基于Matlab_simulink的汽车整车模型非线性仿真_方锡邦

基于Matlab_simulink的汽车整车模型非线性仿真_方锡邦
基于Matlab_simulink的汽车整车模型非线性仿真_方锡邦

实验四 SIMULINK仿真模型的建立及仿真(完整资料).doc

【最新整理,下载后即可编辑】 实验四SIMULINK仿真模型的建立及仿真(一) 一、实验目的: 1、熟悉SIMULINK模型文件的操作。 2、熟悉SIMULINK建模的有关库及示波器的使用。 3、熟悉Simulink仿真模型的建立。 4、掌握用不同的输入、不同的算法、不同的仿真时间的系统仿真。 二、实验内容: 1、设计SIMULINK仿真模型。 2、建立SIMULINK结构图仿真模型。 3、了解各模块参数的设定。 4、了解示波器的使用方法。 5、了解参数、算法、仿真时间的设定方法。 例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK模型,并进行仿真运行。 步骤: 1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。

图一:SIMULINK模块浏览器 2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。 图二:已经复制进库模块的新建模型窗 3、从模块库复制所需模块到新建模型窗,分别在模块子库中

找到所需模块,然后拖进空白模型窗中,如图二。 4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。 5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。如图三所示: 图三:已构建完成的新模型窗 6、根据理论数学模型设置模块参数: ①设置增益模块参数,双击模型窗重的增益模块,引出如图四所示的参数设置窗,把增益栏中默认数字改为2,单击[OK]键,完成设置;

动态系统建模仿真 实验报告

动态系统建模仿真实验报告 实验二,实验四 姓名 学号

实验二直流电动机-负载建模及仿真实验 1实验内容 在运动控制系统中电机带动负载转动,电机-负载成为系统的被控对象。本实验项目要求根据电机工作原理及动力学方程,建立模型并仿真。 2实验目的 掌握直流电动机-负载的模型的建立方法; 3实验器材 (1)硬件:PC机。 (2)工具软件:操作系统:Windows系列;软件工具:MATLAB及simulink。 4实验原理 在很多应用场合中,直流电动机的输出轴直接与负载轴相连,转动部件固定在负载轴上,即为常见的电机直接驱动负载形式。如果不考虑传动轴在转动过程中的弹性形变,即把传动轴的刚度看作无穷大,就可以在系统设计过程中,将执行电机和负载视为一个整体对象,这样被控对象的模型就可以用如图2.1所示的 框图来表示。其中 U表示控制电压;a U,a L,a R分别表示电机的电枢电压,电 r 枢电感和电枢电阻; J为电机的转动惯量,L J为负载的转动惯量,包括由电机 m 驱动的转动体、轴承内圈、转动轴、轴套、速度测量元件、角度测量元件以及被测试件折合到电机轴上的转动惯量等; D、L D分别表示电机和负载的粘性阻尼 m 系数; k为电机的电磁力矩系数;e k为电机的反电势系数;mθ为电机-负载的转 m 角, θ 为电机-负载的角速度。 m 在这一实验中,认为电机与负载的转角是相同的,并考虑了电机及负载转动中产生的粘滞阻尼力矩,所以其电压方程、力矩方程变为如下形式

?????+=+--=+=-s s J J D D M s I k s k s E s s I T s I Ra s E s Ua m l m L m l m m e l )()()()()()())()(()()(θθ (2.1) 由方程组(2.1)可以得到相应的结构框图如图1所示。 图1直流电动机-负载数学模型结构框图 5实验要求: (1)建立从a u 到m θ 的传递函数模型,求其频率特性,并与项目1中的电机频率特性进行对比。 (2)分别取(Dm+D L )1=0.1(Dm+D L )和(Dm+D L )2=0.01(Dm+D L ),编制MATLAB 或simulink 程序,比较阻尼系数不同时电机-负载模型的频率特性。 (3)分别取J L1=0.1J L 和J L 2=10J L ,编制MATLAB 或simulink 程序,比较电机-负载模型的频率特性。 实验所需具体参数如下表。

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析 1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 2.1问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

2.2平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。 如E点轨迹不符合设计要求,则可适当调整各杆件的尺寸,再通过尺寸动画功能检验。

