+=+)( 3. 矩阵与矩阵相乘: 定义 2.5 设)(ij a A =是一个s m ?矩阵,)(ij b B =是一个n s ?矩阵,那么规定矩阵

矩阵与行列式知识梳理

矩阵与行列式知识梳理 一、矩阵的概念 1 将mn 个实数),,2,1;,,2,1(n j m i a ij ==排成m 行n 列的矩形数表(通常用圆括号把数表括起来): ?? ? ? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211称为一个m 行n 列的矩阵,简称n m ?矩阵,用______表示. 简记为_____.数ij a 称为矩阵的元素. 几种特殊类型的矩阵:行矩阵、列矩阵、方阵、单位矩阵、零矩阵. 2 对于关于y x ,的线性方程组?? ?=+=+222111c y b x a c y b x a ,则矩阵??? ? ??2211 b a b a 称为该线性方程组的系数矩阵. 矩阵??? ? ??22 2 111 c b a c b a 称为该线性方程组的增广矩阵. 3 矩阵的三种变换: (1) (2) (3) 4 矩阵变换的目的是将线性方程组的系数矩阵变成单位矩阵,其增广矩阵的最后一列就是方程组的解. 二、二阶行列式 1 定义:我们用记号 2 2 11b a b a 表示算式1221b a b a -,即 12212 2 11b a b a b a b a -=,记号 2 2 11b a b a 叫做行列式,因为它只有两行两列,所以把它叫做二阶行列式. 1221b a b a -叫做行列式 2 2 11b a b a 的展开式,其计算结果叫做 2 2 11b a b a 的值.1a 、2a 、1b 、2b 都叫做行列式 2 2 11b a b a 的元素. 2 对角线法则:二阶行列式的展开式是主对角线上的两个数的乘积减去副对角线上的两个数的乘积. 3作为判别式的二阶行列式:关于x 、y 的二元一次方程组???=+=+222 1 11c y b x a c y b x a ①其中1a 、2a 、 1b 、2b 不全为零,行列式2 2 11b a b a D = 叫做方程组①的系数行列式. 设2 2 11b c b c D x = ,

矩阵的概念和运算

1。4 矩阵的概念和运算 教学要求 : (1) 掌握矩阵的加减、数与矩阵相乘的运算。 (2) 会矩阵相乘运算掌握其算法规则 ( 以便演示算法规则及行列间的对应关系〉 教学内容: 前面介绍了利用行列式求解线性方程组,即Cramer 法则。但是Cramer 法则有它的局限性: 1.0 2. D ≠?? ?所解的线性方程组存在系数行列式(行数=列数) 同学们接下来要学习的还是关于解线性方程组,即Cramer 法则无法用上的-――用“矩阵”的方法解线性方程组。本节课主要学习矩阵的概念。 一.矩阵的概念 123123123 23124621x x x x x x x x x -+=?? -+-=-??+-=? 它的系数行列式 1 232 4601 1 1 D -=--=- 此时Cramer 法则失效,我们可换一种形式来表示: 123124621111A ?-? ?=--- ? ?-?? 这正是“换汤不换药”, 以上线性方程组可用这张“数表”来表示,二者之间互相翻译。 这种数表一般用圆括号或中括号括起来,排成一个长方形阵式,《孙子兵法》中说道:长方形阵为矩阵。 123246111A -?? ?=-- ? ?-?? 这也是矩阵,是由以上线性方程组的系数按照原来顺序排列而成,称为“系数矩阵” 而“A ”多了一列常数列,称为以上方程组的“增广矩阵”。 注意:虽然D 和A 很相像,但是区别很大。D 是行列式,实质上是一个数,而A 是一张表格,“数是数,表是表,数不是表,表也不是数”,这是本质意义上不同。况且,行列式行数必须与列数相同,矩阵则未必。 关于以上线性方程组我们后面将介绍。 更一般地,对于线性方程组:

矩阵行列式的概念与运算(标准答案)

矩阵、行列式的概念与运算 知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:111213111211122122 2321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ? ?????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如1 11 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列式; 算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式展开的 对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解

