电阻应变片传感器实验.

电阻应变片传感器实验.
电阻应变片传感器实验.

电阻应变片传感器实验

实验目的:

1.了解金属箔式应变片的结构及粘贴方式。

2.了解单臂直流电桥的工作原理和工作情况。

3.比较单臂、半桥、全桥电路的性能。

4.了解温度变化对应变测试系统的影响。

5.了解交流激励时应变电桥的工作原理和工作情况。

实验原理:

应变片是最常用的测力传感元件,当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变时,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化,通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂的四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为△R1/R1、△R2/R2、△R3/R3、△R4/R4,当使用一个应变片时∑R=△R/R;当二个应变片组成差动状态工作时,则有∑R=2△R/R;用四个应变片组成二个差动对工作,且R1=R2=R3=R4=R时,则有∑R=4△R/R。

由此可见,单臂,半桥,全桥电路的灵敏度依次增大。

实验内容1:箔式应变片的性能-单臂电桥

实验所需部件:

直流稳压电源(±4V档)、电桥、差动放大器、金属箔式应变计、双孔悬臂梁、砝码(20克/个)、数字电压/频率表。

图(1)

实验步骤:

(1)对差动放大器调零。开启仪器电源,差动放大器增益为100倍(顺时针方向旋到底),“+”、“-”两输入端用实验线对地短路,输出端接数字电压表2V档,调节“差动调零”电位器使差动放大器输出电压为零,然后关闭仪器电源,拔掉实验线,调零后“差动增益”电位器和“差放调零”电位器的位置不要变化。

(2)按图(1)将实验所需部件用实验线连接成测试桥路,桥路中R1、R2、R3、和W D 为电桥中的固定电阻和直流调平衡电位器,R为应变片(可选上、下梁中的任一工作片),直流激励电源为±4V档。

(3)确认接线无误后开启仪器电源,并预热数分钟,调节电桥“W D”电位器,使测试系统输出电压为零。

(4)在双孔悬臂梁称重平台上依次放上砝码,每放置一个砝码记录一次差动放大器输出电压值。

砝码P(g

电压V(v

(5)根据表中所测数据计算灵敏度S,S=△V/△P,并在坐标图上做出V-P 关系曲线。

注意事项:

(1)实验前应检查实验接插线是否完好,连接电路时应尽量使用较短的接插线,以避免引入干扰,接插线插入插孔,以保证接触良好,切忌用力拉扯接插线尾部,以免造成线内导线断裂。

(2).做单臂电桥实验时,由于应变片的零飘和蠕变现象的客观存在,桥路中的三个精密电阻与应变片的零飘值一致的可能性很小,如果没有采用补偿的话,单臂电桥测试电路是必然会出现输出电压漂移现象,这不是仪器不稳定,而是真实地反映了应变片的特性,但是只要采用半桥或全桥测试电路,系统就会非常稳定,这是因为同一批次的应变片的飘移和蠕变特性相近,接成半桥和全桥形式后根据桥路的加减特性就起到了非常好的补偿作用,这也是应变片在实际应用中无一例外地采用全桥(或半桥)测试电路的原因。

(3)稳压电源不要长时间对地短路。

实验内容2:单臂、半桥和全桥电路性能的比较

实验原理:

已知单臂、半桥和全桥电路的∑R分别为△R/R、2△R/R、4△R/R。根据戴维南定理可以得出测试电桥的输出电压近似等于1/4·E·∑R,电桥灵敏度Ku=V/△R /R,于是对应于单臂、半桥和全桥的电压灵敏度度分别为1/4E、1/2E和E,由此可知,当E和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。

实验所需部件:

直流稳压电源(±4V档)、电桥、差动放大器、金属箔式应变计、双孔悬臂梁、砝码(20克/个)、数字电压/频率表。

实验步骤:

图(2)

1.在完成实验内容1的基础上,不变动差动放大器的“差动增益”和“差动调零”电位器,按图(2)将图(1)中的固定电阻R1换成金属箔式应变计组成半桥电路。

2.确认接线无误后开启仪器电源,并预热数分钟,调节电桥“WD”电位器,使测试系统输出电压为零。

3.在双孔悬臂梁称重平台上依次放上砝码,每放置一个砝码记录一次差动放大器输出电压值。

4.按图(3)将图(1)中的固定电阻R2、R3也换成金属箔式应变计组成全桥测试系统。

5.重复步骤2和3,记录位移——电压值,并填入下表。

砝码P(g

半桥V(v

全桥V(v

3.在同一坐标上描出V-P曲线,比较三种桥路的灵敏度,并做出定性的结论。

注意事项:

1.应变片接入电桥时注意其受力方向,一定要接成差动形式。

2.直流激励电压不能过大,以免造成应变片自热损坏。

3.由于进行位移测量时测微头要从零-→正的最大值,又回复到零-→负的最大值,因应变梁的金属滞后特性容易造成零点偏移,因此计算灵敏度时可将正△X的灵敏度与负的△X的灵敏度分开计算。再求平均值,以后实验中凡需过零的实验均可采用此种方法。

实验内容3:金属箔式应变片的温度效应

温度变化引起应变片阻值发生变化的原因是应变片电阻丝的温度系数及电阻丝与测试中的膨胀系数不同,由此引起测试系统输出电压发生变化。

实验所需部件:

直流稳压电源(±4V档)、电桥、差动放大器、金属箔式应变计、双孔悬臂梁、数字电压/频率表、加热器、温度计。

实验步骤:

1.按图(1)接线,开启电源,调整系统输出为零。

2.记录加热前的环境温度,可用热电偶或集成温度传感器测得。

3.开启“加热”电源,观察测试系统输出电压随温度升高而发生的变化,记录温度——电压值并列表。

4.求出温度漂移值△V/△T。

温度T

(℃)

电压V(v)

注意事项:

1.实验前首先差放调零,方法见实验内容1的步骤1。

2.要观察应变片的温度特性,实验系统必须接成单臂电桥,如果是半桥或全桥形式则系统已经具备补偿作用,温飘现象就不明显。

3.本仪器中所使用的BHF金属箔式应变片具有防自蠕变性能,因此温度系数较小。

实验内容4:应变电路的温度补偿

实验原理:

用补偿片法是应变电桥温度补偿方法中的一种,如图(2)所示,在电桥中,R1为工作片,R2为补偿片,R1=R2。当温度变化时两应变片的电阻变化△R1与△R2符号相同,数量相等,桥路如原来是平衡的,则温度变化后R1*R4=R2*R3,电桥仍满足平衡条件,无漂移电压输出,由于补偿片所贴位置与工作片成90°,所以只感受温度变化,而不感受悬臂梁的应变。

图(4)图(5)

实验所需部件:

直流稳压电源(±4V档)、电桥、差动放大器、金属箔式应变计、双孔悬臂梁、数字电压/频率表、加热器、温度计。

实验步骤:

1.按图(4)接好线路,图中R′和R″分别为金属箔式应变计和温度补偿片。

2.重复实验三1-4步骤,求出接入补偿片后系统的温度漂移,并与实验内容3的结果进行比较。

温度(℃)

电压(V)

