1.2导数的计算第1课时 精品教案

1.2导数的计算第1课时 精品教案
1.2导数的计算第1课时 精品教案

1.2 导数的计算

【课题】:1.2.1几个常见函数的导数

【教学目标】:

(1)知识与技能:能够用导数的定义求几个常用函数的导数,并由此归纳幂函数的导数. (2)过程与方法:在教学过程中,注意培养学生归纳、探究规律的能力.

(3)情感、态度与价值观:通过学生的主动参与,师生、生生的合作交流,,提高学生的学习兴趣,激发学生的求知欲,培养探索精神.通过本节的学习,进一步体会导数与物理知识之间的联系,提高数学的应用意识.

【教学重点】:能用导数定义,求几个常用函数的导数,并由此归纳幂函数的导数.

【教学难点】:用从特殊到一般的规律来探究公式.

【课前准备】:课件

00)x x x x

x

→→+-=22

00)lim (2)2x x x x x x x x x

→→+-=+=,0011

1lim ()x x x x x x x x x

→→-

+=+0

011

lim 2x x x x x x x x x →→+-==

++由此,我们可以得到:公式2:1

()(n

n x nx n Q -'=∈

练习与测试: A .基础题.

1.求下列函数的导数:

(1)12

y x = (2)y = (3)41y x

=

(4)y = 答案:(1)'11

12y x = (2)'

y =

(3)'

5

4y x -=-

(4)2'

5

35

y x -=

2.已知函数2

()f x x =,则'

(3)f =( ) (A )0 (B )2x (C )6 (D )9 答案:C

3.已知函数1()f x x =,则'

(2)f -=( ) (A )4 (B )14 (C )4- (D )1

4

-

答案:D

4.已知函数3

()f x x =的切线的斜率等于3,则其切线方程有( ) (A )1条 (B )2条 (C )多余2条 (D )不存在 答案:B

B .难题

1.已知(1,1),(2,4)P Q -是曲线2

y x =上两点,求与直线PQ 平行的曲线2

y x =的切线方程.

'(1,1),(2,4)121

11

,24

11424410PQ P Q k y x x y y x x y -∴=====-

=---=解:令得所以曲线的切线方程为:即

2.设曲线3

y x =过点3

(,)a a 的切线与直线,0x a y ==所围成的三角形面积为

1

3

,求a . 3'2

332233

3()|3(,)3()320

2

0,;,3

12

()1

231

x a k x a a a y a a x a a x a y y x a x a y a S a a a a ===∴-=---======-=∴=±解:过点的切线方程为即令得得

1.2导数的计算第3课时 精品教案

1.2导数的计算 【课题】:1.2.3导数的运算法则 【教学目标】: (1)知识与技能:掌握一个函数的和、差、积、商的求导法则并能求某些简单函数的导数;通过实例,理解复合函数的求导法则。 (2)过程与方法:利用学生已掌握的导数的定义,得出一个简单的两个函数的和的导数,从而提出问题,引入新课,通过学生的猜想,尝试探究出函数的和、差、积、商的求导法则,使学生加深对求导法则的理解. (3)情感、态度与价值观:通过学生的主动参与,师生、生生的合作交流,,提高学生的学习兴趣,激发学生的求知欲,培养探索精神. 【教学重点】:掌握函数的和、差、积、商的求导法则以及复合函数的求导法则. 【教学难点】:学生对积和商的求导法则的理解和运用以及复合函数的求导法则. 【课前准备】:课件 这种商品的价格上涨的速度大约是多少?根据上一节课的内容,我们知道,求在第)()]g x f ='')()]f x g =