高中数学复习专题-矩阵与行列式

专题八、矩阵与行列式 1.矩阵:n m ?个实数n j m i a ij ,,2,1;,,2,1, ==排成m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn n m n n a a a a a a a a a A 2122212 11211叫做矩阵。记作n m A ?,n m ?叫做矩阵的维数。 矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。 2.线性方程组的系数矩阵、方程组的增广矩阵、行向量、列向量、单位矩阵。 ?? ?=+=+222 1 11c y b x a c y b x a 3.线性方程组矩阵的三种变换: ①互换矩阵的两行; ②把某一行同乘(除)以一个非零的数; ③某一行乘以一个数加到另一行。 变换的目的是将线性方程阻系数矩阵变为单位矩阵,其扩充矩阵的最后一列就是方程组的解。 4.矩阵运算:加法、减法及乘法 (1)矩阵的和(差):记作:A+B (A-B ). 运算律:加法交换律:A+B=B+A ;加法结合律:(A+B )+C=A+(B+C ) (2)矩阵与实数的积:设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数α的乘积矩阵,记作:α A.

运算律:分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==; (3)矩阵的乘积:设A 是k m ?阶矩阵,B 是n k ?阶矩阵,设C 为n m ?矩阵。如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积,记作:C m ×n =A m ×k B k ×n . 运算律:分配律:AC AB C B A +=+)(,CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==,()()BC A C AB =; 注意:矩阵的乘积不满足交换律,即BA AB ≠。 5.二阶行列式的有关概念及二元一次方程组的解法: 设二元一次方程组(*)???=+=+222 1 11c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数 且不全为零,21,c c 是常数项) 用加减消元法解方程组(*): 当01221≠-b a b a 时,方程组(*)有唯一解:??? ? ??? --=--=1221122 112211221b a b a c a c a y b a b a b c b c x , 引入记号 21a a 2 1b b 表示算式1221b a b a -,即 21a a 2 1b b 1221b a b a -=. 从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行列式的元素、对角线法则等。 记= D 21a a 2 1b b ,= x D 21c c 2 1b b ,= y D 21a a 2 1c c ,则: ①当= D 21a a 2 1b b =01221≠-b a b a 时,方程组(*)有唯一解, 可用二阶行列式表示为??? ? ?? ? ==D D y D D x y x . ②当D =0时,0x y D D ==,方程组(*)无穷组解; ③当D =0时,0,0x y D or D ≠≠,方程组(*)无解。 系数行列式1 1 2 2 a b D a b = 也为二元一次方程组解的判别式。

矩阵的概念及其线性运算

第二章 矩阵 §2.1 矩阵的概念及其线性运算 学习本节内容,特别要注意与行列式的有关概念、运算相区别。 一.矩阵的概念 矩阵是一张简化了的表格,一般地 ?????? ? ??mn m m n n a a a a a a a a a 212222111211 称为n m ?矩阵,它有m 行、n 列,共n m ?个元素,其中第i 行、第j 列的元素 用j i a 表示。通常我们用大写黑体字母A 、B 、C ……表示矩阵。为了标明矩阵的行数m 和列数n ,可用n m ?A 或() i j m n a ?表示。矩阵既然是一张表,就不能象行 列式那样算出一个数来。 所有元素均为0的矩阵,称为零矩阵,记作O 。 两个矩阵A 、B 相等,意味着不仅它们的行、列数相同,而且所有对应元素都相同。记作B A =。 如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵。n 阶矩阵有一条从左上角到右下角的主对角线。n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A 。 在n 阶矩阵中,若主对角线左下侧的元素全为零,则称之为上三角矩阵;若主对角线右上侧的元素全为零,则称之为下三角矩阵;若主对角线两侧的元素全为零,则称之为对角矩阵。主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为E ,即 ???? ?? ? ??=100010001 E n ?1矩阵(只有一行)又称为n 维行向量;1?n 矩阵(只有一列)又称为n 维列向量。行向量、列向量统称为向量。向量通常用小写黑体字母a ,b ,x ,y …… 表示。向量中的元素又称为向量的分量。11?矩阵因只有一个元素,故视之为数量,即()a a =。 二.矩阵的加、减运算 如果矩阵A 、B 的行数和列数都相同,那么它们可以相加、相减,记为B A +、B A -。分别称为矩阵A 、B 的和与差。B A ±表示将A 、B 中所有对应位置的元素相加、减得到的矩阵。例如

线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变.(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零. ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 2322 21 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