五.注意事项:

1.应正确选择温度补偿片,在面板的应变片接线端中,从左至右1-8对接线端分别是:1-上梁半导体应变片,2-下梁半导体应变片。3、5-上梁箔式应变片,4、6-下梁箔式应变片,7、8-上、下梁温度补偿片,电路中的箔式应变片与补偿片应在同一应变梁上。

2.实验前首先差放调零,方法见实验内容提要的步骤1。

实验内容5:金属箔式应变片交流全桥实验

实验原理:

图(6)是交流全桥的一般形式。当电桥平衡时,Z1Z4=Z2Z3,电桥输出为零。若桥臂阻抗相对变化为△Z1/Z1、△Z2/Z2、△Z3/Z3、△Z4/Z4,则电桥的输出与桥臂阻抗的相对变化。

交流电桥工作时增大相角差可以提高灵敏度,传感器最好是纯电阻性或纯电抗性的。交流电桥只有在满足输出电压的实部和虚部均为零的条件下才会平衡。

实验所需部件:

电桥、音频振荡器、金属箔式应变计、差动放大器、移相器、相敏检波器、低通滤波器、数字电压/频率表、砝码(20克/个)、示波器。

实验步骤:

图(6)

1.首先通过数字电压/频率表的20KHz档将音频振荡器的频率调节到5KHz,幅度适中,然后关闭仪器电源。

2.按图(6)接线,音频振荡器一定要从0o或Lv端输出,确认无误后开启仪器电源。

3.调节螺旋测微仪使双平行悬臂梁处于水平位置,调节电桥直流调平衡电位器WD,使系统输出基本为零,仔细调节交流调平衡电位器WA,使系统输出为零。(或在双孔悬臂梁称重平台上依次放上砝码,进行上述实验)

4.用示波器观察各环节波形,测量读数,列表填入V、X值,作出V-X曲线,求出灵敏度。

位移(mm

电压(V

注意事项:

1.欲提高交流全桥的灵敏度,可用示波器观察相敏检波器输出端③的波形,若相敏检波器输出端③的波形脉动成份较大,则系统虽然可以调零,但灵敏度较

低,提高灵敏度的方法是:当系统初步调零后,再调节电桥中的WA电位器,使相敏检波器输出波形尽量平直,然后用手将双平行悬臂梁压到最低(CSY10B型起始可多放些砝码在双孔悬臂梁的托盘上),调节“移相”旋钮,使相敏检波器输出端波形为相连接的整流波形,再放手恢复双平行悬臂梁的自然位置,调节电桥中的WD电位器,使系统输出为零,这样系统灵敏度会最高。

2.做交流全桥实验时输出电压用指针式毫伏表可以比较直观地看出应变梁在正、反向受力时系统输出电压的变化情况。

3.实验前首先差放调零,方法见实验一的步骤1。

实验内容6:激励频率对交流全桥的影响

实验原理:

由于交流电桥中的各种阻抗的影响,改变激励频率可以提高交流全桥的灵敏度和提高抗干扰性。

实验所需部件:

电桥、音频振荡器、金属箔式应变计、差动放大器、移相器、相敏检波器、低通滤波器、数字电压/频率表、螺旋测微仪(CSY10B用砝码20克/个)、示波器。

实验步骤:

1.接线、操作均按实验十进行。

2.从音频振荡器0°输出端或Lv输出端输出信号,频率从2KHZ-10KHZ,接交流全桥,分别测出系统输出电压,列表填好V——X值,在同一坐标上做出V-X 曲线,比较灵敏度,并得出结论,该交流全桥工作在哪个频率时较为合适。

X(mm

V2KHz(v

V4KHz(v

V6KHz(v

V8KHz(v

V10KHz(v

注意事项:

1.做实验时频率改变时音频振荡器的幅值不变,否则无可比性。

2.实验前首先差放调零,方法见实验一的步骤1。

实验内容7:交流全桥的应用――振幅测量

实验原理:

当双平行悬臂梁梁受到不同的频率信号激励时,振幅不同,带给应变片的应力不同,电桥输出也不同。若激励频率和梁的固有频率相同时,产生共振,此时电桥输出为最大,根据这一原理可以找出梁的固有频率。

实验所需部件:

电桥、音频振荡器、金属箔式应变计(半导体式应变计)、差动放大器、移相器、相敏检波器、低通滤波器、数字电压/频率表、螺旋测微仪、示波器。

实验步骤:

1.根据实验十的电路接线,移开测微头,调节电桥,使系统输出为零,并使系统灵敏度最大。

2.将低频振荡器输出端接至“激振II”端,此时悬臂梁开始振动。(10B型激振开关拨至“激振II”端)

3.用示波器观察差动放大器和低通滤波器的输出波形,注意调节示波器的扫描时间,差动放大器输出的是调幅波。

4.固定低频振荡器幅值旋钮不变,电压/频率表放2KHZ档,接低频振荡器输出端,调节低频振荡器频率,用示波器读出系统最大振幅值,此时频率表所示即为梁的固有频率。

注意事项:

1.悬臂梁激振时振幅不宜太大,否则易造成应变片受损。

2.10B型实验仪因应变片贴在双孔悬臂梁上,由于结构的原因,所以只能做半导体式交流半桥振动实验。

实验内容8:交流全桥组成的电子秤

实验所需部件:

音频振荡器、电桥、金属箔式应变计、差动放大器、移相器、相敏检波器、低通滤波器、砝码(20克/个)、称重平台、数字电压/频率表。

实验步骤:

1.按实验十接好线路,在悬臂梁顶端磁钢上(双孔悬臂梁已装有平台)放好称重平台调节系统为零。

2.在称重平台上逐步加上砝码进行标定,并记录W——V的关系。

3.取走砝码,在平台上加一未知重量的物品,记下电压表读数。

4.根据坐标上W-V曲线得知物品的大致重量。

重量(g

电压(V

注意事项:

1.悬臂梁上放置重量不要过重,超过悬臂梁线性位移范围就不能正常称重。

附图1 CSY10B型传感器实验仪工作台布局图

附图

附图2 箔式应变片的性能-单臂电桥

附图3 直流半桥电路

附图4 全桥电路

附图6应变片交流全桥电路

附图5温度补偿电路

电阻应变片粘贴实验报告

实验报告(三)电阻应变片的粘贴 实验目的: 1、初步掌握电阻应变片的粘贴技术; 2、初步掌握焊线和检查。 实验设备和器材: 1、电阻应变片 2、试件 3、砂布 4、丙酮(或酒精)等清洗器材 5、502粘接剂 6、测量导线 7、电烙铁 电阻应变片的工作原理: 1、电阻应变片工作原理是基于金属导体的应变效应,即金属导体在外力作用下发生机械变形时,其电阻值随着所受机械变形(伸长或缩短)的变化而发生变化象。 2、当试件受力在该处沿电阻丝方向发生线变形时,电阻丝也随着一起变形(伸长或缩短),因而使电阻丝的电阻发生改变(增大或缩小)。 实验步骤:

1、定出试件被测位置,画出贴片定位线。 2、在贴片处用细砂布按45°方向交叉打磨。 3、然后用浸有丙酮(或酒精)的棉球将打磨处擦洗干净(钢试件用丙酮棉球,铝试件用酒精棉球)直至棉球洁白为止。 4、一手拿住应变片引线,一手拿502胶,在应变片基底底面涂上502胶(挤上一滴502胶即可)。 5、立即将应变片底面向下放在试件被测位置上,并使应变片基准对准定位线。将一小片薄膜盖在应变片上,用手指柔和滚压挤出多余的胶,然后手指静压一分钟,使应变片和试件完全粘合后再放开。从应变片无引线的一端向有引线的一端揭掉薄膜。 6、在紧连应变片的下部贴上绝缘胶布,胶布下面用胶水粘接一片连接片(焊片)。 7、将应变片的引线和连接应变仪的导线相连并焊接在连接片上,以便固定。用绝缘胶布将导线固定在梁上。 实验心得体会(必须写,不少于300字) 经过今天的这次试验我知道了电阻应变片是根据电阻应变效应作成的传感器。在发生机械变形时,电阻应变片的电阻会发生变化。使用时,用粘合剂将应变计贴在被测试件表面上,试件变形时,应变

电阻应变片式传感器

电阻应变片式传感器 应变式传感器已成为目前非电量电测技术中非常重要的检测手段,广泛的应用于工程测量和科学实验中。它具有以下几个特点。 (1)精度高,测量范围广。对测力传感器而言,量程从零点几N 至几百kN ,精度可达0.05%F S ?(F S ?表示满量程);对测压传感器,量程从几十Pa 至11 10Pa ,精度为0.1%F S ?。应变测量范围一般可由数με(微应变)至数千με(1με相当于长度为1m 的试件,其变形为1m μ时的相对变形量,即6 1110μεε-=?)。 (2)频率响应特性较好。一般电阻应变式传感器的响应时间为710s -,半导体应变式传感器可达1110 s -,若能在弹 性元件设计上采取措施,则应变式传感器可测几十甚至上百kHz 的动态过程。 (3)结构简单,尺寸小,质量轻。因此应变片粘贴在被测试件上对其工作状态和应力分布的影响很小。同时使用维修方便。 (4)可在高(低)温、高速、高压、强烈振动、强磁场及核辐射和化学腐蚀等恶劣条件下正常工作。 (5)易于实现小型化、固态化。随着大规模集成电路工艺的发展,目前已有将测量电路甚至A/D 转换器与传感器组成一个整体。传感器可直接接入计算机进行数据处理。 (6)价格低廉,品种多样,便于选择。 但是应变式传感器也存在一定缺点:在大应变状态中具有较明显的非线性,半导体应变式传感器的非线性更为严重;应变式传感器输出信号微弱,故它的抗干扰能力较差,因此信号线需要采取屏蔽措施;应变式传感器测出的只是一点或应变栅范围内的平均应变,不能显示应力场中应力梯度的变化等。 尽管应变式传感器存在上述缺点,但可采取一定补偿措施,因此它仍不失为非电量电测技术中应用最广和最有效的敏感元件。 一、电阻应变片的工作原理 电阻应变片的工作原理是基于应变效应。电阻应变效应是指金属导体在外力作用下发生机械变形时,其电阻值随着所受机械变形(伸长或缩短)的变化而发生变化的现象。其中半导体材料在受到外力作用时,其电阻率ρ发生变化的现象叫应变片的压阻效应。 导体或半导体的阻值随其机械应变而变化的道理很简单,因为导体或半导体的电阻L R S ρ=与电阻率及其几何尺寸

电阻应变式传感器.

电阻应变式传感器 应变式传感器是基于测量物体受力变形所产生应变的一种传感器,最常用的传感元件为电阻应变片。 应用范围:可测量位移、加速度、力、力矩、压力等各种参数。 应变式传感器特点 ①精度高,测量范围广; ②使用寿命长,性能稳定可靠; ③结构简单,体积小,重量轻; ④频率响应较好,既可用于静态测量又可用于动态测量; ⑤价格低廉,品种多样,便于选择和大量使用。 1、应变式传感器的工作原理 (1) 金属的电阻应变效应 金属导体在外力作用下发生机械变形时,其电阻值随着它所受机械变形(伸长或缩短)的变化而发生变化的现象,称为金属的电阻应变效应。 公式推导: 若金属丝的长度为L,截面积为S,电阻率为ρ,其未受力时的电阻为R,则: (9.1)

如果金属丝沿轴向方向受拉力而变形,其长度L变化dL,截面积S 变化dS,电阻率ρ变化,因而引起电阻R变化dR。将式(9.1)微分,整理可得: (9.2) 对于圆形截面有: (9.3) 为金属丝轴向相对伸长,即轴向应变;而则为电阻丝径向相对伸长,即径向应变,两者之比即为金属丝材料的泊松系数μ,负号表示符号相反,有: (9.9) 将式(9.9)代入(9.3)得: (9.5) 将式(9.5)代入(9.2),并整理得: (9.6) (9.7) 或 K0称为金属丝的灵敏系数,其物理意义是单位应变所引起的电阻相对变化。 K0称为金属丝的灵敏系数,其物理意义是单位应变所引起的电阻相对变化。

公式简化过程: 由式可以明显看出,金属材料的灵敏系数受两个因素影响: 一个是受力后材料的几何尺寸变化所引起的,即项;另一个是受力后材料的电阻率变化所引起的,即项。对于金属材料项比项小得多。大量实验表明,在电阻丝拉伸比例极限范围内,电阻的相对变化与其所受的轴向应变是成正比的,即K0为常数,于是可以写成: (9.8) Array通常金属电阻丝的K0=1.7~4.6。 通常金属电阻丝的K0=1.7~4.6。 (2) 应变片的基本结构及测量原理 距 用面积。应变片的规格 一般以使用面积和电 阻值表示,如 2 为 的电阻丝制成的。 高的阻值, 栅状, 在绝缘的基底上。 两端焊接引线。

应变片电阻式传感器测压力实验报告

设计目的 了解应变直流电桥的应用及电路的标定 基本原理 一应变片传感器 电阻应变片压力传感器由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成 1 应变片的工作原理 电阻应变式压力传感器是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把4个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。 电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示:

S L R ρ= 式中: ρ——金属导体的电阻率(Ω·m ) S ——导体的截面积(2m ) L ——导体的长度(m ) 以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情况。 2 全桥电路 应变片将应变的变化转换成电阻相对变化ΔR/R ,要把电阻的变化转换成电压或电流的变化,才能用电测仪表进行测量。这里使用全桥电路,如下图所示。