u. x .求下列函数的导数: ;(2)y

练习与测试: A .基础题 1.函数2 (1)y x x =+的导数是( ) (A)2 1x + (B)2 3x (C)2 31x + (D)2 3x x + 答案:C 2.函数1()2 x x y e e -=+的导数是( ) (A)1()2x x e e -- (B)1()2 x x e e -+ (C)x x e e -- (D)x x e e -+ 答案:A 3.若2 ' ()(2),(2)20,f x x a f a =+==且则 . 答案:1 4.某汽车启动阶段的路程函数为3 2 ()2(1)10s t t t =+-,则汽车在1t =秒时的瞬时速度为 . 答案:4 5.求下列函数的导数: (1)3 cos y x x =- (2)( )()2325y x x =+- (3)sin x y x = (4)()8 57y x =- 答案:(1)' 2 3sin y x x =+ (2) ' 2 9302y x x =-+ (3) ' 2 cos sin x x x y x -= (4) '7 40(57)y x =- B .难题 1.已知曲线4 3 2 :3294C y x x x =--+ (1)求曲线C 在点()1,4-的切线方程; (2)对于(1)中的切线与曲线C 是否还有其他公共点?若有,求出公共点;若没有,说明理由.

第三章 导数 导学案

§3.1.1 变化率问题 1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程. 体会数学的博大精深以及学习数学的意义; 2.理解平均变化率的意义,为后续建立瞬时变化. 7880 复习1:曲线22 1259 x y +=与曲线 22 1(9)259x y k k k +=<--的( ) A .长、短轴长相等 B .焦距相等 C .离心率相等 D .准线相同 复习2:当α从0 到180 变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化? 二、新课导学 ※ 学习探究 探究任务一: 问题1:气球膨胀率,求平均膨胀率 吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象? 问题2:高台跳水,求平均速度 新知:平均变化率: 2121()()f x f x f x x x -?=-? 试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ?,即 x ?= 或者2x = ,x ?就表 示从1x 到2x 的变化量或增量,相应地,函数的变化量或增量记为y ?,即y ?= ;如果它们 的比值y x ??,则上式就表示为 , 此比值就称为平均变化率. 反思:所谓平均变化率也就是 的增量与 的增量的比值. ※ 典型例题 例 1 过曲线3()y f x x ==上两点(1,1P 和(1,1)Q x y +?+?作曲线的割线,求出当0.1x ?=时割线的斜率. 变式:已知函数2()f x x x =-+的图象上一点 (1,2)--及邻近一点(1,2)x y -+?-+?,则y x ??= 例 2 已知函数2 ()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001] 小结:

北师大版计算导数教案

计算导数(2) 一、教学目标:掌握初等函数的求导公式,并能熟练运用。 二、教学重难点:用定义推导常见函数的导数公式. 三、教学方法:探析归纳,讲练结合 四、课时安排:1课时 四、教学过程 (一)、复习 1、导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的流程图。 (1)求函数的改变量)()(x f x x f y -?+=? (2)求平均变化率 x x f x x f x y ?-?+=??) ()( (3)取极限,得导数/ y =()f x '=x y x ??→?0lim 本节课我们将学习常见函数的导数。首先我们来求下面几个函数的导数。 (1)、y=x (2)、y=x 2 (3)、y=x 3 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? (二)、新课探析 1、基本初等函数的求导公式: ⑴ ()kx b k '+= (k,b 为常数) ⑵ 0)(='C (C 为常数) ⑶ ()1x '= ⑷ 2 ()2x x '= ⑸ 32 ()3x x '= ⑹ 2 11()x x '=- ⑺ '= 由⑶~⑹你能发现什么规律? ⑻ 1 ()x x α αα-'= (α为常数) ⑼ ()ln (01)x x a a a a a '=>≠, ⑽ a a 11(log x)log e (01)x xlna a a '= =>≠,且

⑾ x x e )(e =' ⑿ x 1 )(lnx = ' ⒀ cosx )(sinx =' ⒁ sinx )(cosx -=' 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。 2、例题探析 例1、求下列函数导数。 (1)5-=x y (2)x y 4= (3)x x x y = (4)x y 3log = (5)y=sin( 2π+x) (6) y=sin 3 π (7)y=cos(2π-x) (8)y=(1)f ' 例2、已知点P 在函数y=cosx 上,(0≤x ≤2π),在P 处的切线斜率大于0,求点P 的横坐标的取值范围。 例3、若直线y x b =-+为函数1 y x = 图象的切线,求b 的值和切点坐标. 变式1、求曲线y=x 2 在点(1,1)处的切线方程. 总结切线问题:找切点 求导数 得斜率 变式2、求曲线y=x 2 过点(0,-1)的切线方程 变式3、求曲线y=x 3过点(1,1)的切线方程 变式4、已知直线1y x =-,点P 为y=x 2 上任意一点,求P 在什么位置时到直线距离最短. (三)、课堂小结:(1)基本初等函数公式的求导公式(2)公式的应用 导数公式表 (四)、课堂练习:假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

