精馏塔的比值控制系统设计(毕业设计)

精馏塔控制系统课程设计

摘要

在石化工业中,许多原料、中间产品或粗成品往往是由若干组分形成的混合物,需要通过精馏过程进行分离。精馏是利用混合液中不同组分挥发温度的差异将各组分分离的过程。精馏塔是精馏过程的关键设备。统计资料表明,在石化工业中,40%~50%的能量消耗在精馏设备中,精馏塔是过程控制的重要控制对象,一直受到控制领域的关注。

精馏塔由多级塔盘组成,内在工作机理复杂。在精馏过程中,工作参数对控制作用的响应缓慢,不同变量之间存在相互关联,因此,精馏塔是一个多参数的被控过程;不同工艺要求的精馏塔结构不同,工艺参数、变量之间存在多种组合,控制方案繁多;另外,精馏工艺控制要求较高,控制相对困难。只有对生产工艺进行深入分析,才可能控制出合理的控制系统。

本次设计中,通过对合成甲醇精馏过程的模拟,我们具体了解和掌握比值控制系统的工作原理。

关键词:精馏;精馏塔;多参数控制;定值控制;合成甲醇精馏

太原理工大学现代科技学院过程控制系统课程设计

目录

摘要 (1)

1 精馏塔控制系统介绍 (1)

1.1 精馏塔原理 (1)

1.2 精馏塔的控制要求及主要干扰因素 (1)

1.2.1 精馏塔的控制要求 (1)

1.2.2 精馏塔的干扰因素特性 (2)

2 精馏塔控制方式的选择与论证 (3)

3 定值控制系统 (4)

3.1 定值控制系统简介 (4)

3.2 定值控制系统的设计 (4)

4 甲醇精馏的比值控制系统 (6)

5 系统各器件选型 (7)

5.1检测转换元件的选择 (7)

5.2 调节阀气开气关式选择 (9)

6 小结与体会 (10)

参考文献 (11)

1

太原理工大学现代科技学院过程控制系统课程设计

精馏塔的定值控制系统设计

1 精馏塔控制系统介绍

1.1 精馏塔原理

精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸汽中转移,蒸汽中的难挥发(高沸点)组分不断地向下降液中转移,蒸汽愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。由塔顶上升的蒸汽进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体则作为釜残液取出。

蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不

同(相对挥发度)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。

1.2 精馏塔的控制要求及主要干扰因素

1.2.1 精馏塔的控制要求

为了保证精馏生产工序安全、高效持续进行,精馏塔自动控制系统应满足如下要求:

(1)保证产品质量。精馏塔的质量指标是指塔顶或塔底产品的纯度。通常,满足一端的产品质量,即塔顶或塔底产品之一达到规定纯度,而另一端产品的纯度维持在规定范围内。

(2)保证平稳生产。首先要使精馏塔的进料参数保持稳定;其次为了维持塔的物料平衡,要控制塔顶和塔底产品采出量,使其和等于进料量;再次塔内的储液量应保持在限定的范围内;最后要控制塔内压力稳定。

(3) 满足约束条件。系统必须满足一些参数的极限值所限定的约束条件,如

1

精馏塔控制系统课程设计

2

塔内气体流速的上下限、塔内压力极限值等。

(4) 节能要求及经济性。主要是再沸器的加热量和冷凝器的冷却能量消耗。

1.2.2 精馏塔的干扰因素特性

图1表示精馏塔物料流程图。在精馏塔运行过程中,影响其质量指标和平稳

生产的主要干扰有以下几种。

图1 精馏塔物料流程图

(1)进料流量F 的波动。如果精馏塔位于整个生产过程的起点,则可采用定值

控制系统。

(2)进料成分ZF 的变化。进料成分是由上一道工序出料或原料情况决定,对图

1所示精馏塔来讲,它是不可控的扰动因素。

(3)进料温度TF 和进料热焓值QF 的变化。一般情况下进料温度是比较恒定的,

如果进料温度变化较大,为了维持塔内的热量平衡和稳定运行,在单相进料时采

用进料温度控制可克服这种干扰,然而在多相进料时,进料温度恒定并不能保证

其热焓值稳定。当进料是气液两相的比例恒定时,恒温进料的热焓值才能恒定。

为了保持精馏塔的进料热焓值恒定,必要时可通过热焓控制来维持进料热能恒

定。

(4)再沸器加热剂输入热量的变化。当加热剂是蒸气时,通过再沸器输入精馏

塔的热量扰动往往是由蒸气压力变化所引起的,这一扰动可通过在蒸气总管设置

压力控制来加以克服,或者通过温度串级控制系统的副回路予以克服。 回流泵 冷凝器 气液分离器 精馏塔 进料 再沸器 塔底产品 塔顶产品 冷剂

热剂 Q W

Q D F,z F L L L D V

太原理工大学现代科技学院过程控制系统课程设计

3

(5)冷却剂在冷凝器内吸收热量的变化。其变化主要由冷却剂的压力或温度变

化引起的,吸收热量的变化会影响到精馏塔顶回流量或回流温度,进而引起精馏

塔输出热量的变化。

(6)环境温度的变化。环境温度一般变化较小,当变化大时可通过内回流控制

加以克服。

2 精馏塔控制方式的选择与论证

不同精馏塔生产工艺、产品质量标准不一样,对控制要求各不相同,因而控

制方案较多。

由于本设计是针对比值控制系统,所以我们假定具体工艺为双效三塔低压法

对合成甲醇的精馏控制。其总体工艺流程图如图2。

图2 双效三塔精馏工艺流程

在此系统中,三个塔分别是预塔、加压塔和常压塔。粗甲醇进入预塔之前,

先在粗甲醇预热器中,用蒸汽冷凝液将其预热到338K ,粗甲醇在预塔除去其中

残余的溶解气体及低沸物。塔顶设置两个冷凝器。在塔内上升汽中的甲醇大部分

冷凝下来进入预塔回流槽,精预塔回流泵进入塔顶作回流。不凝气、轻组分及少

量甲醇蒸汽通过压力调节后至加热炉作燃料。

预塔塔底由低压蒸汽加热的热虹式再沸器向塔内提供供热量。为了防止粗甲

醇对设备的腐蚀,在预塔下部高温区加入一定量的稀碱液,使预后甲醇的PH 值

控制在8左右。

由预塔塔底出来的预后甲醇,经加压塔进料泵加压后,进入第一主精馏塔加

压塔,塔顶甲醇蒸汽进入冷凝再沸器,即第一精馏加压塔的气相甲醇又利用冷凝

潜热加热第二精馏常压塔的塔釜,被冷凝的甲醇进入回流槽中,在回流槽稍加冷冷

水粗甲醇

送作燃料

精甲醇

精甲醇

(粗乙醇)