矩阵的定义及其运算规则

矩阵的定义及其运算规则

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母A 、B …来表示。例如一个m 行n 列的矩阵可以简记为:,或 。即: (2-3)我们称(2-3)式中的为矩阵A的元素,a 的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用 表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=

B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此都相等且均为1,

如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩 阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)m ×n 表示矩阵A及B的和,则有: 式中:。即矩阵C的元素等于矩阵A和B 的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A

矩阵与行列式

第9章 行列式与矩阵 学习目标 了解n 阶行列式定义,理解行列式性质. 掌握二阶、三阶、四阶行列式的计算. 理解矩阵的概念、逆矩阵的概念及其存在的充分必要条件,了解矩阵秩的概念. 掌握几种特殊矩阵,掌握矩阵的线性运算、乘法运算、转置及其运算规律、矩阵的初等行变换和用初等行变换求矩阵的秩和逆矩阵的方法. 在科学研究和实际生产中,碰到的许多问题都可以直接或近似地表示成一些变量之间的线性关系,因此,线性关系的研究就显得是非常重要了. 行列式与矩阵是研究线性关系的重要工具.本章将介绍行列式与矩阵的一些基本概念、性质和运算. §9.1 行列式的概念与计算 9.1.1二阶、三阶行列式 用消元法解二元线性方程组 ?? ?=+=+2 2221211 212111b x a x a b x a x a (9.1) 当021122211≠-a a a a 时,得 211222*********a a a a a b a b x --= ,21 1222111 212112a a a a b a b a x --= 为了便于记忆,我们引进二阶行列式的概念. 1.二阶行列式的定义 定义9.1 用2 2个数组成的记号 22 21 1211a a a a ,表示数值21122211a a a a -,称为二阶行 列式,22211211,,,a a a a 称为行列式的元素,横排称行,竖排称列. 利用二阶行列式的概念,当二元线性方程组(9.1)的系数组成的行列式0≠D 时,它的解可以用行列式表示为 1 12111 22221212121112111221222122 , b a a b b a a b D D x x a a a a D D a a a a ==== 其中1D 和2D 是以21,b b 分别替换系数行列式D 中第一列、第二列的元素所得到的两个

矩阵与行列式、算法初步知识点

矩阵与行列式 考试内容: 矩阵的意义. 行列式的意义以及对角线法则. 算法的含义以及逻辑结构. 考试要求: (1)会用矩阵的记号表示线性方程组. (2)掌握二阶、三阶行列式展开的对角线法则,以及三阶行列式按照某一行(列) 展开的方法.会利用计算器求行列式的值. (3)掌握二元、三元线性方程组的公式解法(行列式表示),会对含字母系数的 二元、三元线性方程组的解的情况进行讨论. (4)在具体问题的解决过程中,理解程序框图的逻辑结构:顺序,条件分支, 循环. 矩阵与行列式 知识要点 1、形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ?- ? ? -? ?这样的矩形数表叫 做矩阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量; 垂直方向排列的数组成的向量12 n b b b ?? ? ? ???? ??? 称为列向量; 由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵, m n ?阶矩阵可记做m n A ?,如矩阵13?? ??? 为21?阶矩阵,可记做21A ?;矩阵 5121283638362321 28 ?? ? ? ?? ?为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行 第j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第3行第2个数为3221a =。