电阻应变式传感器

(三)、测量电路的选用: 电桥电路是一种能够实现将电阻、电感、电容等参量的变化转变为电压输出的一种信号变换电路。具有结构简单、精确度和灵敏度高的优点,在测试中应用非常广泛。电桥按供电方式分为直流电桥和交流电桥。在这次设计中采用的测量电路是直流电桥。而电桥工作状态可分为:不平衡电桥和平衡电桥,不平衡电桥在连续量的自动检测中大量采用,平衡电桥又称为零位法测量,一般用于静态测量,准确性较高。在此次传感器设计中使用了平衡电桥。 二、基本原理: 扭矩的测量:采用应变片电测技术,在弹性轴上组成应变桥,向应变桥提供电源即可测得该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号。如图1所示: 一、设计题目要求与分析 1、设计题目:设计测扭矩的传感器。 使用条件:转矩测量仪一般用在机器之间的传动轴上,所以振动大,灰尘、油雾、水污比较多,故要求传感器封装在一起,只留下两个轴端在外面;工作温度在-20~150C0。 二扭矩测量及应变片的基本原理 1、应变片式传感器的原理及结构 应变计的转换原理基于应变效应。所谓应变效应是指 属丝的电阻值随其变形而发生改变的一种物理现象。由物理 学可知,金属丝酌电阻值R与其长度L和电阻率ρ成正比,

与其截面积A成正比比,其公式表示为: R=ρL/A 从而当金属丝受力变形改变其长度与横截面积而改变电阻值,而引起电压值变化。 电阻应变计简称应变计,它主要由电阻敏感栅、基底和面胶(或覆盖层)、粘结剂、引出线五部分组成。基底是将传感器弹性体表面的应变传递到电阻敏感栅上的中间介质,并起到敏感棚和弹性体之间的绝缘作用,面胶起着保护敏感栅的作用,粘结剂是将敏感栅和基底粘接在一起,引出线是作为联接测量导线之用。电阻敏感栅可以将应变量转换成电阻变化。应变计的结构如下:

实验一 金属箔式应变片实验报告

厦门大学嘉庚学院传感器 实验报告 实验项目:实验一、二、三 金属箔式应变片 ——单臂、半桥、全桥 实验台号: 专 业: 物联网工程 年 级: 2014级 班 级: 1班 学生学号: ITT4004 学生姓名: 黄曾斌 实验时间: 2016 年 5 月 20 日

实验一 金属箔式应变片——单臂电桥性能实验 一.实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二.基本原理 金属电阻丝在未受力时,原始电阻值为R=ρL/S 。 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: 式中R R /?为电阻丝电阻的相对变化,K 为应变灵敏系数,L L /?=ε 为电阻丝长度 相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。 输出电压: 1.单臂工作:电桥中只有一个臂接入被测量,其它三个臂采用固定电阻;输出 U O14/εEK =。 2.双臂工作:如果电桥两个臂接入被测量,另两个为固定电阻就称为双臂工作电桥,又称为半桥形式;半桥电压输出U O2 2/εEK =。 3.全桥方式:如果四个桥臂都接入被测量则称为全桥形式。全桥电压输出U O3 εEK =。 三.需用器件与单元 CGQ-001实验模块、CGQ-013实验模块、应变式传感器、砝码、电压表、±15V 电源、±4V 电源、万用表(自备)。 ()() E R R R R R R R R U O 43213 241++-=

传感器实验报告应变片测量

传感器实验报告 一、实验原理 利用电阻式应变片受到外力发生形变之后,金属丝的电阻也随之发生变化。通过测量应变片的电阻变化再反算回去应变片所受到的应变量。利用电桥将电阻变化转化成电压变化进行测量,电桥的输出电压经过应变放大仪之后输出到采集卡,labview 采集程序通过采集卡 读取到应变放大仪的输出。 1 4 电桥输出电压与导体的纵向应变ε之间的关系为: 1 4 v V K ε=??? (1.1) 其中K 为电阻应变片的灵敏系数,V 为供桥电压,v 为电桥输出电压。由上式可知通过测量电桥输出电压再代入电阻应变片的灵敏系数就可以求出导体的纵向应变,即应变片的纵向应变。 二、实验仪器 悬臂梁 一条 应变片 一片 焊盘 两个 502胶水 一瓶 电阻桥盒 一个 BZ2210应变仪 一台 采集卡 一个 电脑 一台 砝码 一盒 三、实验步骤 1、先用砂纸摩擦桥臂至光滑,再用无水乙醇擦拭桥臂; 2、拿出应变片和焊盘,将502胶水滴在应变片及焊盘背面,把其贴在桥臂上,并压紧应变片; 3、使用电烙铁将应变片和焊盘焊接起来,再将焊盘跟桥盒连接起来,这里采用的是1 桥的接法; 4、将桥盒的输出接入到应变放大仪的通道1; 5、应变仪的输出接到采集卡上; 6、运行labview 的采集程序进行测试;

7、改变砝码的重量,从采集程序记录得出的数据。 8、对所得的数据做数据处理。 四、实验数据

五、数据分析 1、线性度分析 取出实验数据的0~250g的部分做线性度分析,数据如表2所示。

对上述数据进行初步分析,第一组跟第三组数据都是呈线性的,而第二组数据在70g-100g 这里却有了0.0013的变化,变化较大,不符合理论值,所以在进行数据分析时排除第二组数据,仅适用第一、第三组数据进行数据分析。对第一、第三组数据使用MATLAB 进行分析,先将两组数据做曲线拟合,得到拟合曲线之后将x 代入拟合曲线中求出对应的值,再把两组数据的端点取出做直线,将两条线相减得到最大差值,分别求出两组数据的最大差值,再代入公式max =100%L FS L Y γ?± ? 求出每组数据的线性度。FS Y 指的是满量程输出,这里取重量为250g 的数据。 具体实现的MATLAB 代码: x=[0 10 20 30 40 50 70 100 120 150 170 200 250]; x0=[0 250]; y01=[2.8646 2.8734]; y03=[2.8736 2.8828]; y1=[2.8646 2.8646 2.8648 2.8652 2.8653 2.8687 2.8662 2.8677 2.8681 2.8696 2.8701 2.8715 2.8734];%第一组数据 y2=[2.8613 2.8615 2.8619 2.8623 2.8625 2.8629 2.8637 2.865 2.8657 2.8668 2.8836 2.8847 2.886];%第二组数据 y3=[2.8736 2.8739 2.8742 2.8745 2.8749 2.8752 2.876 2.8771 2.8778 2.879 2.8798 2.8807 2.8828];%第三组数据 p1=polyfit(x,y1,1); p2=polyfit(x,y2,1); p3=polyfit(x,y3,1); p4=polyfit(x0,y01,1); p5=polyfit(x0,y03,1);

电阻应变式传感器.