精馏塔控制系统课程设计

却,一部分由加压塔回流泵升压至0.8MPa送到加压塔作回流液,其余部分经加压塔精甲醇冷却至到313K后作成品送往精甲醇计量槽。

加压塔用低压蒸汽加热的热虹式再沸器向塔内提供热量,通过低压蒸汽的加入量来控制塔的操作温度。加压塔的操作压力大约为0.57MPa,塔顶操作温度大约为394K,塔底操作温度大约为400K。

由加压塔塔底排出的甲醇溶液送往第二精馏常压塔下部,从常压塔塔顶出来的甲醇蒸气经常压塔冷凝器冷却到313K后,进入常压塔回流槽,再经常压塔回流泵加压后,一部分送到常压塔塔顶作回流,其余部分送到精甲醇计量槽。常压塔顶操作压力大约为0.006MPa,塔顶操作温度大约为339K,塔底操作温度大约为368K。

常压塔的塔底残液另外由汽提塔进料泵加压后进入废水汽提塔,塔顶蒸汽经汽提塔冷凝器冷凝后,进入汽提塔回流槽,由汽提塔回流泵加压,一部分送废水汽提塔塔顶作回流,另一部分经汽提塔甲醇冷凝器冷凝至313K,与常压塔采出的精甲醇一起送往产品计量槽。如果采出的精甲醇不合格,可将其送至常压塔进行回收,以提高甲醇精馏的回收率。

汽提塔塔底用低压蒸汽加热的热虹式再沸器向塔内提供热量,塔底下部设有侧线,采出部分杂醇油,并与塔底排出的含醇废水一起进入废水冷却到313K,由废水泵送往污水生化处理装置。

本工艺对于预精馏塔(稳定塔)进料PH、第一主精馏塔(加压塔)温度、压力、回流比以及第二主精馏塔(常压塔)负荷的控制尤为重要。其中,预精馏塔进料PH的控制涉及到两种物料(粗甲醇和碱液)的配比,即控制PH=8得控制此两种物料保持一定的比值。此时可以使用比值控制系统予以实现。

3 定值控制系统

3.1 定值控制系统简介

实现两个或多个参数符合一定比例关系的控制系统,称为比值控制系统。例如要实现两物料的比例关系,则表示为:Q2=K Q1。

定值控制系统分为开环比值控制系统、单闭环比值控制系统、双闭环比值控制系统和变比值控制系统。

3.2 定值控制系统的设计

(1)主、副流量的确定

4

太原理工大学现代科技学院过程控制系统课程设计

①生产中起主导作用的物料流量,一般选为主流量,其余的物料流量跟随其变化,为副流量。

②工艺上不可控的物料流量,一般选为主流量。

③成本较昂贵的物料流量一般选为主流量。

④当生产工艺有特殊要求时,主、副物料流量的确定应服从工艺需要。

(2)控制方案的选择

控制方案选择应根据不同的生产要求确定,同时兼顾经济性原则。

①如果工艺上仅要求两物料流量之定值一定,而对总流量无要求,可用单闭环比值控制方案。

②如果主、副流量的扰动频繁,而工艺要求主、副物料总流量恒定的生产过程,可用双闭环比值控制方案。

③当生产工艺要求两种物料流量的定值要随着第三参数的需要进行调节时,可用变比值控制方案。

(3)调节器控制规律的确定

定值控制系统中,调节器的控制规律是根据控制方案和控制要求而定。在单闭环定值控制系统中,定值器F1C起比值计算作用,若用调节器实现,则选P 调节;调节器F2C使副流量稳定,为保证控制精度可选PI调节。

双闭环比值控制不仅要求两流量保持恒定的比值关系,而且主、副流量均要实现定值控制,所以两个调节器均应选PI调节;比值器选P调节。

(4)正确选择流量计及其量程

各种流量计都有一定的适用范围(一般正常流量选在满量程的70%左右),必须正确地选择和使用,可参考有关设计资料、产品手册。

(5)定值系数的计算

工艺规定的流量(或质量)比值K不能直接作为仪表比值使用,必须根据仪表的量程转换成仪表的比值系数K’后才能进行定值设定。变送器的转换特性不同,比值系数K’的计算公式不同。

①流量与测量信号之间成线性关系

如果Q1的流量计测量范围为0~Q1max 、Q2的流量计测量范围为0~Q2max,则变送器输出电流信号和流量之间的关系为:

5

精馏塔控制系统课程设计

6 2max

1max Q Q K K =’ ②流量与测量信号之间成非线性关系

如果Q1的流量计测量范围为0~Q1max 、Q2的流量计测量范围为0~Q2max ,

则变送器输出电流信号和流量之间的关系为: 2max 21max 22

Q Q K K =’ 4 甲醇精馏的定值控制系统

由于粗甲醇为不可控变量,受上一工序影响比较大,而碱液比较稳定,本方

案使用单闭环比值控制方案,它不但能实现副流量跟随主流量的变化而变化,而

且还可以克服副流量本身干扰(储罐中液位降低时流量可能会减小)对定值的影

响,因此主副流量的比值较为准确;另外,该方案结构形式简单,实施起来也很

容易,其具体示意图和方块图如图3和图4。

图3 调节PH 的单闭环控制系统

F 1C F 2C 控制器F 1C 控制器 F 2C 执行器 对象 副测量(碱液)、变送 主测量(粗甲醇)、变送

太原理工大学现代科技学院过程控制系统课程设计

7

图4 调节PH 的单闭环控制系统框图

在稳定情况下,主流量满足工艺要求的比值,即Q2/Q1=K ;当主流量发生改

变时,经变送器送至主控制器F1C 、F2C 按预先设置好的定值使输出成比例地变

化,也就是成比例地改变副流量控制F2C 的给定值,此时副流量闭环系统为一个

随动控制系统,从而Q2跟随Q1变化,使得在新工况下,流量比值K 保持不变;