非线性控制系统

部分混沌吸引子 1. He non 映 射 「2 X n^ = _pX n 十y n 十1 =qx n 当参数p =1.4,q =0.3时,Henon系统可产生混沌现象,对其进行Matlab仿真,可得Henon映射的吸引子如图: 0.6 0.5 0.4 0.3 0.2 0.1 -0.1 -0.2 -0.3 -0.5 图.1 Henon映射的混沌吸引子

九=_pXn| “ +1 y n1 二qX n 当参数p =1.7,q =0.5时,Lozi 系统表现为混沌,对其进行Matlab 仿真,可得Lozi 映射的吸引子如图: 0.8 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 L -1.5 3. Lorenz 方程 2.Lozi 映射 -0.5

X [二X 〔 * X ? X ?二—X ? 1 'X 〔 - X i X 3 X 3 二一 :X 3 X 1X 2 当参数匚=10, =28「=8/3时,Lorenz 系统出现混沌现象,对其进行 Matlab 仿 真,可得Lorenz 系统的混沌吸引子如图: 图3.1 Lorenz 系统的混沌吸引子(x-y-z ) 30 20

图3.2 Lorenz 系统的混沌吸引子(x-y ) 50「 45 - 40「 35? 30「 z 25? 20? 15 - 10 - 5 - 0 -20 -30 20 10 y 0 -10 -20 -15 -10 -5 0 5 10 15 -20 20 -15 -10 -5 0 x 5 10 15 20

图3.4 Lorenz 系统的混沌吸引子(y-z ) 捲=_ax

永磁同步电机控制系统仿真模型的建立与实现资料

永磁同步电机控制系统仿真模型的建立与 实现

电机的控制 本文设计的电机效率特性如图 转矩(Nm) 转速(rpm) 异步电机效率特性 PMSM 电机效率特性 本文设计的电动汽车电机采用SVPWM 控制技术是一种先进的控制技术,它是以“磁链跟踪控制”为目标,能明显减少逆变器输出电流的谐波成份及电机的谐波损耗,能有效降低脉动转矩,适用于各种交流电动机调速,有替代传统SPWM 的趋势[2]。 基于上述原因,本文结合0=d i 和SVPWM 控制技术设计PMSM 双闭环PI 调速控制。其中,内环为电流环[3],外环为速度环,根据经典的PID 控制设计理论,将内环按典型Ⅰ系统,外环按典型Ⅱ系统设计PI 控制器参数[4]。 1. PMSM 控制系统总模型 首先给出PMSM 的交流伺服系统矢量控制框图。忽略粘性阻尼系数的影响, PMSM 的状态方程可表示为 ??????????-+????????????????????----=??????????J T L u L u i i P J P L R P P L R i i L q d m q d f n f n m n m n m q d ///002/30//ωψψωωω& && (1) 将0=d i 带入上式,有 ???? ??????-+??????????? ??? ??--=????? ?????J T L u L u i J P P L R P i i L q d m q f n f n m n m q d ///02/3/0ωψψωω& && (2) 转 矩 (N m )转速 (n /(m i n )) 效率 转速 (rpm) 转矩 (N m )