证明行列式和矩阵等于零的几种经典方法

前言: 一、线代的特点: 1、内容抽象 2、概念多 3、符号多 4、计算原理简单但计算量大 5、证明简洁但技巧性强 6、应用广泛 二、学习中要注意的问题 1、不要急于求成,不要急于做难题。要分层次,扎扎实实的学习 2、熟练掌握基本内容。 基本概念(定义、符号) 基本结论(定理、公式) 基本计算(计算行列式、解线性方程组、求逆矩阵等) 基本证明和推理方法 3、自己动手推证书中的每个结果 尽量体会结论、证明的思想方法 用自己喜欢的方式写出简要总结 4、贯穿前后,注意发现线代课内容的重要规律。 提出问题的规律(存在、个数、结构、求法) 变换和标准形式(如行列式和上三角行列式) 问题相互转化 5、要多与同学讨论,虚心向别人请教问题。要经常提出问题,思考问题,乐于同别人交流 该方法引至李永乐老师的讲义,由KJ1234CN整理 一、行列式等于零的证明方法 例题1:A^2=A,A≠E,证明|A|=0(复习全书理工类P364例1.35) 由于书上已经有详尽的解题方法(四种),KJ不再复述,KJ在此只强调证法二 在这里有一种常见的错误解法 由A^2=A,有A(A-E)=0,∵A≠E∴(A-E)≠0,∴A=0 ∴|A|=0 其错误在于没有搞清楚矩阵的运算规则,AB=0,若B≠0不能推出A=0。 例如 [1 1][ 1 1] [1 1][-1 -1]=0,但是A、B都不等于0 (KJ废话:该种方法由错误的方法解出了正确的答案,很多人在做题过程中经常只对答案而不管过程,考试的时候也使用他用过的错误的方法,结果出来的分数与他估计的相去甚远,其原因我想也就在与此!他们没有细细体味书上的解题过程,也没有反省自己的解题方法与书上的不同之处。KJ奉劝大家,在看书时,对于例题一定要先做后看,并对和书上的不同的解题方法细细体会,辨别对错) 二、矩阵等于零的证明方法 例题2:A是m*n的矩阵,B是n*p的矩阵,R(B)=n。证明当AB=0时,A=0 证法一:<方法>矩阵的秩等于0,则矩阵等于0

矩阵的概念及其线性运算

.. 第二章 矩阵 §2.1 矩阵的概念及其线性运算 学习本节内容,特别要注意与行列式的有关概念、运算相区别。 一.矩阵的概念 矩阵是一张简化了的表格,一般地 ?????? ? ??mn m m n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211 称为n m ?矩阵,它有m 行、n 列,共n m ?个元素,其中第i 行、第j 列的元素 用j i a 表示。通常我们用大写黑体字母A 、B 、C ……表示矩阵。为了标明矩阵的行数m 和列数n ,可用n m ?A 或() i j m n a ?表示。矩阵既然是一张表,就不能象行 列式那样算出一个数来。 所有元素均为0的矩阵,称为零矩阵,记作O 。 两个矩阵A 、B 相等,意味着不仅它们的行、列数相同,而且所有对应元素都相同。记作B A =。 如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵。n 阶矩阵有一条从左上角到右下角的主对角线。n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A 。 在n 阶矩阵中,若主对角线左下侧的元素全为零,则称之为上三角矩阵;若主对角线右上侧的元素全为零,则称之为下三角矩阵;若主对角线两侧的元素全为零,则称之为对角矩阵。主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为E ,即 ?????? ? ? ?=10 0010001Λ ΛΛΛΛΛΛE n ?1矩阵(只有一行)又称为n 维行向量;1?n 矩阵(只有一列)又称为n 维列 向量。行向量、列向量统称为向量。向量通常用小写黑体字母a ,b ,x ,y ……表示。向量中的元素又称为向量的分量。11?矩阵因只有一个元素,故视之为数量,即()a a =。 二.矩阵的加、减运算 如果矩阵A 、B 的行数和列数都相同,那么它们可以相加、相减,记为B A +、B A -。分别称为矩阵A 、B 的和与差。B A ±表示将A 、B 中所有对应位置的元素相加、减得到的矩阵。例如