当主流量没有变化而Q2由于自身干扰发生变化时,此副流量闭环系统相当于一

个定值控制系统,通过控制克服干扰,使工艺要求的流量比值仍保持不变。

5 系统各器件选型

5.1检测转换元件的选择

本系统需要使用的检测转换元件为PH 计。工业PH 计由发送器和测量器两大

部分组成。发送器由玻璃电极和甘汞电极组成,它的作用是根据PH 值转换成直

流信号,工业PH 计的测量仪器一般用电子电位差计。

(1)检测原理

电位测定的基本原理是在被测溶液中插入两个不同的电极,其中一个电极的

电位随溶液[]

+H 的改变而变化,称为工作电极;另一个电极具有固定的电位,称

为参比电极。这两个电极形成一个原电池,测定两电极之间的电势就可以知道被

测溶液的PH 值。如图5所示为工业PH 计测量线路。

图5 PH 计测量电路 图6 玻璃电极 (2)参比电极

溶液PH 测定普遍采用甘汞电极作为参比电极。它由一个闪电极装入一个玻

璃外壳组成。内电极的引线下端浸入汞中,汞下面装有糊状的甘汞,并用浸在

精馏塔控制系统课程设计

8

KCl 溶液中纤维丝堵塞,下部为溶液通道(一般为多孔陶瓷制线),KCl 溶液作

为盐桥。其电极电势为:

[]

--=cl ln F RT E E 0 式中,0E 为电极的标准电位;R 为气体常数;T 为溶液的绝对温度;F 为法

拉第常数;[]-cl 为氯离子的浓度。

从上式可知:电位的高低直接取决于[]-cl 的大小。

甘汞电极的种类有好多,常用的为饱和甘汞电极,即KCl 为饱和的,所以[]

-

cl 保持不变,电位只取决于环境的温度。

(3)工作电极

工作电极主要有玻璃电极、氢醌电极和锑电极三种,其中玻璃电极为工业常

用的工作电极。

下面简述各种电极:

a. 玻璃电极

如图6为常用普通PH 玻璃电极,当玻璃电极插入被测试样时,在PH 计玻璃

内部溶液(参比溶液)和被测溶液之间建立起+H 的平衡状态,此时电极电势为: [][]

++

+=H H lg F 2.303RT E E 0a 式中,a E 为不对称电位;[]0H +为参比溶液的[]

+H 。 对于给定的玻璃电极,[]0

H +

为一个常数,则电位只与被测液氢离子的浓度有函数关系。同样玻璃电极受温度影响比较大,所以必须根据温度补偿电阻接入

测量电路,以补偿温度对PH 值测量的影响。玻璃电极的工作温度在2-55℃之间。

b. 氢醌电极

将铂极片浸于饱和醌--氢醌溶液中,即形成氢醌电极,其电极电势为:

PH F

2.303RT E E a -= 由上式可知氢醌电极的电势E 正比于溶液的PH 值。氢醌电极的优点是结构

简单,反应速度快,但受温度影响大,在高温下电极电位不稳定等。

太原理工大学现代科技学院过程控制系统课程设计

c. 锑电极

这是一种金属-金属氧化物电极。其电极电势产生与金属与覆盖其表面的氧化物的界面上。锑电极的结构也比较简单,可用于半固体等混合物中的PH测量,但精度不高。

5.2 调节阀气开气关式选择

气动调节阀在气压信号中断后阀门会复位。无压力信号时阀全开,随着信号增大,阀门逐渐关小的称为气关式。反之,无压力信号时阀全闭,随着信号增大,阀门逐渐开大称的为气开式。

阀门气开气关式的选择原则:当控制信号中断时,阀门的复位位置能使工艺设备处于安全状态。

根据此原则,本设计我们应该选用气开式调节阀。

9

精馏塔控制系统课程设计

6 小结与体会

《过程控制系统与仪表》这门课是自动控制原理和传感检测这两个学科的延续。我这次课程设计任务就要要运用这些知识设计一个精馏塔的比值控制系统。

本次设计,我分成两个阶段。第一阶段,通过图书馆和网络查阅相关资料,先弄明白精馏塔的工作原理,结构组成以及比值控制系统的理论知识,从而整理出大致的设计思路;第二阶段,根据之前明确的主要方向,确定合适的设计方案,选择适合的检测元件,确定调节阀的工作方式、调节器的控制规律等。

我在这次课程设计中遇到很多困难,其中,最大的难题就是对精馏塔进行比值控制的设计。因为根据我查询的各种资料,在精馏过程中,被控参数不管是精馏段还是提馏段,所选择的控制系统包括串级控制、前馈-反馈控制、均匀控制甚至一些高级控制,就是没有比值控制。所以,最终,我自己模拟了一个具体的工艺过程,也就是文中的合成甲烷的精馏过程,并且将第一阶段的PH值控制过程设计成了比值控制系统。另外,本来我准备对自己设计的系统进行建模和仿真,但是,由于时间原因和对实际的系统参数不确定,所以只能作罢。

这次课程设计内容看似简单,但是对于我本身而言意义重大,我从中收获很多。首先,过程控制理论知识相对比较琐碎和繁杂,在课程学习时因为直观觉得简单,所以没有形成系统的观念。在本次设计中,对于一个控制系统,从原理分析到方案论证再到具体器件的选择,做完后我们不仅掌握了系统的设计方法,更重要的是我们对于系统设计有了宏观的认识。其次,本次的课程设计让我具体了解了精馏塔的工作过程以及多种控制方式,还了解了一种之前没有接触过的检测仪器——PH计。

在大学期间,我们已经做过多次课程设计,每次都有很大收获。而作为大四上学期最后一个任务,此次课程设计也意味着大学课程设计的终结,对此,我表示很遗憾。所以,将来不管是工作还是继续深造,在接下来的大学时间里,我们都应该自主地学习一些专业知识或者技能,多结合理论与实践,运用我们大学所学的所有知识,系统地进行能力提升。