制造系统建模与仿真知识点2

知识点2 1. 结合具体制造系统或服务系统,分析离散事件动态系统的基本特征。 2. 什么叫“状态空间爆炸”?产生状态空间爆炸的原因是什么?它给系统性能分析带来哪些 挑战? 3. 常用的离散事件系统建模方法有哪些,它们是如何分类的? 4. 什么是马尔可夫特性?它在离散事件系统建模与分析中有什么作用? 5. 根据功能不同,仿真模型(程序)可以分为哪三个层次?分析三个层次之间的关系。 6. 分析事件调度法、活动循环法、进程交互法和消息驱动法等仿真调度方法的特点,在分 析每种调度方法基本原理的基础上,阐述几种仿真调度方法之间的区别与联系,并绘制每种仿真调度方法的流程图。 7. 结合具体的离散事件系统,如银行、理发店、餐厅、超市、医院、作业车间等,采用事 件调度法、活动循环法或进程交互法分析建立此类系统的仿真模型,试分析仿真模型中的建模元素以及仿真调度流程。 8. 从系统描述、建模要点、仿真时钟推进机制等层面,比较事件调度法、活动循环法和进 程交互法的异同之处。 9. 什么叫仿真时钟,它在系统仿真中有什么作用?什么叫仿真时钟推进机制?常用的仿真 时钟推进机制有哪些?它们的主要特点是什么,分别适合于怎样的系统? 10.结合具体的离散事件系统,分析若采用固定步长时间推进机制、下次事件时间推进机制 或混合时间推进机制时,分别具有哪些优点和缺点,以图形或文字等形式分析时钟推进流程。 11.什么叫仿真效率?什么叫仿真精度?分析影响仿真效率和仿真精度的因素? 12.从仿真效率和仿真精度的角度,分析和比较三种仿真时钟推进机制的特点,并分析三种 仿真时钟推进机制分别适合于什么样的系统? 13. 什么是蒲丰投针试验?绘制蒲丰投针试验原理图,通过推导蒲丰投针试验中针与任一直 线相交的概率,分析采用随机投针试验方法来确定圆周率π的原理。 14. 按照蒲丰投针试验的条件和要求,完成投针试验,在统计投针次数、针与直线的相交次 数的基础上,求解π的估计值,并以报表或图形等形式表达试验结果。具体要求如下: ①自行确定针的长度、直线之间的距离。 ②投针10次、20次、30次、40次、50次、…、100次、…、200次、…,分别计算针 与直线相交的概率、π的估计值。 ③以一随机变量描述上述试验结果,并通过编程或采用商品化软件,以图形、报表等形 式表示投针试验结果,分析其中的规律,并给出结论。 ④写出试验报告。 ⑤在熟悉投针试验原理的基础上,编制投针试验仿真程序,动态运行投针试验的过程。15.什么是蒙特卡洛仿真?它有什么特点,蒙特卡洛仿真应用的基本步骤是什么? 16.采用C或C++等语言,分别编写产生均匀分布、正态分布、指数分布以及威布尔分布的伪随机数序列,通过改变每种分布中参数的数值,分析不同参数数值对随机数值的影响;通过对所产生的伪随机数分布区间的统计、分析和绘图,检验伪随机数的特性及其数值特征。 17. 对于制造系统而言,库存有哪些作用和功能? 18. 在制造企业中,库存大致可以分成四种类型。简要论述四种库存的名称和功能。 19. 什么是安全库存、订货提前期?确定安全库存和订货提前期时分别需要考虑哪些因素? 20. 什么叫“订货点法”?要确定订货点,需要哪些条件?订货点法适合于怎样的库存系统?

第九章 非线性控制系统

第九章非线性控制系统 一、非线性控制系统的基本概念 实际的控制系统中都存在非线性元件,或者一些部件的特性中含有非线性特性。在一些系统中,还人为的加入非线性元件来改善系统性能。因此严格的讲,几乎所有的控制系统都是非线性的。当非线性程度较小,可以用线性化的方法来处理。这种非线性称为非本质非线性。当控制系统中非线性程度较强时,用线性化方法来研究系统会带来很大的误差,甚至会得到错误的结论。这种非线性称为本质非线性。本质非线性特性有死区特性、继电特性等。死区特性将使系统出现较大的稳态误差。饱和特性会降低系统的超调量,有时会引起稳定振荡。间隙特性可使系统的振荡加剧,静差也会增大。有时也会使系统不稳定。 与线性系统相比,非线性系统有以下几个特点: 1.线性系统可以采用叠加原理,而非线性系统则不能。 2.线性系统的稳定性与初值和系统的输入无关。而非线性系统则有关。 3.线性系统可以写出通解形式,而非线性系统则不能。 4.非线性系统的稳定性和响应形式,除了与系统结构和参数有关外,还和系统的初始 条件有关。非线性系统的平衡点可能不止一个,可能在某个局部范围稳定,在另一 个范围却不稳定。故对非线性系统来说,不能笼统地说系统是否稳定,而只能说明 系统在多大范围内的稳定性。 5.非线性系统的输出响应,除了收敛和发散两种运动状态外,还会产生与输入幅值, 频率和自身结构参数有关的稳定的自振运动。 6.非线性元件的正弦响应会产生非线性畸变,输出响应中除了会有与输入同频率的基 波成分外,还有其它各种谐波分量。 二、描述函数法 描述函数是分析非线性系统的一种近似方法,它是线性系统理论中的频率特性法在非线性系统中的应用。它主要用于对一类非线性系统的稳定性分析及输出响应分析,此方法不受系统的阶数限制。 1.描述函数的基本概念 描述函数是非线性元件在正弦输入作用下的输出响应用一次谐波分量来近似,得到 非线性元件(环节)的等效近似频率特性。用描述函数法分析非线性系统有如下条 件。 1)非线性元件的特性具有奇对称性(一般的死区、饱和、间隙、继电等非线性特性均 有奇对称性)。 2)系统可简化成只有一个非线性环节和一个线性环节串联的典型单位反馈结构。 3)非线性环节输出中的高次谐波幅值小于一次谐波幅值。 4)线性部分的低通滤波性能很好。 2.描述函数N