配套学案:导数的计算

导数的计算(复习课) 【学习目标】 1.掌握基本初等函数的导数公式以及导数的运算法则; 2.会求含有加、减、乘、除运算的函数导数; 3.会求简单复合函数的倒数. 【知识回顾】 1.基本初等函数的导数公式: (1)c '=___________(c 为常数); (2))('α x =________(α为常数); (3))('x a =________(0a >且1a ≠); (4))(log 'x a =______(0a >且1a ≠); (5))('x e =_____________; (6))(ln 'x =_____________; (7)=')(sin x ___________; (8))(cos 'x =____________. 2.设两个函数分别为f(x)和g(x), (1)=')]([x f c _____________; (2)[]='±)()(x g x f ___________; (3)[]='?)()(x g x f __________________; (4)='?? ????)()(x g x f ____________)0)((>x g . 3. 复合函数()[]x f y ?=,设u φ=(x ), 则))((x f ?'=_________________. (复合函数求导的基本步骤是:分解——求导——相乘——回代) 【典例精析】 例1. 求曲线2 y x =过下列点的切线方程:(1)P (-1,1);(2)Q(0,-1).联合例5后置处理

例2.求下列函数的导数: (1)y=3x ·lnx ; (2)y=lgx- 2x 1; (3)y= x x -1cos ; (4)2)2(-=x y .

12 导数的概念及运算

【2021高考数学理科苏教版课时精品练】 第九节 导数的概念及运算 1.(2011年苏南四市联考)曲线y =2x -ln x 在点(1,2)处的切线方程是________. 解析:由y ′=(2x -ln x )′=2-1x ,当x =1可得k =2-11 =1,即得在点(1,2)处的切线方程是y -2=x -1,即x -y +1=0. 答案:x -y +1=0 2.设直线y =-3x +b 是曲线y =x 3-3x 2的一条切线,则实数b 的值是________. 解析:∵y =x 3-3x 2,∴y ′=3x 2-6x ,令y ′=3x 2-6x =-3可解得x =1,即得切点的坐标为(1,-2),且该切点在切线y =-3x +b 上,于是可得b =3x +y =3×1+(-2)=1. 答案:1 3.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于________. 解析:f ′(x )=4ax 3+2bx 为奇函数, ∴f ′(-1)=-f ′(1)=-2. 答案:-2 4.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________. 解析:∵y =x 3-10x +3,∴y ′=3x 2-10.由题意,设切点P 的横坐标为x 0,且x 0<0, 即3x 20-10=2,∴x 20=4,∴x 0=-2,∴y 0=x 30-10x 0+3=15.故点P 的坐标为(-2,15). 答案:(-2,15) 5.(2011年苏南四市调研)在平面直角坐标系xOy 中,点P (0,1)在曲线C :y =x 3-x 2-ax +b (a 、b 为实数)上,已知曲线C 在点P 处的切线方程为y =2x +1,则a +b =________. 解析:把(0,1)代入曲线方程可得b =1,又y ′=3x 2-2x -a ,得-a =2,即有a =-2,∴a +b =-1. 答案:-1 6.已知曲线f (x )=x sin x +1在点(π2,π2 +1)处的切线与直线ax -y +1=0互相垂直,则实数a =________. 解析:因为f ′(x )=sin x +x cos x ,得f ′(π2)=sin π2+π2·cos π2=1,所以曲线在点(π2,π2 +1)处切线的斜率为1,据切线与直线ax -y +1=0垂直,得1×a =-1,求出a =-1. 答案:-1 7.(2011年苏北四校联考)设函数f (x )=13 ax 3+bx (a ≠0),若f (3)=3f ′(x 0),则x 0=________. 解析:由已知得,f ′(x )=ax 2+b ,又f (3)=3f ′(x 0),则有9a +3b =3ax 20+3b ,所以x 20= 3,则x 0=±3. 答案:±3 8.已知函数f (x )=x 3-3x 2+a ,若f (x +1)是奇函数,则曲线y =f (x )在点(0,a )处的切线方程是________. 解析:∵f (x +1)是奇函数,∴f (x )的图象关于点(1,0)成中心对称,∴a =2,而f ′(0)=0,所以切线是过(0,2)点且平行于x 轴的直线,方程为y =2. 答案:y =2 9.求曲线f (x )=x 3-3x 2+2x 过原点的切线方程.