10

太原理工大学现代科技学院过程控制系统课程设计

参考文献

[1] 王再英等编.过程控制系统与仪表.北京:机械工业出版社,2006

[2] 侯志林.过程控制与自动化仪表.北京:机械工业出版社,1999

[3] 施仁主.自动化仪表与过程控制.北京:电子工业出版社,2003

[4] 金以慧.过程控制.北京:清华大学出版社,1993

[5] 曹润生等编.过程控制仪表.杭州:浙江大学出版社,1987

[6] 王正林等编.过程控制与Simulink应用.北京:电子工业出版社,2006

11

乙醇精馏塔设计毕业论文

乙醇精馏塔设计毕业论文 目录 摘要................................................................. I Abstract............................................................. II 第一章绪论 (1) 1.1 设计的目的和意义 (1) 1.2 产品的性质及用途 (1) 1.2.1 物理性质 (1) 1.2.2 化学性质 (2) 1.2.3 乙醇的用途 (2) 第二章工艺流程的选择和确定 (3) 2.1 粗乙醇的精馏 (3) 2.1.1 精馏原理 (3) 2.1.2 精馏工艺和精馏塔的选择 (3) 2.2 乙醇精馏流程 (5) 第三章物料和能量衡算 (7) 3.1 物料衡算 (7) 3.1.1 粗乙醇精馏的物料平衡计算 (7) 3.1.2 主塔的物料平衡计算 (8) 3.2 主精馏塔能量衡算 (9) 3.2.1 带入热量计算 (9) 3.2.2 带出热量计算 (10) 3.2.3 冷却水用量计算 (10) 第四章精馏塔的设计 (11) 4.1 主精馏塔的设计 (11) 4.1.1 精馏塔全塔物料衡算及塔板数的确定 (11) 4.1.2 求最小回流比及操作回流比 (12) 4.1.3 气液相负荷 (12) 4.2 求操作线方程 (12) 4.3 图解法求理论板 (13) 4.3.1 塔板、气液平衡相图 (13) 4.3.2 板效率及实际塔板数 (14) 4.4 操作条件 (14) 4.4.1 操作压力 (14) 4.4.2 混合液气相密度 (15) 4.4.3 混合液液相密度 (16) 4.4.4 表面力 (16)

精馏塔提馏段的温度控制系统

南华大学 过程控制仪表课程设计 设计题目精馏塔提馏段的温度控制系统学生XXX 专业班级自动化X X X 学号XXXXXXXXXX 指导老师XXX 2012年6月25日

目录 1.系统简介与设计目的 (2) 2.控制系统工艺流程及控制要求 (3) 3.设计方案及仪表选型 (4) 3.1控制方案的确定 (4) 3.2控制系统图、方框图 (5) 4.各个环节仪表的选型,仪表的工作原理以及性能指标 (7) 4.1检测元件 (7) 4.1.1铠装热电偶特点 (7) 4.1.2铠装热电偶主要技术参数 (7) 4.2变送器 (7) 4.2.1变送器主要技术指标 (7) 4.3调节器 (8) 4.4执行器 (8) 4.4.1电/气阀门定位器作用 (8) 5.绘制仪表盘电气接线图,端子接线图 (10)

6.仪表型号清单 (11) 7.设计总结 (12) 参考文献 (13) 1.系统简介与设计目的 精馏操作是炼油、化工生产过程中的一个十分重要的环节。精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以 来一直受到人们的高度重视。精馏塔是一个多输入多输出的对象,它由很多级塔 板组成,在机理复杂,对控制要求又大多较高。这些都给自动控制带来一定的困难。同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的 特点,进行自动控制方案设计和研究。精馏塔的控制最终目标是,在保证产品质 量的前提下,使回收率最高,能耗最小,或使总收益最大。在这个情况为了更好 实现精馏的目标就有了提馏段温度控制系统的产生。

按提馏段指标的控制方案,当塔釜液为主要产品时,常常按提馏段指标控制。 如果是液相进料,也常采用这类方案。这是因为在液位相进料时,进料量的变化, 首先影响到塔底产品浓度,塔顶或精馏段塔板上的温度不能很好地反映浓度的变 化,所以采用提馏段控制温度比较及时。另外如果对釜底出料的成分要求高于塔 顶出料,塔顶或精馏段板上温度不能很好反映组分变化和实际操作回流比大于几 倍最小回流比时,可采用提馏段控制。提馏段温度是衡量质量指标的间接指标,而以改变再沸器加热量作为控手段的方案,就是提馏段温控。 精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。

基于单片机的智能照明控制系统设计[1]

设计名称:智能照明控制系统组别:第五组 组长:XX 组员:XX

基于单片机的智能照明控制系统设计 随着电子技术的飞速发展,基于单片机的控制系统已广泛应用于工业、农业、电力、电子、智能家居等行业,微型计算机作为嵌入式控制系统的主体与核心,代替了传统的控制系统的常规电子线路。 本文介绍了基于单片机AT89C51的室内灯光控制系统及其原理,提出了有效的节能控制方法。该系统采用了当今较成熟的传感技术和计算机控制技术,利用多参数来实现对学校教室室内照明的控制。 系统设计包括硬件设计和软件设计两部分。工作时,光信号取样电路采集光照强弱、人体信号采集电路采集室内是否有人、是否为工作时间等信息并将信号送到单片机,单片机根据这些信息通过控制电路对照明设备进行开关操作,从而实现照明控制,以达到节能的目的。

目录 1 引言....................................................................... 1.1 研究背景.............................................................. 1.2 智能照明控制系统的优点................................................. 2 设计部分................................................................... 2.1设计要求............................................................... 2.2系统设计............................................................... 2.3逻辑控制............................................................... 2.4硬件设计............................................................... 2.4.1 系统硬件总述....................................................... 2.4.2 AT89C51单片机介绍................................................. 2.4.3 光照检测电路....................................................... 2.4.4 人体信号采集电路................................................... 2.4.5 比较电路........................................................... 2.4.6 延迟时间选择电路................................................... 2.4.7 输出控制电路....................................................... 3 系统软件设计及实现......................................................... 4 结论...................................................................... 5 评价……………………………………………………………………………………………….. 6 组员分工…………………………………………………………………………………………..