第二讲 电阻应变式传感器 教学目的要求:1.掌握应变片的结构、分类及基本应变特性; 2.熟练掌握应变式传感器的粘贴方法和接线方法,并能做相应的计算应用; 3.掌握应变式传感器的基本应用。 教学重点:应变式传感器的粘贴方法和接线方法,并能做相应的计算应用 教学难点:应变式传感器的粘贴方法及应变式传感器的基本应用 教学学时:共4学时(其中作业习题讲解1学时) 教学内容: 本讲内容介绍: 电阻应变式传感器具有悠久的历史,是应用最广泛的传感器之一,本节着重介绍作为应变式传感器核心元件的电阻应变片的工作原理、种类、材料和参数;讨论其温度误差及其补偿。并讨论电阻应变式传感器的测量电路。要求掌握应变式传感器的原理及应用。 一、 应变式传感器的工作原理 本节要求: 掌握应变式传感器的工作原理。 电阻应变片的工作原理是应变效应――机械变形时,应变片电阻变化。 电阻丝的电阻: S L R ρ =, 求R 的全微分得: ρρ?+?-?=?S S L L R R

式中L L ?是长度相对变化,即应变ε。 金属丝的变形有: L L r r S S ?-=?=?μ22 式中μ:泊松比,对于钢285.0=μ 故应变效应数学表达式: ρρ εμ?++=?)21(R R 灵敏度系数: ε ρ ρ με?+ +=?= 21R R k 因此应变的应变效应原理: x εK R R =? 式中K ──电阻应变片的灵敏系数 二、 电阻应变片的结构、分类及特性 本节要求: 1) 一般了解应变片的结构和分类。 2) 掌握电阻应变片产生温度误差的主要原因及线路补偿方法。 1.电阻应变片的结构和分类 结构:电阻应变片由敏感栅、基片、覆盖层和引线等部分组成。其中,敏感栅是应变片的核心部分,它是用直径约为0.025mm 的具有高电阻率的电阻丝制成的,为了获得高的电阻值,电阻丝排列成栅网状,故称为敏感栅。 2. 应变片的分类 金属应变片和半导体应变片 金属应变片分:丝式、箔式 3.应变片的横向效应 应变片的灵敏系数K 恒小于同一材料金属丝的灵敏系数K s ,其原因是由于横向效应的影响。所谓横向效应是指将直的金属丝绕成敏感栅之后,在圆弧的各微段上,其轴向感受的应变在+εx 和εy =μ-εx 之间变化,从而造成了圆弧段电阻变化将小于沿纵轴方向安放的同样长度电阻丝电阻变化的现象。

应变片实验报告

传感器实验--- 金属箔式应变片:单臂、半桥、全桥比较 【实验目的】 了解金属箔式应变片,单臂单桥的工作原理和工作情况。 验证单臂、半桥、全桥的性能及相互之间关系。 【所需单元及部件】 直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、一片应变片、电压 /频率表、电 源,重物加在短小的圆盘上。 【旋钮初始位置】 直流稳压电源打到 +2V 挡,电压/频率表打到2V 挡,差动放大增益最大。 【应变片的工作原理】 当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属的电阻应变 效应。 设有一根长度为 L 、截面积为S 、电阻率为p 的金属丝,在未受力时,原始电阻为 当金属电阻丝受到轴向拉力 F 作用时,将伸长 横截面积相应减小 A S ,电阻率因晶格变化 等因素的影响而改变 Ap 故引起电阻值变化 AR 。对式(1 — 1)全微分,并用相对变化量来表示, 则有: 【测量电路】 应变片测量应变是通过敏感栅的电阻相对变化而得到的。通常金属电阻应变片灵敏度系数 K 很 小,机械应变一般在 10X10-6?3000X 10-6之间,可见,电阻相对变化是很小的。例如,某传感器弹性 元件在额定载荷下产生应变 1000 10 -6 ,应变片的电阻值为120 ,灵敏度系数 K=2,则电阻的 R 相对变化量为 K 2 1000 10 -6 =0.002,电阻变化率只有 0.2%。这样小的电阻变化,用一 R 般测量电阻的仪表很难直接测出来,必须用专门的电路来测量这种微弱的电阻变化。最常用的电路 为电桥电路。 R L S R L S (1-2)

直流电桥的电压输出 当电桥输出端接有放大器时,由于放大器的输入阻抗很高,所以,可以认为电桥的负载电阻为 无穷大,这时电桥以电压的形式输出。输出电压即为电桥输出端的开路电压,其表达式为 R 1 R 3 R 2 R 4 (R I R 2X R 3 R 4) 设电桥为单臂工-作状态,即R i 为应变片,其余桥臂均为固定电阻。 当R i 感受应变产生电阻增 衡引起的输出电压为 根据式(1-4)可得到输出电压为 duoo oLho (a )单臂 (b )半桥 (c )全桥 图1-1应变电桥 (1-3) R i 时,由初始平衡条件 R 1R 3 R 2R 4 得負 t ,代入式(1-3),则电桥由于 R 1产生不平 R 2 (R 1 R 2)2 R 1U R 1 R 2 (R 1 R 2)2 R 1 L U (1-4) 对于输出对称电桥,此时 R 1 R 2 R ,R 3 R 4 R',当R 1臂的电阻产生变化 R 1 R ,

电阻应变式传感器.

第二讲电阻应变式传感器 教学目的要求: 1.掌握应变片的结构、分类及基本应变特性; 2. 熟练掌握应变式传感器的粘贴方法和接线方法,并能做相应的计算应用; 3. 掌握应变式传感器的基本应用。 教学重点:应变式传感器的粘贴方法和接线方法,并能做相应的计算应用 教学难点:应变式传感器的粘贴方法及应变式传感器的基本应用 教学学时:共4学时(其中作业习题讲解 1学时) 教学内容: 本讲内容介绍: 电阻应变式传感器具有悠久的历史, 是应用最广泛的传感器之一, 本节着重介绍作为应 变式传感器核心元件的电 阻应变片的工作原理、 种类、材料和参数;讨论其温度误差及其补 偿。并讨论电阻应变式传感器的测量电路。要求掌握应变式传感器的原理及应用。 一、 应变式传感器的工作原理 本节要求: 掌握应变式传感器的工作原理。 电阻应变片的工作原理是 应变效应一一机械变形时,应变片电阻变化 图2-6 金属丝应变效应 电阻丝的电阻: : -L 求R 的全微分得: L F - ------—=一一一一—== -- . '■r I

式中L 是长度相对变化,即应变 ■:。 金属丝的变形有: S 2:r^ [L 2^- S r L 式中":泊松比,对于钢"_ °?285 故应变效应数学表达式: =(1 2」); 灵敏度系数: 因此应变的应变效应原理 R K ;x R 式中K ——电阻应变片的灵敏系数 二、电阻应变片的结构、分类及特性 本节要求: 1) 一般了解应变片的结构和分类。 2) 掌握电阻应变片产生温度误差的主要原因及线路补偿方法。 1. 电阻应变片的结构和分类 结构:电阻应变片由敏感栅、基片、覆盖层和引线等部分组成。其中,敏感栅是应变片 的核心部分,它是用直径约为 0.025mm 的具有高电阻率的电阻丝制成的,为了获得高的电 阻值,电阻丝排列成栅网状,故称为敏感栅。 2. 应变片的分类 金属应变片和半导体应变片 金属应变片分:丝式、箔式 3. 应变片的横向效应 应变片的灵敏系数 K 恒小于同一材料金属丝的灵敏系数 K s ,其原因是由于横向效应的 影响。所谓横向效应是指将直的金属丝绕成敏感栅之后, 在圆弧的各微段上,其轴向感受的 应变在+ ;x 和;y =-「;x 之间变化,从而造成了圆弧段电阻变化将小于沿纵轴方向安放的 同样长度电阻丝电阻变化的现象。 iP/ =1 2 二 .R