3.1 导数的概念及其运算导学案

§3.1 导数的概念及其运算 2014高考会这样考 1.利用导数的几何意义求切线方程;2.考查导数的有关计算,尤其是简单的复合函数求导. 复习备考要这样做 1.理解导数的意义,熟练掌握导数公式和求导法则;2.灵活进行复合函数的求导;3.会求某点处切线的方程或过某点的切线方程. 1. 函数y =f (x )从x 1到x 2的平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1) x 2-x 1,若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平 均变化率可表示为Δy Δx . 2. 函数y =f (x )在x =x 0处的导数 学&科& (1)定义 称函数y =f (x )在x =x 0处的瞬时变化率lim Δx → f (x 0+Δx )-f (x 0)Δx =lim Δx →0 Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即f ′(x 0)=lim Δx → Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3. 函数f (x )的导函数 称函数f ′(x )=lim Δx → f (x +Δx )-f (x ) Δx 为f (x )的导函数,导函数有时也记作y ′. 4. 基本初等函数的导数公式

5. (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x ) g 2(x ) (g (x )≠0). 6. 复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [难点正本 疑点清源] 1. 深刻理解“函数在一点处的导数”、“导函数”、“导数”的区别与联系 (1)函数f (x )在点x 0处的导数f ′(x 0)是一个常数; (2)函数y =f (x )的导函数,是针对某一区间内任意点x 而言的.如果函数y =f (x )在区间(a ,b )内每一点x 都可导,是指对于区间(a ,b )内的每一个确定的值x 0都对应着一个确定的导数f ′(x 0).这样就在开区间(a ,b )内构成了一个新函数,就是函数f (x )的导函数f ′(x ).在不产生混淆的情况下,导函数也简称导数. 2. 曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系 (1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不

最新2.12导数的应用(一)汇总

2.12导数的应用(一)

第十二节导数的应用(Ⅰ) [备考方向要明了] [归纳·知识整合] 1.函数的单调性与导数

[探究] 1.若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0吗?f′(x)>0是否是f(x)在(a,b)内单调递增的充要条件? 提示:函数f(x)在(a,b)内单调递增,则f′(x)≥0, f′(x)>0是f(x)在(a,b)内单调递增的充分不必要条件. 2.函数的极值与导数 (1)函数的极小值: 若函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,且f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a点叫做函数的极小值点,f(a)叫做函数的极小值. (2)函数的极大值: 若函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,且f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b点叫做函数的极大值点,f(b)叫做函数的极大值,极大值和极小值统称为极值. [探究] 2.导数值为0的点一定是函数的极值点吗?“导数为0”是函数在该点取得极值的什么条件? 提示:不一定.可导函数的极值点导数为零,但导数为零的点未必是极值点;如函数f(x)=x3,在x=0处,有f′(0)=0,但x=0不是函数f(x)=x3的极值点;其为函数在该点取得极值的必要而不充分条件. 3.函数的最值与导数 (1)函数f(x)在[a,b]上有最值的条件: 一般地,如果在区间[a,b]上,函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.