水温自动控制系统毕业设计论文(DOC)

毕业设计论文 水温自动控制系统 钟野 院系:电子信息工程学系 专业:电气自动化技术 班级: 学号: 指导教师: 职称(或学位): 2011年5 月

目录 1 引言 (2) 2 方案设计 (2) 2.1 总体系统的设计思路 (2) 2.2 部分外围系统的设计思路 (3) 3 硬件电路设计 (3) 3.1 单片机最小系统的设计 (3) 3.2 温度检测电路的设计与论证 (4) 3.3 显示功能电路的设计与论证 (5) 3.4 温度报警提示功能电路的设计与论证 (5) 3.5 外围电路控制设计 (6) 3.6 扩展部分方案设计 (7) 4 软件设计 (7) 4.1 控制主程序设计 (7) 4.2 温度设置程序设计 (8) 4.3 上下限报警程序设计 (8) 5 结论 (9) 结束语 (9) 致谢 (10) 参考文献 (10) 附录............................................................................................................... 错误!未定义书签。

水温自动控制系统 钟野 (XXXX电子信息工程学系指导教师:CXJ) 摘要:本文设计主要是采用A T89C51单片机为控制核心、以温度传感器(DS18B20)为温度采集元件, 外加温度设置电路、温度采集电路、显示电路、报警电路和加热电路来实现对水温的显示同时自动检测及线性化处理,其误差小于±0.5℃。本文重点介绍硬件设计方案的论证和选择,以及各部分功能控制的软件的设计。本次设计的目标在于:由单片机来实现水温的自动检测及自动控制,实现设备的智能化。 关键词:单片机;温度传感器;自动控制 Abstract: This paper is designed AT89C51 microcontroller as control core and temperature sensor DS18B20) for (temperature gathering element, plus the temperature setting circuit, temperature gathering electriccircuit, display circuit, alarm circuit and heating circuit to achieve water temperature display while automatically detecting and linearization, its error is less than 0.5 + ℃. This paper mainly introduces the hardware design argumentation and choice, and some functional control software design. This design goal is: by single-chip microcomputer to realize the automatic detection and automatic temperature control, realize the intellectualized equipment. Keywords: Microcontroller; Temperature sensors; Automatic control

信息管理系统毕业设计

1 概述 学生信息管理系统是学校管理的重要工具,是学校不可或缺的部分。随着在校大学生人数的不断增加,教务系统的数量也不断的上涨,。学校工作繁杂、资料众多,人工管理信息的难度也越来越大,显然是不能满足实际的需要,效率也是很低的。并且这种传统的式存在着很多的弊端,如:保密性差、查询不便、效率低,很难维护和更新等。然而,本系统针对以上缺点能够极大地提高学生信息管理的效率,也是科学化、正规化的管理,与世界接轨的重要条件。所以如自动高效地管理信息是这些年来多人所研究的。 随着这些年电脑计算机的速度质的提高,成本的下降,IT互联网大众趋势的发展。我们使用电脑的高效率才处理数据信息成为可能。学生学籍管理系统的出现,正是管理人员与信息数据,计算机的进入互动时代的体现。友好的人机交互模式,清晰简明的图形界面,高效安全的操作使得我们对成千上万的信息的管理得心应手。通过这个系统,可以做到信息的规管理,科学统计和快速的查询,从而减少管理面的工作量?毋庸置疑,切实有效地把计算机管理引入学校教务管理中,对于促进学校管理制度,提高学校教学质量与办学水平有着显著意义? 2 需求与功能分析 学生信息管理系统,可用于学校等机构的学生信息管理,查询,更新与维护,使用便,易用性强。该系统实现的大致功能:用户登陆。提供了学生学籍信息的查询,相关科目的成绩查询和排名,修改登录密码等功能。教师管理。提供了对学生学籍信息的查询,添加,修改,删除;学生成绩的录入,修改,删除,查询班级排名。修改密码等功能。管理员管理。

拥有最高的权限。允添加教师信息和课程信息等。其提供了简单、便的操作。 3 概要设计 3.1功能模块图 功能模块图,如下图3.1所示 图3.1 功能模块图 3.2数据流图 数据流图,如图3.2所示 教师信息 课程信息

乙醇水溶液提纯精馏塔设计毕业设计

乙醇水溶液提纯精馏塔设计毕业设计 目录 1.绪论 (1) 1.1.设计背景 (1) 1.2.设计意义 (1) 1.3.设计步骤 (1) 2.精馏塔设计计算 (2) 2.1.精馏流程的确定 (2) 2.2.塔的物料衡算 (2) 2.2.1.查阅文献,整理有关物性数据 (2) 2.2.2.料液及塔顶、塔底产品的摩尔分数 (3) 2.2.3. 平均摩尔质量 (3) 2.2.4. 物料衡算 (3) 2.3. 塔板数的确定 (3) 2.3.1. 乙醇—水物系的气液平衡数据 (4) 2.3.2. 求最小回流比及操作回流比 (4) 2.3.3. 求精馏塔的气液相负荷 (4) 2.3.4. 求操作线方程 (4) 2.3.5. 图解法求理论塔板层数 (4) 2.3.6. 求实际塔板数 (5) 2.4 塔的工艺条件及物性数据计算 (6) 2.4.1. 操作压力 (6) 2.4.2. 平均摩尔质量 (7) 2.4.3. 平均密度 (7) 2.4. 3.1 .....................................................气相密度7 2.4. 3.2 ................................................. 液相平均密度7 2.4.4. 液体表面力 (8) 2.5 精馏塔的塔体工艺尺寸计算 (9) 2.5.1. 塔径的计算 (9) 2.5.2. 精馏塔有效高度的计算 (9) 2.6 塔板主要工艺尺寸的计算 (9) 2.6.1. 堰长 (9) 2.6.2. 溢流堰高度 (10) 2.6.3. 弓形降液管宽度和截面积 (10) 2.6.4. 降液管底隙高度 (11) 2.7 塔板布置 (11) 2.7.1. 塔板的分块 (12) 2.7.2. 边缘区宽度确定 (12)

乙醇精馏塔-毕业设计

摘要 乙醇是一种极重要的有机化工原料,也是一种燃料,在国民经济中占有十分重要的地位。随着乙醇工业的迅速成熟,各种制乙醇的方法相继产生。由于乙醇与水混合物的特殊性,即相对挥发度的不同且在一定浓度时生成共沸物,精馏操作一直是乙醇生产不可缺少的工序。 本设计的主要内容是根据20万吨乙醇生产工艺的需求,通过物料衡算和热量衡算以及板式浮阀塔设计的理论知识来设计浮阀塔,并由负荷性能图来进行校验。此外,本设计遵循经济、资源综合利用、环保的原则,严格控制工业三废的排放,充分利用废热,降低能耗,提高工艺的可行性。 关键词:乙醇精馏;浮阀塔;塔附件设计