电阻式传感器单臂电桥性能实验

实验一电阻式传感器的单臂电桥性能实验 一、实验目的 1、了解电阻应变式传感器的基本结构与使用方法。 2、掌握电阻应变式传感器放大电路的调试方法。 3、掌握单臂电桥电路的工作原理和性能。 二、实验说明 1、电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:ΔR/ R=Kε,ΔR为电阻丝变化值,K为应变灵敏系数,ε为电阻丝长度的相对变化量ΔL/ L。通过测量电路将电阻变化转换为电流或电压输出。 2、电阻应变式传感如图1-1所示。传感器的主要部分是下、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、半桥与全桥电路,最大测量范围为±3mm。 1 1─外壳2─电阻应变片3─测杆4─等截面悬臂梁5─面板接线图 图1-1 电阻应变式传感器 3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R1、R2、R3为 固定,R为电阻应变片,输出电压U O=EKε,E为电桥转换系数。

图1-2 电阻式传感器单臂电桥实验电路图 三、实验内容 1、固定好位移台架,将电阻应变式传感器置于位移台架上,调节测微器使其指示15mm左右。将测微器装入位移台架上部的开口处,旋转测微器测杆使其与电阻应变式传感器的测杆适度旋紧,然后调节两个滚花螺母使电阻式应变传感器上的两个悬梁处于水平状态,两个滚花螺母固定在开口处上下两侧。 2、将实验箱(实验台内部已连接)面板上的±15V和地端,用导线接到差动放大器上;将放大器放大倍数电位器RP1旋钮(实验台为增益旋钮)逆时针旋到终端位置。 3、用导线将差动放大器的正负输入端连接,再将其输出端接到数字电压表的输入端;按下面板上电压量程转换开关的20V档按键(实验台为将电压量程拨到20V档);接通电源开关,旋动放大器的调零电位器RP2旋钮,使电压表指示向零趋近,然后换到2V量程,旋动调零电位器RP2旋钮使电压表指示为零;此后调零电位器RP2旋钮不再调节,根据实验适当调节增益电位器RP1。 4、按图1-2接线,R1、R2、R3(电阻传感器部分固定电阻)与一个的应变片构成单臂电桥形式。 5、调节平衡电位器RP,使数字电压表指示接近零,然后旋动测微器使

基于电阻应变片的压力传感器设计

前言 随着科学技术的迅猛发展,非物理量的测试与控制技术,已越来越广泛地应用于航天、航空、交通运输、冶金、机械制造、石化、轻工、技术监督与测试等技术领域,而且也正逐步引入人们的日常生活中去。传感器技术是实现测试与自动控制的重要环节。在测试系统中,被作为一次仪表定位,其主要特征是能准确传递和检测出某一形态的信息,并将其转换成另一形态的信息。 传感器是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置。其中电阻应变式传感器是被广泛用于电子秤和各种新型机构的测力装置,其精度和范围度是根据需要来选定的。因此,应根据测量对象的要求,恰当地选择精度和范围度是至关重要的。但无论何种条件、场合使用的传感器,均要求其性能稳定,数据可靠,经久耐用。 随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。 本次课程设计的是一个大量程称重传感器,测量范围为1t到100t。 本次课程设计的称重传感器就是利用应变片阻值的变化量来确定弹性元件的微小应变,从而利用力,受力面积及应变之间的关系来确定力的大小,进而求得产生作用力的物体的质量。应变片阻值的变化可以通过后续的处理电路求得。 传感器的设计主要包括弹性元件的设计和处理电路的设计。由于传感器输出的信号是微弱信号,故需要对其进行放大处理;由于传感器输出的信号里混有干扰信号,故需要对其进行检波滤波;由于传感器输出的信号通常都伴随着很大的共模电压(包括干扰电压),故需要设计共模抑制电路。除此之外,还要设计调零电路。

实验一-金属箔式应变片实验报告

成绩: 预习审核: 评阅签名: 厦门大学嘉庚学院传感器 实验报告 实验项目:实验一、二、三金属箔式应变片——单臂、半桥、全桥 实验台号: 专业:物联网工程 年级:2014级 班级:1班 学生学号:ITT4004 学生姓名:黄曾斌 实验时间:2016 年 5 月20 日

实验一 金属箔式应变片——单臂电桥性能实验 一.实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二.基本原理 金属电阻丝在未受力时,原始电阻值为R=ρL/S 。 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: 式中R R /?为电阻丝电阻的相对变化,K 为应变灵敏系数,L L /?=ε 为电阻丝长度 相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。 输出电压: 1.单臂工作:电桥中只有一个臂接入被测量,其它三个臂采用固定电阻;输出 U O14/εEK =。 2.双臂工作:如果电桥两个臂接入被测量,另两个为固定电阻就称为双臂工作电桥,又称为半桥形式;半桥电压输出U O2 2/εEK =。 3.全桥方式:如果四个桥臂都接入被测量则称为全桥形式。全桥电压输出U O3 εEK =。 三.需用器件与单元 CGQ-001实验模块、CGQ-013实验模块、应变式传感器、砝码、电压表、±15V 电源、±4V 电源、万用表(自备)。 ()() E R R R R R R R R U O 43213 241++-=

电阻应变式传感器-实验报告

理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2009 年 03 月 06 日,第 二 周,星期 五 第 5-6 节 实验名称 电阻应变式传感器 教师评语 实验目的与要求: 1. 学习电阻应变式传感器的基本原理、 结构、 特性和使用方法 2. 测量比较几种应变式转换电路的输出特性和灵敏度 3. 了解温度变化对应变测试系统的影响和温度补偿方法 主要仪器设备: CSY 10A 型传感器系统实验仪 实验原理和容: 1. 应变效应 导体或半导体在外力的作用下发生机械变形时, 其阻值也会发生相应的变化, 成为应变效应。 电阻应变片的工作原理即是基于这种效应, 将本身受力形变时发生的阻值变化通过测量电路转换为可使用的电压变化等以提供相关力的大小。 金属丝的电阻应变量可由以下算式表达: 金属丝的原始电阻值为S L R ρ= , 收到轴向拉力时, 发生电阻值变化R ?, 变化比例的表达式为: S S L L R R ?-?+?=?ρρ, 根据金属丝在力学和材料学上的相关性质, 在弹性围可以对公式进行改写, 得到 L L k L L L L R R ?=??? ??????++=?ρρμ)21(, 其中系数k 称为电阻应变片的灵敏系数, 表示单位应变量引起的电阻值变化, 它与金属丝的几何尺寸变化和本身的材料特性有关; 一般半导