实验四-SIMULINK仿真模型建立及仿真

实验四 SIMULINK仿真模型的建立及仿真(一) 一、实验目的: 1、熟悉SIMULINK模型文件的操作。 2、熟悉SIMULINK建模的有关库及示波器的使用。 3、熟悉Simulink仿真模型的建立。 4、掌握用不同的输入、不同的算法、不同的仿真时间的系统 仿真。 二、实验内容: 1、设计SIMULINK仿真模型。 2、建立SIMULINK结构图仿真模型。 3、了解各模块参数的设定。 4、了解示波器的使用方法。 5、了解参数、算法、仿真时间的设定方法。 例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK 模型,并进行仿真运行。 步骤: 1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。

图一:SIMULINK模块浏览器 2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。 图二:已经复制进库模块的新建模型窗 3、从模块库复制所需模块到新建模型窗,分别在模块子库中找到所需模块,然后拖进空白模型窗中,如图二。 4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。 5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。如图三所示:

PID控制系统的Simulink仿真分析

实验报告 课程名称:MATLAB语言与控制系统仿真 实验项目:PID控制系统的Simulink仿真分析专业班级: 学号: 姓名: 指导教师: 日期: 机械工程实验教学中心

注:1、请实验学生及指导教师实验前做实验仪器设备使用登记; 2、请各位学生大致按照以下提纲撰写实验报告,可续页; 3、请指导教师按五分制(优、良、中、及格、不及格)给出报告成绩; 4、课程结束后,请将该实验报告上交机械工程实验教学中心存档。 一、实验目的和任务 1.掌握PID 控制规律及控制器实现。 2.掌握用Simulink 建立PID 控制器及构建系统模型与仿真方法。 二、实验原理和方法 在模拟控制系统中,控制器中最常用的控制规律是PID 控制。PID 控制器是一 种线性控制器,它根据给定值与实际输出值构成控制偏差。PID 控制规律写成传递 函数的形式为 s K s Ki K s T s T K s U s E s G d p d i p ++=++==)1 1()() ()( 式中,P K 为比例系数;i K 为积分系数;d K 为微分系数;i p i K K T =为积分时间常数; p d d K K T =为微分时间常数;简单来说,PID 控制各校正环节的作用如下: (1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,控制器立即产 生控制作用,以减少偏差。 (2)积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积 分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 (3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大 之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调 节时间。 三、实验使用仪器设备(名称、型号、技术参数等) 计算机、MATLAB 软件 四、实验内容(步骤) 1、在MATLAB 命令窗口中输入“simulink ”进入仿真界面。 2、构建PID 控制器:(1)新建Simulink 模型窗口(选择“File/New/Model ”),在 Simulink Library Browser 中将需要的模块拖动到新建的窗口中,根据PID 控制器的 传递函数构建出如下模型:

创建基于DLL的Proteus仿真模型

创建基于DLL的Proteus VSM仿真模型 作者:silingsong 一、Proteus VSM仿真模型简介 在使用Proteus仿真单片机系统的过程中,经常找不到所需的元件,这就需要自己编写。Proteus VSM 的一个主要特色是使用基于DLL组件模型的可扩展性。这些模型分为两类:电气模型(Electrical Model)和绘图模型(Graphical Model)。电气模型实现元件的电气特性,按规定的时序接收数据和输出数据;绘图模型实现仿真时与用户的交互,例如LCD的显示。一个元件可以只实现电气模型,也可以都实现电气和绘图模型。 Proteus为VSM模型提供了一些C++抽象类接口,用户创建元件时需要在DLL中实现相应的抽象类。VSM模型和Proteus系统通信的原理如下图: 绘图模型接口抽象类: ICOMPONENT――ISIS内部一个活动组件对象,为VSM模型提供在原理图上绘图和用户交互的服务。 IACTIVEMODEL――用户实现的VSM绘图模型要继承此类,并实现相应的绘图和键盘鼠标事件处理。 电气模型接口抽象类: IINSTANCE――一个PROSPICE仿真原始模型,为VSM模型提供访问属性、模拟节点和数据引脚的服务,还允许模型通过仿真日志发出警告和错误信息。 ISPICECKT(模拟)――SPICE拥有的模拟元件,提供的服务:访问、创建和删除节点,在稀疏矩阵上分配空间,同时还允许模型在给定时刻强制仿真时刻点的发生和挂起仿真。 ISPICEMODEL(模拟)――用户实现的VSM模拟元件要继承此类,并实现相应的载入数据,在完成的时间点处理数据等。 IDSIMCKT(数字)――DSIM拥有的数字元件,提供的服务:访问数字系统的变量,创建回调函数和挂起仿真。