Abstract Ethanol is a very important organic chemical raw material, but also a fuel, in the national economy occupied a very important position. With the rapid ethanol industry matures, various methods have been found. As a characteristic of a mixture of ethanol and water, the difference of the relative volatility and is generated in a certain concentration azeotrope, distillation operation has been indispensable step of ethanol production. The design of the main content is based on 200,000 tons of ethanol production technology,which needs through material balance and energy balance and the plate valve column design theory to design the float valve column by load performance diagrams for verification. In addition, the design follows the economy, resource utilization, environmental protection principles, strictly control industrial waste emissions, the full use of waste heat, reduce energy consumption and improve the feasibility of the process. Keywords: Ethanol distillation,Valve column,Design

精馏塔温度控制系统设计.doc

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 090302074 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而且大多数控制对象在运行的同时自身的结构也在发生变化。所以仅用前馈并不能达到良好的控制品质。这时就需要加入反馈,反馈的特点是根据偏差来决定控制输入,不管对象的模型如何,也不管外界的干扰如何,只要有偏差,就根据偏差进行纠正,可以有效的消除稳态误差。解决前馈不能控制的不可测干扰。 前馈反馈综合控制在结合二者的优点后,可以提高系统响应速度 关键词:提馏段温度前馈-反馈串级控制

基于AT89C52单片机和BIS0001的智能照明控制系统设计

基于AT89C52单片机和BIS0001的智能照明控制系统设计 类别:网文精粹阅读:1013 对一些照明时间较长、照明设备较多的场所(如学校教室、商场等),其照明系统的使用浪费现象屡见不鲜。由于缺乏科学管理和管理人员的责任心不强,有时在借助外界环境能正常工作和夜晚室内空无一人时,整个房间内也是灯火通明。这样下来,无形中所浪费的电能是非常惊人的。据测算,这种现象的耗电占其单位所有耗电的40%左右。因此,有必要在保证照明质量的前提下,实施照明节能措施。这不仅可以节约能源,而且会产生明显的经济效益。 1系统结构和工作原理 系统结构图如图1所示。本系统主要由光照检测电路、热释电红外线传感器及处理电路、单片机系统及控制电路组成。工作时,光照检测电路和热释电红外线传感器采集光照强弱、室人是否有人等信息送到单片机,单片机根据这些信息通过控制电路对照明设备进行开关操作,从而实现照明控制,以达到节能的目的。

2系统硬件设计 按图1构成的系统硬件电路如图2所示。为了使系统功能更加完善,在该系统中可以增加时间显示电路,用于显示当前的时间。由于该部分硬件与软件均已成熟,在此不做详细介绍。 2.1中心控制模块 目前较为流行的单片机有AVR和51单片机,从系统设计的功能

需求及成本考虑,51单片机性价比更高。AT89C52是拥有2个外部中断、2个16位定时器、2个可编程串行UART的单片机。中心控制模块采用AT89C52单片机已完全满足设计需要,实现整个系统控制。 2.2光照检测电路 如图2所示,当外界环境光照强时,光敏电阻R13阻值较小,则A点电平较低;当外界环境光照弱时,光敏电阻R13阻值较大,则A 点电平较高,将此电平送到单片机,由程序控制是否实现照明。 2.3热释电传感器及处理电路 2.3.1热释电红外线传感器 热释电红外传感器能以非接触形式检测出人体辐射的红外线,并将其转变为电压信号。热释电传感器具有成本低、不需要用红外线或电磁波等发射源、灵敏度高、可流动安装等特点。实际使用时,在热释电传感器前需安装菲涅尔透镜,这样可大大提高接收灵敏度,增加检测距离及范围。实验证明,热释电红外传感器若不加菲涅尔透镜,则其检测距离仅为2 m左右;而配上菲涅尔透镜后,其检测距离可增加到10 m以上。 由于热释电传感器输出的信号变化缓慢、幅值小(小于1 mV),不能直接作为照明系统的控制信号,因此传感器的输出信号必须经过一个专门的信号处理电路,使得传感器输出信号的不规则波形转变成适

温度自动控制系统的设计毕业设计论文

北方民族大学学士学位论文论文题目:温度自动控制系统的设计 北方民族大学教务处制

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

精馏塔的设计(毕业设计)讲义

精馏塔尺寸设计计算 初馏塔的主要任务是分离乙酸和水、醋酸乙烯,釜液回收的乙酸作为气体分离塔吸收液及物料,塔顶醋酸乙烯和水经冷却后进行相分离。塔顶温度为102℃,塔釜温度为117℃,操作压力4kPa。 由于浮阀塔塔板需按一定的中心距开阀孔,阀孔上覆以可以升降的阀片,其结构比泡罩塔简单,而且生产能力大,效率高,弹性大。所以该初馏塔设计为浮阀塔,浮阀选用F1型重阀。在工艺过程中,对初馏塔的处理量要求较大,塔内液体流量大,所以塔板的液流形式选择双流型,以便减少液面落差,改善气液分布状况。 4.2.1 操作理论板数和操作回流比 初馏塔精馏过程计算采用简捷计算法。 (1)最少理论板数N m 系统最少理论板数,即所涉及蒸馏系统(包括塔顶全凝器和塔釜再沸器)在全回流下所需要的全部理论板数,一般按Fenske方程[20]求取。 式中x D,l,x D,h——轻、重关键组分在塔顶馏出物(液相或气相)中的摩尔分数; x W,l,x W,h——轻、重关键组分在塔釜液相中的摩尔分数; αav——轻、重关键组分在塔内的平均相对挥发度; N m——系统最少平衡级(理论板)数。 塔顶和塔釜的相对挥发度分别为αD=1.78,αW=1.84,则精馏段的平均相对挥发度: 由式(4-9)得最少理论板数: 初馏塔塔顶有全凝器与塔釜有再沸器,塔的最少理论板数N m应较小,则最少理论板数:。 (2)最小回流比 最小回流比,即在给定条件下以无穷多的塔板满足分离要求时,所需回流比R m,可用Underwood法计算。此法需先求出一个Underwood参数θ。 求出θ代入式(4-11)即得最小回流比。