矩阵与行列式

第一章 矩阵与行列式 释疑解惑 1. 关于矩阵的概念:最难理解的是:矩阵它是一个“数表”,应当整体地去看它,不要与行列式实际上仅是一个用特殊形式定义的数的概念相混淆;只有这样,才不会 把用中括号或小括号所表示的矩阵如a c b d ?? ??? 写成两边各划一竖线的行列式如a c b d ,或把 行列式写成矩阵等。还要注意,矩阵可有(1)m ≥行和(1)n ≥列,不一定m n =;但行列式只有n 行n 列。n 阶行列式是2 n 个数(元素)按特定法则对应的一个值,它可看成n 阶方 阵 111212122212n n n n nn a a a a a a A a a a ????? ?=???????? 的所有元素保持原位置而将两边的括号换成两竖线时由行列式定义确定的一个新的对象:特 定的一个数值, det A 、A 或n D ,即 111 det n ij k k k A A a a A ==== ∑ (如二阶方阵 a d A b c ??= ???所对应的行列式是这样一个新的对象: a d ac bd b c =-)。也正 因为于此,必须注意二者的本质区别,如当A 为n 阶方阵时,不可把A λ与A λ等同起来, 而是 n A A λλ =,等等。 2. 关于矩阵的运算:矩阵的加(减)法只对同形矩阵有意义;数λ乘矩阵 m n A ?是用数λ乘矩阵m n A ?中每一个元素得到的新的m n ?矩阵;二矩阵相乘与前述这两种 线性运算有着实质上的不同,它不仅要求左矩阵的列数等于右矩阵的行数,而且积的元素有其特定的算法(即所谓行乘列),乘法的性质与前者的性质更有质的不同(如交换律与消去律不成立),对此要特别加以注意,也不要与数的乘法的性质相混淆。 3. 关于逆阵:逆阵是由线性变换引入的,它可只由AB E =来定义(A 与B 互为逆阵),这是应用的基础。要记住方阵可逆的充要条件为 A ≠以及关系式 * A A A E =,二者有着重要与广泛的应用。要弄清A 的伴随方阵是矩阵()ij A a =的各元素 代数余子式为元素的矩阵的转置,否则会出错。要会用两种方法求逆阵,从而会用逆阵求解线性方程组及各种矩阵方程。 4. 关于矩阵的初等变换:首先要懂得矩阵的三种初等变换的算法,明白一个矩阵经过一次初等变换并非完全不变,变换前后的矩阵间只是一种特殊的所谓等价关系(如(,)~E i j A A ,而不是(,),E i j A A =等等)。还要能将行列式性质中提公因子、交换两 行(列)与用常数乘某行(列)加到另一行(列)上去后的结果弄清楚,并可与相应方阵的初等变换进行对比。重要的是知道初等变换不改变矩阵的秩。 5. 关于矩阵的秩:矩阵的秩是由解线性方程组引入的一个新概念,对它要逐步加深理解。为此,首先应弄清什么是矩阵的行阶梯形:其一个“台阶”(非零行)只有一行,即任一行的首非零元素下面(同列)的元素全为零,不能把两行的首非零元素位于同一列视为一个“台阶”,而全为零的一行也是一个台阶,且要位于非零行下方。这里,要求会用矩阵的行初等变换法和计算子式法两种方法求可逆方阵的逆阵。

行列式及矩阵的发展简史

行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。行列式是由莱布尼茨和日本数学家关孝和发明的。 1693 年4 月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。 1750 年,瑞士数学家克莱姆 (G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学家贝祖 (E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。 总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德蒙 (A-T.Vandermonde,1735-1796) 。范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。就对行列式本身这一点来说,他是这门理论的奠基人。 1772 年,拉普拉斯在一篇论文中证明了范德蒙提出的一些规则,推广了他的展开行列式的方法。 继范德蒙之后,在行列式的理论方面,又一位做出突出贡献的就是另一位法国大数学家柯西。 1815 年,柯西在一篇论文中给出了行列式的第一个系统的、几乎是近代的处理。其中主要结果之一是行列式的乘法定理。另外,他第一个把行列式的元素排成方阵,采用双足标记法;引进了行列式特征方程的术语;给出了相似行列式概念;改进了拉普拉斯的行列式展开定理并给出了一个证明等。 19 世纪的半个多世纪中,对行列式理论研究始终不渝的作者之一是詹姆士·西尔维斯特 (J.Sylvester,1814-1894) 。他是一个活泼、敏感、兴奋、热情,甚至容易激动的人,然而由于是犹太人的缘故,他受到剑桥大学的不平等对待。西尔维斯特用火一般的热情介绍他的学术思想,他的重要成就之一是改进了从一个次和一个次的多项式中消去 x 的方法,他称之为配析法,并给出形成的行列式为零时这两个多项式方程有公共根充分必要条件这一结果,但没有给出证明。 继柯西之后,在行列式理论方面最多产的人就是德国数学家雅可比 (J.Jacobi,1804-1851) ,他引进了函数行列式,即“雅可比行列式”,指出函数行列式在多重积分的变量替换中的作用,给出了函数行列式的导数公式。雅可比的著名论文《论行列式的形成和性质》标志着行列式系统理论的建成。由于行列式在数学分析、几何学、线性方程组理论、二次型理论等多方面的应用,促使行列式理论自身在19世纪也得到了很大发展。整个19 世纪都有行列式的新结果。除了一般行列式的大量定理之外,还有许多有关特殊行列式的其他定理都相继得到。 矩阵 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。

相关文档
最新文档