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

非线性控制系统的分析

第8章非线性控制系统的分析 自测题 1. 变增益控制系统结构图及其非线性元件G N的输入输出特性分别如T图8-1和8-2所示,该系统开始处于零初始状态,若输入信号r(t)=R?1(t),且R>e0,kK<1/4T

·44· y T 图 8-4 4. 非线性系统结构图如T 图8-5所示,a =0.5,K =8,T =0.5s ,K 1=0.5,要求: (1)当开关打开时,e (0)=2,0)0( e 的相轨迹; (2)当开关闭合时,绘制相同初始条件的相轨迹,并说明测速反馈的作用。 T 图 8-5 5. 将T 图8-6和8-7所示非线性系统简化成典型结构形式,并写出线性部分的传递函数。 T 图 8-6 T 图 8-7 6. 根据已知的非线性描述函数,求T 图8-8所示各种非线性的描述函数。

·45· (a) (b) T 图8-8 7. 已知系统的结构图如T 图8-9所示,K =4,M =1,k =1,r (t )=1(t ),c(0)=0, 0)0(=c 。在e e - 平面上画出相轨迹,并画出c (t )的曲线,且说明运动情况(若有稳态误差,则计算其值,若有振荡,则计算振荡周期)。 T 图 8-9 8. 系统结构图如T 图8-10所示,试将其归化为一个非线性环节和一个线性部分串联的典型结构。 T 图 8-10 9. 在T 图8-11所示系统中, (1)确定使系统稳定的开环放大倍数K ; (2)分析滞环宽度h 对极限环工作周期的影响;

工厂布局仿真建模及分析

工厂布局仿真建模及分析
何其昌 2010年03月09日
内容
介绍 布局规划及仿真理论 应用案例 总结
系统仿真与虚拟现实实验室(SS&VR Lab)
2
1

介绍
布局规划是如何合理布置生产资料,使得生产流 程更加顺畅; 对生产资源进行组织安排,提高设备,物料,人 员以及能源的使用效率; 工厂布置与物料搬运对企业的生产率及成本有很 大的影响;
系统仿真与虚拟现实实验室(SS&VR Lab)
3
三维环境下的布局仿真意义
展示和优化产业园区的布局
展示优化厂区整体风格(绿化,道路、景观等) 调整优化生产加工区、生活区布局规划,检验园区内 生产及生活设施是否完备; 规范、优化调整园区的物流、人流通道;
系统仿真与虚拟现实实验室(SS&VR Lab)
4
2

三维环境下的布局仿真
展示和优化生产线的合理布局(第一阶段)
检验产品生产线上各生产要素是否齐备(原料、加工 设备、运输设备、仓储及容器、测试及检验); 检验生产原料堆放场地是否合理利用,适用何种运输 工具; 检验生产线的布局是否符合流水化作业进程(部装加 工流水线),生产加工机械布局是否高效(滚道、机 器人加工等) 是否能够形成流水作业闭环(不间断 器人加工等),是否能够形成流水作业闭环(不间断 生产一个生产周期);
系统仿真与虚拟现实实验室(SS&VR Lab)
5
三维环境下的布局仿真
检验货架暂存、仓储及转运空间是否足够、布局是否 合理等; 检验运输通道是否流畅,选择的运输工具是否适,三 检验运输通道是否流畅 选择的运输工具是否适 三 维空间运输是否存在交叉冲突; 优化生产环境等其它因素(绿化、员工休息区、卫生 间、噪声、粉尘、喷漆化学污染、酸洗磷化等腐蚀污 染、雨水等); 第一阶段需要反复提出优化建议各讨论方案,并在平台中 进行检验,最终形成一个比较认可和较为完善的方案。
系统仿真与虚拟现实实验室(SS&VR Lab)
6
3