式中——进料(包括气、液两相)中i组分的摩尔分数; c——组分个数; αi——i组分的相对挥发度; θ——Underwood参数; ——塔顶馏出物中i组分的摩尔分数。 进料状态为泡点液体进料,即q=1。取塔顶与塔釜温度的加权平均值为进料板温度(即计算温度),则 在进料板温度109.04℃下,取组分B(H2O)为基准组分,则各组分的相对挥发度分别为αAB=2.1,αBB=1,αCB=0.93,所以 利用试差法解得θ=0.9658,并代入式(4-11)得 (3)操作回流比R和操作理论板数N0 操作回流比与操作理论板数的选用取决于操作费用与基建投资的权衡。一般按R/R m=1.2~1.5的关系求出R,再根据Gilliland关联[20]求出N0。 取R/R m=1.2,得R=26.34,则有: 查Gilliland图得 解得操作理论板数N0=51。 4.2.2 实际塔板数 (1)进料板位置的确定 对于泡点进料,可用Kirkbride提出的经验式进行计算。

精馏塔毕业设计论文

第一章概论 1.1塔设备在化工生产中的作用和地位 塔设备是化工、石油化工和炼油等生产中最重要的的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。可在塔设备中完成的常见的单元操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。 在化工厂、石油化工厂、炼油厂等中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各个方面,都有重大的影响。据有关资料报道,塔设备的投资费用占整个工艺设备投资费用的较大比例;它所耗用的钢材重量在各类工艺设备中也属较多。因此,塔设备的设计和研究,受到化工、炼油等行业的极大重视。 1.2塔设备的分类及一般构造 塔设备经过长期发展,形成了型式繁多的结构,以满足各方面的特殊需要。为了便于研究和比较,人们从不同的角度对塔设备进行分类。例如:按操作压力分为加压塔、常压塔和减压塔;按单元操作分为精馏塔、吸收塔、解吸塔、萃取塔、反应塔和干燥塔;按形成相际接触界面的方式分为具有固定相界面的塔和流动过程中形成相界面的塔;也有按塔釜型式分类的。但是长期以来,最常用的分类是按塔的内件结构分为板式塔和填料塔两大类,还有几种装有机械运动构件的塔。 在板式塔中,塔内装有一定数量的塔盘,气体以鼓泡或喷射的形式穿过塔盘上的液层使两相密切接触,进行传质。两相的组分浓度沿塔高呈阶梯式变化。 在填料塔中,塔内装填一定段数和一定高度的填料层,液体沿填料表面呈膜状向下流动,作为连续相的气体自下而上流动,与液体逆流传质。两相的组分浓度沿塔高呈连续变化。 人们又按板式塔的塔盘结构和填料塔所用的填料,细分为多种塔型。

精馏塔温度控制系统设计

精馏塔温度控制系统设计 The Standardization Office was revised on the afternoon of December 13, 2020

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 0 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而

温度自动控制系统的设计毕业设计

论文题目:温度自动控制系统的设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

信息管理系统毕业设计

1概述 学生信息管理系统是学校管理的重要工具,是学校不可或缺的部分。随着在校大学生人数的不断增加,教务系统的数量也不断的上涨,。学校工作繁杂、资料众多,人工管理信息的难度也越来越大,显然是不能满足实际的需要,效率也是很低的。并且这种传统的方式存在着很多的弊端,如:保密性差、查询不便、效率低,很难维护和更新等。然而,本系统针对以上缺点能够极大地提高学生信息管理的效率,也是科学化、正规化的管理,与世界接轨的重要条件。所以如何自动高效地管理信息是这些年来许多人所研究的。 随着这些年电脑计算机的速度质的提高,成本的下降,IT互联网大众趋势的发展。我 们使用电脑的高效率才处理数据信息成为可能。学生学籍管理系统的出现,正是管理人员 与信息数据,计算机的进入互动时代的体现。友好的人机交互模式,清晰简明的图形界面,高效安全的操作使得我们对成千上万的信息的管理得心应手。通过这个系统,可以做到信息的规范管理,科学统计和快速的查询,从而减少管理方面的工作量?毋庸置疑,切实有效地把计算机管理引入学校教务管理中,对于促进学校管理制度,提高学校教学质量与办学水平有着显著意义? 2需求与功能分析 学生信息管理系统,可用于学校等机构的学生信息管理,查询,更新与维护,使用方便, 易用性强。该系统实现的大致功能:用户登陆。提供了学生学籍信息的查询,相关科目的成绩查询和排名,修改登录密码等功能。教师管理。提供了对学生学籍信息的查询,添加,修改,删除;学生成绩的录入,修改,删除,查询班级排名。修改密码等功能。管理员管理。拥有最高的权限。允许添加教师信息和课程信息等。其提供了简单、方便的操作。 3概要设计 3.1功能模块图 功能模块图,如下图3.1所示

毕业设计--精馏塔的工艺和机械设计

毕业设计(论文) 2013 届 题目CS2和CCl4精馏塔的工艺和机械设计专业化工设备与维修技术

毕业论文(设计)任务书 1、论文(设计)题目:CS2和CCl4精馏塔的工艺 和机械设计 2、论文(设计)要求: (1)学生应在教师指导下按时完成所规定的内容和工作量,最好是独立完成。 (2)选题有一定的理论意义与实践价值,必须与所学专业相关。(3)主题明确,思路清晰。 (4)文献工作扎实,能够较为全面地反映论文研究领域内的成果及其最新进展。 (5)格式规范,严格按系部制定的论文格式模板调整格式。 (6)所有学生必须在5月15日之前交论文初稿。 3、论文(设计)日期:任务下达日期 2013.3.4 完成日期 2013.4.10 4、指导教师签字:

CS2和CCl4精馏塔的工艺和机械设计 摘要:本次设计的目的是通过精馏操作来完成二硫化碳和四氯化碳混合溶液的分离,从而获得较高浓度的轻组分二硫化碳。精馏是利用混合液中各组分挥发度不同而达到分离要求的一种单元操作。本设计详细阐述了设计的各部分内容,计算贯穿在整个设计中。本设计包括蒸馏技术的概述、精馏塔工艺尺寸的计算、塔板校核、精馏塔结构的设计、筒体及各部件材料的选择、筒体各处开孔补强的设计、塔体机械强度的校核及精馏塔装配图的绘制等主要内容。 关键字:精馏塔,塔板校核,开孔补强,机械强度。