高中数学选修2-2导数--导数的运算(解析版)

高中数学选修2-2导数--导数的运算(解析版) 1.若f (x )=sin π 3 -cos x ,则f ′(α)等于( ) A .Sin α B .Cos α C .sin π3+cos α D .cos π 3+sin α [答案] A [解析] ∵f (x )=sin π 3 -cos x ,∴f ′(x )=sin x ,∴f ′(α)=sin α,故选A. 2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1 f (n ) }(n ∈N *)的前n 项和是( ) A.n n +1B .n +2n +1C.n n -1 D .n +1n [答案] A [解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1 f (n ) }(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1 n (n +1)=????1-12+????12-13+…+????1n -1n +1 =1-1n +1=n n +1 ,故选A. 3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( ) [答案] B [解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B. 4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .e - 1B .-1C .-e - 1 D .-e [答案] C [解析] ∵f (x )=2xf ′(e)+ln x ,∴f ′(x )=2f ′(e)+1x ,∴f ′(e)=2f ′(e)+1 e , 解得f ′(e)=-1 e ,故选C.

导数的计算(教)新课教案

导数的计算 一、考点热点回顾 教学目标: 1.使学生应用由定义求导数的三个步骤推导四种常见函数y c =、y x =、2 y x =、1 y x =的导数公式; 2.掌握并能运用这四个公式正确求函数的导数. 教学重点:四种常见函数y c =、y x =、2 y x =、1 y x = 的导数公式; 教学难点:四种常见函数y c =、y x =、2 y x =、1y x =的导数公式. 几个常见函数的导数 探究1.函数()y f x c ==的导数 根据导数定义,因为 ()()0y f x x f x c c x x x ?+?--===??? 所以00 lim lim 00x x y y ?→?→?'=== 0y '=表示函数y c =图像(图3.2-1)上每一点处的切线的斜率都为0.若y c =表示路程关于时间 的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 探究2.函数()y f x x ==的导数 因为 ()()1y f x x f x x x x x ?+?-+?-===?所以00lim lim11x x y y x ?→?→?'=== 1y '=表示函数y x =图像(图3.2-2)上每一点处的切线的斜率都为1.若y x =表示路程关于时间 的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.

探究3.函数2 ()y f x x ==的导数 因为22()()()y f x x f x x x x x x x ?+?-+?-==???222 2()2x x x x x x x x +?+?-==+?? 所以00 lim lim(2)2x x y y x x x x ?→?→?'==+?=? 2y x '=表示函数2y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化, 切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2 y x =减少得越来越慢;当0x >时,随着x 的增加,函数2 y x =增加得越来越快.若 2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度 为2x . 探究4.函数1 ()y f x x == 的导数 因为11 ()()y f x x f x x x x x x x - ?+?-+?== ???2() 1()x x x x x x x x x x -+?==-+??+?? 所以220011 lim lim()x x y y x ?→?→? '==-=-? 探究5.函数()y f x == 的导数 因为 ()()y f x x f x x x x ?+?-== ?? ? = = 所以0lim lim x x y y x ?→?→?'===?

12导数的计算练习题(可编辑修改word版)

x x x x 一、知识自测:基本初等函数的导数公式及导数的运算法则 一、知识自测: 基本初等函数的导数公式及导数的运算法则 1、几个常用函数的导数: (1)f(x)=C,则f’(x)= (4)f(x)= 1 ,则f’(x)= x 2、基本初等函数的导数公式:(2)f(x)=x,则f’(x)= (5)f(x)= ,则f’(x)= (3)f(x)= x2,则f’(x)= 1、几个常用函数的导数: (1)f(x)=C,则f’(x)= (4)f(x)= 1 ,则f’(x)= x 2、基本初等函数的导数公式: (2)f(x)=x,则f’(x)= (5)f(x)= ,则f’(x)= (3)f(x)= x2,则f’(x)= (1)f(x)=C (C 为常数),则f’(x)=(3)f(x)=sinx,则f’(x)= (5)f(x)= a x,则f’(x)= (7)f(x)= log a x ,则f’(x)= 3、导数的运算法则:(2)f(x)= x a(a Q) ,则f’(x)= (4)f(x)=cosx,则f’(x)= (6)f(x)= e x ,则f’(x)= (8)f(x)= ln x ,则f’(x)= (1)f(x)=C (C 为常数),则f’(x)= (3)f(x)=sinx,则f’(x)= (5)f(x)= a x,则f’(x)= (7)f(x)= log a x ,则f’(x)= 3、导数的运算法则: (2)f(x)= x a (a Q) ,则f’(x)= (4)f(x)=cosx,则f’(x)= (6)f(x)= e x,则f’(x)= (8)f(x)= ln x ,则f’(x)= 已知f ( x), g( x) 的导数存在,则:(1)[f(x)g(x)]已知f ( x), g( x) 的导数存在,则:(1)[f(x)g(x)] (2)[ f ( x) g( x)](3)[ f ( x) ] g( x) (2)[ f ( x) g( x)](3)[ f ( x) ] g( x) 二、典型例题: (一)利用求导公式和运算法则求导数二、典型例题: (一)利用求导公式和运算法则求导数 1、y 5 4 x3 2、y 3 x2x sin x 3、y e x ln x 4、y ln x x 1 2x1、y 5 4 x32、y 3 x2x sin x3、y e x ln x 4、y ln x x 1 2 x 5、y ( x 1)( x 2)( x 3) 6、y ( 1)( 1 1)7、y ( 2)2sin x cos x 2 2 5、y ( x 1)( x 2)( x 3) 6、y ( 1)( 1 1)7、y ( 2)2sin x cos x 2 2 x x x x