体的灵敏系数要远大于金属的灵敏系数。 (由于受力会影响到半导体部的载流子运动, 固可以非常灵敏地反映细微的变化) 2. 电阻式应变传感器的测量电路 转换电路的作用是将电阻变化转换成电压或电流输出, 电阻应变式传感器中常用的是桥式电路, 本实验使用直流电桥。 驳接阻抗极高的仪器时, 认为电桥的输出端断路, 只输出电压信号; 根据电桥的平衡原理, 只有当电桥上的应变电阻发生阻值变化时, 电压信号即发生变化; 电桥的灵敏度定义为 R R V k v /?= 根据电阻变化输入电桥的方法不同, 可以分为单臂、 半桥和全桥输入三种方式: 2.1 单臂电桥 只接入一个应变电阻片, 其余为固定电阻。 设电桥的桥臂比为 n R R R R ==2 314, 根据电桥的工作原理, 并忽略一些极小的无影响的量, 可以得到输出电压的表达式为11 )1(2R R n nU V ??? ?? ??+≈, 同时得到单臂电桥灵敏度表达式2 ) 1(/n nU R R V k v +=?= 单臂电桥的实际输出电压与电阻变化的关系是非线性的, 存在非线性误差, 故不常使用。 2.2 半桥 如图, 接入两个应变电阻和固定电阻, 设初始状态为R1=R2=R3=R4=R, ΔR1=ΔR2=ΔR , 可以得到电压表达式U R R V ?= 21, 半桥灵敏度表达式U k v 2 1 =, 可见输出电压与电阻的变化严格呈线性关系, 不存在线性误差, 灵敏度比单臂电桥提高了一倍。 2.3 全桥 全部电阻都使用应变电阻, 且相邻的两个臂的受力方向相反, 根据电桥性质可以得到电压及灵敏

金属箔式应变片半桥性能实验报告

南京信息工程大学传感器实验(实习)报告 实验(实习)名称金属箔式应变片半桥性能实验实验(实习)日期12.2得分指导老师 系专业班级姓名学号 实验目的:比较半桥与单臂电桥的不同性能、了解其特点。 实验内容: 基本原理:不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。 需用器件与单元:主机箱、应变式传感器实验模板、托盘、砝码。 实验步骤: 1、将托盘安装到应变传感器的托盘支点上。将实验模板差动放大器调零:用导线将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连,再将实验模板中的放大器的两输入口短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实 验模板放大器的调零电位器R W4,使电压表显示为零。 图2 应变式传感器半桥接线图 2、拆去放大器输入端口的短接线,根据图2接线。注意R2应和R3受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。调节实验模板上的桥路平衡电位器R W1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。记下实验数据填入表2画出实验曲线,计算灵敏度S2=U/W,非线性误差δ。实验完

毕,关闭电源。 实验结果: 表2 解:S=200/80=2.5 δ=Δm/y FS×100%=1/200x100%=0.5%

传感器实验报告(电阻应变式传感器)

传感器技术实验报告 院(系)机械工程系专业班级 姓名同组同学 实验时间 2014 年月日,第周,星期第节实验地点单片机与传感器实验室实验台号 实验一金属箔式应变片——单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、实验仪器: 应变传感器实验模块、托盘、砝码(每只约20g)、、数显电压表、±15V、±4V电源、万用表(自备)。 三、实验原理: 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。 图1-1 通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压

εk E R R R R R E U 4 R 4E 21140=??≈??+?? = (1-1) E 为电桥电源电压,R 为固定电阻值,式1-1表明单臂电桥输出为非线性,非线性误差为%10021L ???- =R R γ。 四、实验内容与步骤 1.图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R 1、R 2、R 3、R 4 上,可用万用表测量判别,R 1=R 2=R 3=R 4=350Ω。 2.从主控台接入±15V 电源,检查无误后,合上主控台电源开关,将差动放大器的输入端U i 短接,输出端Uo 2接数显电压表(选择2V 档),调节电位器Rw 3,使电压表显示为0V ,Rw 3的位置确定后不能改动,关闭主控台电源。 图1-2 应变式传感器单臂电桥实验接线图 3.将应变式传感器的其中一个应变电阻(如R 1)接入电桥与R 5、R 6、R 7构成一个单臂直流电桥,见图1-2,接好电桥调零电位器Rw 1,直流电源±4V (从主控台接入),电桥输出接到差动放大器的输入端U i ,检查接线无误后,合上主控台电源开关,调节Rw 1,使电压表显示为零。 4.在应变传感器托盘上放置一只砝码,调节Rw 4,改变差动放大器的增益,使数显电压表显示2mV ,读取数显表数值,保持Rw 4不变,依次增加砝码和读取相应的数显表值,直到200g 砝码加完,记录实验结果,填入表1-1,关闭电源。 重量(g) 电压(mV)

应变片实验报告

传感器实验---- 金属箔式应变片:单臂、半桥、全桥比较 【实验目的】 了解金属箔式应变片,单臂单桥的工作原理和工作情况。 验证单臂、半桥、全桥的性能及相互之间关系。 【所需单元及部件】 直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、一片应变片、电压/频率表、电源, 重物加在短小的圆盘上。 【旋钮初始位置】 直流稳压电源打到±2V挡,电压/频率表打到2V挡,差动放大增益最大。【应变片的工作原理】 当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属的电阻应变效应。 设有一根长度为L、截面积为S、电阻率为ρ的金属丝,在未受力时,原始电阻为 (1-1) 当金属电阻丝受到轴向拉力F作用时,将伸长ΔL,横截面积相应减小ΔS,电阻率因晶格变化等因素的影响而改变Δρ,故引起电阻值变化ΔR。对式(1-1)全微分,并用相对变化量来表示,则有:

ρ ρ ?+?-?=?S S L L R R (1-2) 【测量电路】 应变片测量应变是通过敏感栅的电阻相对变化而得到的。通常金属电阻应变片灵敏度系数K 很小,机械应变一般在10×10-6~3000×10-6之间,可见,电阻相对变化是很小的。例如,某传感器弹性元件在额定载荷下产生应变101000?=ε-6,应变片的电阻值为Ω120,灵敏度系数K=2,则电阻的相对变化量为 ??==?10002εK R R 10-6 =0.002,电阻变化率只有0.2%。这样小的电阻变化,用一般测量电阻的仪表很难直接测出来,必须用专门的电路来测量这种微弱的电阻变化。最常用的电路为电桥电路。 (a )单臂 (b )半桥 (c )全桥 图1-1 应变电桥 直流电桥的电压输出 当电桥输出端接有放大器时,由于放大器的输入阻抗很高,所以,可以认为电桥的负载电阻为无穷大,这时电桥以电压的形式输出。输出电压即

应变片式电阻传感器的测量电路

应变片式传感器的测量电路 电阻应变计可把机械量变化转换成电阻变化,但电阻变化是很小的,用一般的电子仪表很难直接检测。例如,常规的金属应变计的灵敏系数k 值在1.8~4.8之间,机械应变在10~6000με之间,相对变化电阻 /R R k ε?=就比较小。 例1设某被测件在额定载荷下产生的应变为1000με,粘贴的应变计阻值120R =Ω,灵敏系数2k =,则其电阻的相对变化为 6/21000100.002R R k ε-?==??= 电阻变化率仅为0.2%。这样小的电阻变化,必须用专门的电路才能测量。测量电路把微弱的电阻变化转换为电压的变化,电桥电路就是这种转换的一种最常用的方法。 2.3.1 应变电桥 电桥电路即是惠斯通电桥,其结构如图所示。四个阻抗臂1234 ,,,Z Z Z Z 以顺时针排列,AC 是电源端,工作电压为U ;BD 为输出端,输出电压为0U 。在这个阻抗电桥的桥臂上接入应变计,就叫应变电桥。 应变电桥按不同的方式可分为不同的类型,主要有以下分类方式。 1 按工作臂分 单臂电桥:电桥的一个臂接入应变计。 双臂电桥:电桥的两个臂接入应变计。 全臂电桥:电桥的四个臂都接入应变计。 2 按电源分 按电源不同,可分为直流电桥和交流电桥。 直流电桥的电源是直流电压,其桥臂只能接入阻性元件,主要用于应变电桥的输出,不需中间放大就可直接显示的情况。例如半导体应变计的输出灵敏度高,可采用直流应变电桥作为测量电路,直接输出并显示结果。 交流电桥的电源是交流电压,其桥臂可以是阻性(R )、感性(L )或容性(C )元件。主要用于输出需放大的场合。例如金属应变计的输出灵敏度较低,应采用这种交流应变电桥作为测量电路,以进一步放大输出。 3 按工作方式分 图2.3.1 电桥电路的结构