目录 1.概论 (1) 1.1蒸馏技术背景、基本概念和分类 (1) 1.1.1蒸馏技术背景 (1) 1.1.3蒸馏技术分类 (1) 1.2塔设备的作用和类型 (2) 1.2.1塔设备的作用 (2) 1.2.2塔设备的类型 (2) 1.3蒸馏技术节能 (3) 1.4现在蒸馏技术面临的机遇和挑战 (3) 1.5本设计中的方案选择 (4) 2.精馏塔设计任务书 (6) 2.1设计题目:二硫化碳—四氯化碳精馏塔设计 (6) 2.2设计任务及操作条件 (6) 2.3设计内容 (6) 2.4设计基础数据 (7) 3.各部分结构尺寸的确定和设计计算 (8) 3.1.物料衡算 (8) 3.2全塔物料衡算 (8) 3.3塔板数的确定 (8) 3.4塔工艺条件及物性数据计算 (11) 3.4.1操作压强的计算P m (11) 3.4.3精馏塔气相密度 (11) 3.4.4精馏塔液相密度 (11) 3.5精馏塔气液负荷计算 (12) 3.6精馏塔和塔板的主要工艺尺寸的计算 (13) 3.6.1塔径的计算 (13) 3.6.2塔高计算 (14)

自动控制系统毕业设计..

目录 摘要…………………………………………………………………第1章任务要求和方案设计…………………………………… 1.1 任务要求……………………………………………………… 2.1 总体方案确定及元件选择…………………………………….. 2.1.1 总体设计框图……………………………………………… 2.1.2 控制方案确定………………………………...…………… 2.1.3 系统组成……………………………………………… 2.1.4 单片机系统……………………………………….. 2.1.15 D/A转换........................................................................... 2.1.5 晶闸管控制………………………………………... 2.1.6 传感器……………………………………………… 2.1.7 信号放大电路………………………………………. 2.1.8 A/D转换……………………………………………. 2.1.9 设定温度及显示……………………………………. 第2章系统硬件设计……………………….…………………2.1 系统硬件框图……………………………………………2.2 系统组成部分之间接线分析…………………………… 第3章系统软件设计…………………………………………. 3.1程序流程图..…………………………………..…………… 第4章参数计算……………………………..………………... 4.1 系统各模块设计及参数计算 4.1.1、温度采集部分及转换部分

4.1.2、传感器输出信号放大电路部分:........................... 4.1.3、模数转换电路部分:............................ 4.1.4、ADC0804芯片外围电路的设计:....................... 4.1.5、数值处理部分及显示部分:............................. 4.1.6、PID算法的介绍....................................: 4.1.7、A/D转换模块.......................................... 4.1.7、A/D转换模块................................... 4.1.8 单片机基本系统调试............................... 4 .1. 9 注意事项:................................................................ 第5章测试方法和测试结果 5.1 系统测试仪器及设备 5.2 测试方法 5.3 测试结果 结束语........................................... 参考文献.…………………………………….……….……………

精馏塔控制系统设计

Hefei University 《化工仪表及自动化》过程考核之三——设计 题目:精馏塔控制系统设计, 系别: 班级: 姓名: 学号: 教师: 日期:

目录 Hef e i Un iv ers ity (1) 化工班:《化工仪表及自动化》 (1) 过程考核之三——设计 (1) 一、概述 (3) 二、内容 (3) 三、说明 (3) 1、工作要求 (3) 2、物料 (3) 3、精馏过程的控制方案设计 (4) 四、设备选型 (5) 1、测控仪表选型 (5) 2、执行机构选型 (5) 五、总结 (5) 六、参考文献 (5)

精馏塔控制系统设计 一、概述 精馏塔是化工生产中分离互溶液体混合物的典型分离设备。它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离的目的,满足化工连续化生产的需要。精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。维持正常的塔釜温度,可以避免轻组分流失,提高物料的回收率,也可减少残余物料的污染作用。影响精馏塔温度不稳定的因素主要是来自外界来的干扰。 二、内容 蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。 本文主要内容是结合课本所学仪表自动化知识,掌握测控仪表,了解二元精馏系统流程仪表的位号和特点,仔细研究二元精馏的工艺流程图,熟悉工艺流程依次设计一套完整的控制方案,使系统能对二元精馏的工艺过程进行有效地控制。 三、说明 1、工作要求 精馏塔控制系统主要分为三部分控制:塔釜温度控制精馏塔塔釜温度是产品成分的间接质量指标,要求温度检测点在系统受到干扰时温度变化灵敏,因此塔内测温点设置在灵敏板上,通过控制再沸器蒸汽流量来实现温度的稳定。 2、物料

基于PLC的校园照明智能控制系统设计

基于PLC的校园照明智能控制系统设计 [摘要]目前,大多数校园照明系统仍然使用人工控制,其缺点是控制复杂、修理困难、容易发生误动作。针对这种情况,本设计使用西门子S7-200PLC代替传统的人工控制校园照明系统。采用了PLC智能控制,系统稳定可靠,完全满足学校的照明要求,校园照明系统主要有道路控制输出信号、景观灯输出信号、公共绿地输出信号,根据PLC 控制原理对其进行I/0分配和绘制照明系统流程图及编写校园照明智能控制系统梯形图控制程序。最后经过模拟仿真运行,能够实现当设备发生故障或出现某些不正常运行情况时,由自动控制变换人工控制,在排除故障后再次实现自动控制满足照明智能控制系统的要求。 [关键词]照明系统;西门子S7-200;输出信号;智能控制 Intelligent Control of Campus Lighting Based on Programmable Logical Controller Electrical Engineering And Automation Specialty* * * Abstract:At present the illumination system of the majority of our campus is still using the traditional manual control system, whose disadvantages are complex control, difficult to repair, prone to malfunction. For this situation, this paper uses the Siemens S7-200 and designs the system to control the campus lighting system instead of traditional artificial control,Programmable Logical Controller intelligent control system was adopted on the new campus, the control system is reliable enough to meet the requirement of campus lighting, The system mainly includes incident the output signal of the road、the decorative lights and the green fields. Which composes the I/0 allocation tables and flowing diagram and the ladder diagram control programs of the illumination system of the campus. Through the simulation, it is able to turn to manual control from the automatic system when the facilities generate the phenomenon of the malfunction and abnormal,the automatic system turn on after people to find and orderly deal with the malfunction ,and fulfills the requirements of the system of the intelligent control. Key words:The illumination system; Siemens S7-200; the output signal; intelligent control

相关文档
最新文档