仓储物流中心的仿真模型

目录 项目概述 (1) 1课程设计内容 (2) 2.仿真的目标 (2) 3Flexsim仿真步骤 (3) 3.1模型建立 (3) 3.2参数设置 (4) 3.3模型运行 (8) 3.4模型优化 (9) 3.5仿真模型运行及结果统计 (10) 4结论 (12)

项目概述 随着计算机信息技术的发展,现代企业生产规模的不断扩大和竞争的日益加剧,市场对企业物流系统提出了新的要求,仓储型物流中心系统也越来越受到关注并得到广泛应用,对其运行效率的研究也成为企业关注的焦点。计算机仿真软件能够进行离散系统建模仿真,是仓储物流中心仿真分析的理想选择。根据仓储型物流中心基本组成和作业流程,将仓储型物流中心剖析为入库、存取、出库三个部分。通过模拟仓储物流中心系统,对仓库物流过程进行整体分析。结合各个作业特点,对仿真的总体流程进行研究,找出其瓶颈,并对其进行优化。

1课程设计内容 ①仓储型物流中心是指将进货的商品临时保存在仓库中,然后根据需要出库的物流中心。以仓储型物流中心的模型为例,学习自动立体仓库、处理器、暂存区、传送带、机器人、运输器等设备来建立模型的方法以及关于这些设备的设定方法。 ②系统描述:具有自动立体仓库的出货传送线的模型。从2处投入口进来的2种商品沿传送带流动,在合流点合流的商品在装货中转站由机器人堆放在货架上。存储在货架的经传送带传输,在卸货中转站由机器人将商品卸下投放到分流线上去。 2.仿真的目标 在进行系统仿真时,首先要确定仿真的目标,也就是仿真要解决的问题:然后是系统调研阶段,调研的目的是为了深入了解系统的总体流程、各种建模参数,以便建立系统模型:最后进入实际建模阶段总的说来可以将仿真过程分为三个部分:①系统分析阶段:②仿真模型建立:③仿真结果输出及分析。如图1所示: 图1

动态系统建模与仿真

摘要:经过半个多世纪的发展,仿真技术已经成为对人类社会发展进步具有重要影响的一门综合性学科。本文对建模与仿真技术发展趋势作了比较全面的分析。仿真建模方法更加丰富,更加需要仿真建模具有互操作性和可重用性,仿真建模与可信度评估成为仿真建模发展的重要支柱;仿真体系结构逐渐形成标准,仿真系统层次化、网络化已成为现实,仿真网格将是下一个重要发展方向;仿真应用领域更加丰富,向复杂系统领域发展,并将更将贴近人们的生活。 经过半个多世纪的发展,仿真技术已经成为人类社会发展进步具有重要影响的一门综合性学科。仿真技术的领域不在局限于某些尖端学科技术研究领域,而成为一项被众多学科领域广泛采用的通用型技术。半个世纪以来,仿真救赎一方面始终是建模技术、计算技术和其他信息技术最先的应用者,另一方面是对计算技术和网络技术等的发展不断提出新的挑战。 在我国建模与仿真方法是随着应用需求的发展不断的进步,近十年来仿真技术发展是沿着以应用需求牵引建模与仿真系统开发、以建模与仿真系统带动建模与仿真技术突破、以建模与仿真技术促进建模与仿真系统发展、将建模与仿真系统又服务于应用良性循环的道路向前发展。 仿真技术研究人员一方面不断地扩展仿真应用领域,另一方面,其他领域研究的丰富成果与不断促使仿真技术人员从新的角度、新的高度、新的广度认识建模与仿真。在近半个世纪的积累和近十年的快速发展的基础上,建模与仿真技术已经成为以相似原理、模型理论、系统技术、信息技术以及仿真应用领域的有关专业技术为基础,以计算机系统、与应用相关的物理效应设备及仿真器为工具,利用模型对已有的或设想的系统进行研究、分析、实验与运行的一门综合性技术。 仿真建模的发展 仿真是基于建模的活动,模型建立、实现、验证、应用是仿真过程不变的主题。随着时代的发展,仿真模型包含的内容大大扩展,建模方法日益多样,模型交互性和重要性变的越来越重要,模型的校核与验证的成功为仿真中必要步骤。 -----------------------------------系统仿真学报杨明张冰王子才哈尔滨工业大学,哈尔滨150001 基本概念 系统:按照某些规律结合起来,互相作用、互相依存的所有实体的集合或总和。模型:从特定应用角度,表达对象系统特征与特性的形式。仿真:用物理模型或数学模型代替实际系统进行实验和研究。 对象系统:仿真、分析与研究的对象。仿真系统:实施仿真的系统。 仿真分类:

非线性控制系统

X 部分混沌吸引子 1. He non 映射 2 . X n 1 PX n y n 1 y n 1 qX n 当参数p 1.4,q 0.3时,He non 系统可产生混沌现象,对其进行 Matlab 仿真, 可得Henon 映射的吸引子如图: 图.1 Henon 映射的混沌吸引子y 0.6 0.5 0.4 0.3 0.2 0.1 -0.1 -0.2 -0.3

图2 Lozi 映射的混沌吸引子 2.Lozi 映射 X n 1 pX n Y n 1 Y n 1 qX n 当参数p 1.7, q 0.5时,Lozi 系统表现为混沌,对其进行Matlab 仿真,可得Lozi 映射的吸引子如图: -0.2 -0.4 -0.6 半.5 -0.5

20 0 X 1 X 1 X 2 X 2 X 2 X 1 X 1X 3 X 3 X 3 x 1x 2 当参数 10, 28, 8/3时,Lorenz 系统出现混沌现象,对其进行 Matlab 仿 真,可得Lorenz 系统的混沌吸引子如图: 30 v 20 - 10 - 0、 40 20 图3.1 Lorenz 系统的混沌吸引子(x-y-z)3. Lorenz 方程 50 40 -40 -20 x

30 图3.3 Lorenz 系统的混沌吸引子(x-z ) 图3.2 Lorenz 系统的混沌吸引子(x-y ) 20 10 -10 -20 50 45 40 35 30 25 20 15 10 5 -5 0 5 10 15 20 -20 -15 -10

50 -------------------- ' ----------------- L -30 -20 -10 图3.4 Lorenz 系统的混沌吸引子(y-z ) 4. Chen 电路 X 1 ax 1 ax 2 X 2 cx 2 c a x 1 x 1x 3 X 3 X 1X 2 bx 3 当参数a 35,b 3,c 28时,Chen 电路系统出现混沌现象,对其进行 Matlab 仿 真,可得Chen 电路系统的混沌吸引子如图:40 0 10 20 30 y

实验四 PID控制系统的Simulink

自动控制理论 上 机 实 验 报 告 学院:机电工程学院 班级:13级电信一班 姓名: 学号:

实验四 PID 控制系统的Simulink 仿真分析 一、实验目的和任务 1.掌握PID 控制规律及控制器实现。 2.掌握用Simulink 建立PID 控制器及构建系统模型与仿真方法。 二、实验原理和方法 在模拟控制系统中,控制器中最常用的控制规律是PID 控制。PID 控制器是一种线性控制器,它根据给定值与实际输出值构成控制偏差。PID 控制规律写成传递函数的形式为a s K s Ki K s T s T K s U s E s G d p d i p ++=++==)11()()()( 式中,P K 为比例系数;i K 为积分系数;d K 为微分系数;i p i K K T = 为积分时间常数;p d d K K T =为微分时间常数; 简单来说,PID 控制各校正环节的作用如下: (1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,控制器立 即产生控制作用,以减少偏差。 (2)积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决 于积分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 (3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。 三、实验使用仪器设备 计算机、MATLAB 软件 四、实验内容(步骤) 1、在MATLAB 命令窗口中输入“simulink ”进入仿真界面。 2、构建PID 控制器:(1)新建Simulink 模型窗口(选择“File/New/Model ”),在Simulink Library Browser 中将需要的模块拖动到新建的窗口中,根据PID 控制器的传递函数构建出如下模型:

实验一 MATLAB 中控制系统模型的建立与仿真

实验一 MATLAB 中控制系统模型的建立与仿真 一、 实验目的 (1)熟悉MATLAB 控制系统工具箱中线性控制系统传递函数模型的相关函数。 (2)熟悉SIMULINK 模块库,能够使用SIMULINK 进行控制系统模型的建立及仿真。 二、 实验仪器 PC 计算机一台,MATLAB 软件1套 三、实验内容 1. 熟悉线性控制系统传递函数模型的相关函数。 (1)tf ( )函数可用来输入系统的传递函数 该函数的调用格式为 G = tf ( num , den ); 其中num , den 分别为系统传递函数的分子和分母多项式系数向量。返回的G 为系统的传递函数形式。 但如果分子或分母多项式给出的不是完全的展开的形式,而是若干个因式的乘积,则事先需要将其变换为完全展开的形式,两个多项式的乘积在MATLAB 下借用卷积求取函数conv( )得出,其调用格式为 p=conv(p1,p2) MATLAB 还支持一种特殊的传递函数的输入格式,在这样的输入方式下,应该先用s=tf(’s ’)定义传递函数算子,然后用数学表达式直接输入系统的传递函数。 请自己通过下面两个例子来演示和掌握tf ()和s=tf(’s ’)算子这两种输入方式。 例1 设系统传递函数 1 34223523423+++++++=s s s s s s s G 输入方式一:num = [1, 5, 3, 2]; den = [1, 2, 4, 3, 1]; %分子多项式和分母多项式系数向量 G = tf ( num , den ) %这样就获得系统的数学模型G 输入方式二:s=tf(’s ’); G=( s^3 + 5* s^2 + 3* s + 2)/( s^4 + 2*s^3 + 4* s^2 + 3* s + 1) 任务一:将下列传递函数分别采用上面两种输入方式进行输入,并记录命令。 ① 432534 ++++=s s s s G

非线性控制系统分析

第八章非线性控制系统分析 教学目的: 通过学习本章,使学生掌握秒素函数法与相平面法分析非线性系统的理论基础与应用。 教学要求: (1)认识非线性系统区别于线性系统的运动过程特点. (2)掌握描述函数法和相平面法的特点及应用范围. (3)明确函数的定义及相关概念,熟悉典型非线性的妙描述和负倒描述函数 特性,掌握用描述函数法分析非线性系统的稳定性和分析自振,计算自振参数的方法. 教学课时:12学时 教学重点: (1) 非线性的相关概念. (2) 典型系统的相平面表示. (3) 典型非线性系统的描述函数形式. 教学难点: 非线性系统的描述函数求法; 利用负倒数法分析系统稳定性. 本章学时: 12学时 主要内容: 8.1 非线性系统的概述 8.2 描述函数法 8.3 相平面法分析线性控制系统 8.4 利用非线性特性改善系统的控制性能 8.1非线性系统的概述 8.1.1 非线性模型

㈠组成 ---------x-------非线性环节---------线性环节------------ 组成:非线性环节+线性环节 ㈡. 分类 ①从输入输出关系上分:单值非线性 非单值非线性 1,从形状特性上分:饱和 死区 回环 继电器 ㈢特点 稳定性与结构,初始条件有关;响应 ㈣分析方法 注意: 不能用叠加原理 1. 非线性常微分方程没有同意的求解方法,只有同意求近似解的方法: a. 稳定性(时域,频域):由李亚普洛夫第二法和波波夫法判断 b. 时域响应:相平面法(实际限于二阶非线性系统)较精确,因高阶作用太复杂 描述函数法:近似性,高阶系统也很方便 研究非线性系统并不需求得其时域响应的精确解,而重要关心其时域响应的性质,如:稳定性,自激震荡等问题,决定它的稳定性范围,自激震荡的条件,震荡幅度与频率等。 2

PID控制系统的Simulink仿真分析

实验报告 课程名称: MATLAB语言与控制系统仿真 实验项目: PID控制系统的Simulink仿真分析专业班级: 学号: 姓名: 指导教师: 日期: 机械工程实验教学中心

注:1、请实验学生及指导教师实验前做实验仪器设备使用登记; 2、请各位学生大致按照以下提纲撰写实验报告,可续页; 3、请指导教师按五分制(优、良、中、及格、不及格)给出报告成绩; 4、课程结束后,请将该实验报告上交机械工程实验教学中心存档。 一、实验目的和任务 1.掌握PID 控制规律及控制器实现。 2.掌握用Simulink 建立PID 控制器及构建系统模型与仿真方法。 二、实验原理和方法 在模拟控制系统中,控制器中最常用的控制规律是PID 控制。PID 控制器是一种线性控制器,它根据给定值与实际输出值构成控制偏差。PID 控制规律写成传递函数的形式为 s K s Ki K s T s T K s U s E s G d p d i p ++=++==)11()()()( 式中,P K 为比例系数;i K 为积分系数;d K 为微分系数;i p i K K T =为积分时间常数; p d d K K T =为微分时间常数;简单来说,PID 控制各校正环节的作用如下: (1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,控制器立即产 生控制作用,以减少偏差。 (2)积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积 分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 (3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调