电阻应变式传感器_实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2009 年 03 月 06 日,第 二 周,星期 五 第 5-6 节 实验名称 电阻应变式传感器 教师评语 实验目的与要求: 1. 学习电阻应变式传感器的基本原理、 结构、 特性和使用方法 2. 测量比较几种应变式转换电路的输出特性和灵敏度 3. 了解温度变化对应变测试系统的影响和温度补偿方法 主要仪器设备: CSY 10A 型传感器系统实验仪 实验原理和内容: 1. 应变效应 导体或半导体在外力的作用下发生机械变形时, 其阻值也会发生相应的变化, 成为应变效应。 电阻应变片的工作原理即是基于这种效应, 将本身受力形变时发生的阻值变化通过测量电路转换为可使用的电压变化等以提供相关力的大小。 金属丝的电阻应变量可由以下算式表达: 金属丝的原始电阻值为S L R ρ= , 收到轴向拉力时, 发生电阻值变化R ?, 变化比例的表达式为: S S L L R R ?-?+?=?ρρ, 根据金属丝在力学和材料学上的相关性质, 在弹性范围内可以对公式进行改写, 得到 L L k L L L L R R ?=??? ??????++=?ρρμ)21(, 其中系数k 称为电阻应变片的灵敏系数, 表示单位应变量引起的电阻值变化, 它与金属丝的几何尺寸变化和本身的材料特性有关; 一般半

导体的灵敏系数要远大于金属的灵敏系数。 (由于受力会影响到半导体内部的载流子运动, 固可以非常灵敏地反映细微的变化) 2. 电阻式应变传感器的测量电路 转换电路的作用是将电阻变化转换成电压或电流输出, 电阻应变式传感器中常用的是桥式电路, 本实验使用直流电桥。 驳接阻抗极高的仪器时, 认为电桥的输出端断路, 只输出电压信号; 根据电桥的平衡原理, 只有当电桥上的应变电阻发生阻值变化时, 电压信号即发生变化; 电桥的灵敏度定义为 R R V k v /?= 根据电阻变化输入电桥的方法不同, 可以分为单臂、 半桥和全桥输入三种方式: 2.1 单臂电桥 只接入一个应变电阻片, 其余为固定电阻。 设电桥的桥臂比为 n R R R R ==2 314, 根据电桥的工作原理, 并忽略一些极小的无影响的量, 可以得到输出电压的表达式为11 )1(2R R n nU V ??? ?? ??+≈, 同时得到单臂电桥灵敏度表达式2 ) 1(/n nU R R V k v +=?= 单臂电桥的实际输出电压与电阻变化的关系是非线性的, 存在非线性误差, 故不常使用。 2.2 半桥 如图, 接入两个应变电阻和固定电阻, 设初始状态为R1=R2=R3=R4=R, ΔR1=ΔR2=ΔR , 可以得到电压表达式U R R V ?= 21, 半桥灵敏度表达式U k v 2 1 =, 可见输出电压与电阻的变化严格呈线性关系, 不存在线性误差, 灵敏度比单臂电桥提高了一倍。 2.3 全桥 全部电阻都使用应变电阻, 且相邻的两个臂的受力方向相反, 根据电桥性质可以得到电压及灵敏

电阻应变式传感器

1.一丝绕应变计的灵敏系数为2,初始阻值100Ω,试求当试件受力后的应变为1.8?103 时该应变计的电阻变化ΔR。 2.一试件受力后的应变为2?10-3;丝绕应变计的灵敏系数为2,初始阻值120Ω,温度 C0/,线膨胀系数为14?10-6C0/;试件的线膨胀系数为12?10-6C0/。试系数-50?10-6 求:温度升高20℃时,应变计输出的相对误差和相对热输出。 3.在悬臂梁的上下方各贴一片电阻为120Ω的金属应变片R1和R2。若应变片的灵敏系数 k=2,电源电压U=2V,当悬臂梁顶端受到向下的力F时,电阻R1和R2的变化值ΔR1=ΔR2 =0.48Ω,试求电桥的输出电压。 4.图为一直流应变电桥,图中U=4V,R1=R2=R3=R4=120Ω,试求: ①R1为金属应变片,其余为外接电阻,当R1的增量为ΔR1=1.2Ω时,电桥输出电压U O。 ② R1、R2都是应变片,且批号相同,感应应变的极性和大小都相同,其余为外接电阻, 电桥输出电压U O。 ③题②中,如果R2与R1的感受应变的极性相反且ΔR1=ΔR2=1.2Ω,电桥输出电压U O。 5.图3-6为等强度梁测力系统,R1为电阻应变片,应变片灵敏 度系数K=2.05,未受应变时,R1=120Ω,当试件受力F时, 应变片承受平均应变ε=800μm/m,试求: ①应变片的电阻变化量R1和电阻相对变化量ΔR1/R ②将电阻应变片R1置于单臂测量电桥,电桥电流电压为直流3V,求电桥输出电压及 电桥非线性误差。

③若要减小非线性误差,应采取何种措施?分析其电桥输出电压及非线性误差的大小。 6.利用悬臂梁结构可以构成称重传感器。试就在悬臂梁的上下方各贴一片金属应变片组成 差动半桥和各贴二片金属应变片组成差动全桥时的应变电阻片的布贴方式、电桥连接方法和相应的输出电压大小做出说明, 并说明其差动和温度补偿的原理。 7.一个初始阻值为120Ω的应变片,灵敏度为K=2.0,如果将该应变片用 总阻值为12Ω的导线连接到测量系统,求此时应变片的灵敏度K’。 8.采用四片相同的金属丝应变片(K=2),将其粘贴在如图所示的实心圆柱形测力 弹性元件上。已知力F=10kN,圆柱横截面半径r=1cm,材料的弹性模量2 10-7 N/cm2,泊松比μ=0.3。 (1)画出应变片在圆柱上的粘贴位置及相应的测量桥路原理图。 (2)求各应变片得应变及电阻相对变化量。 (3)若电桥供电电压U=6V,求桥路输出电压U o。 (4)此种测量方法能否补偿环境温度对测量的影响,说明理由。

相关文档
最新文档