苏教版数学高二- 选修2-2导学案 《常见函数的导数》

1.2.1 常见函数的导数 导学案 一、学习目标 掌握初等函数的求导公式; 二、学习重难点 用定义推导常见函数的导数公式. 三、学习过程 【复习准备】 1.导数的相关知识 ①导数的定义;②导数的几何意义;③导函数的定义;④求函数的导数的流程图. (1)求函数的改变量 (2)求平均变化率 (3)取极限,得导数/ y =()f x '= 2.如何求切线的斜率? (0)PQ x k P ?→当时,无限趋近于点处切线的斜率 3.导数:函数在某点处的瞬时变化率 设函数y =f(x)在区间(a ,b)上有定义,x0∈(a ,b),若△x 无限趋近于零时,比值 00()()f x x f x y x x +?-?=??.无限趋近于一个常数A ,则称f(x)在x =x 0处可导,并称

该常数A 为函数f(x)在x =x0处的导数,记作f/(x 0). 4.由定义求导数(三步法) ①求函数的增量:=?y ②算比值(平均变化率): =??x y ③取极限,得导数:0 x x y ='= 【情境引入】 本节课我们将学习常见函数的导数.首先我们来求下面几个函数的导数. (1)y=x; (2)y=x 2 ; (3)y=x 3 . 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? 【数学建构】 1.几种常见函数的导数: 问题引入1: (1)(23)x '-+= (4)x '= (2)(2)x '-= (5)(5)x '+= (3)3'= (6)(4)'-= 通过以上运算我们能得到什么结论? 公式一:

问题引入2: (1)x '= 2(2)()x '= 2(3)(3)x '= 1(4)()x '= 通过以上运算我们能得到什么结论? 公式二: 【知识应用】 例1 求下列函数的导数: (1)()'3x ;(2)'21x ?? ??? ;(3 )' . 解: 拓展 例2 求下列函数的导数: 4(1)y x =; 3(2)y x -=; 1(3)y x =; (4)y = =0(5)sin 45y ; =(6)cos u v . 解:

高中数学-导数的概念及运算练习

高中数学-导数的概念及运算练习 1.y =ln 1 x 的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=lnx D .y ′=-ln(-x) 答案 A 解析 y =ln 1x =-lnx ,∴y ′=-1 x . 2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0 答案 D 解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+1 1=6. 所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1 x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2 (x -1)2,故曲线在(3,2)处的切线的斜率k = y ′|x =3=-2(3-1)2=-1 2 ,故选D. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2 +2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2 -3t +2. 令v =0,得t 2 -3t +2=0,t 1=1或t 2=2. 5.(·郑州质量检测)已知曲线y =x 2 2-3lnx 的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D.12 答案 A

(完整word版)导数计算(2)

(理)1.2 导数的计算 1.2.1 基本初等函数的导数公式及导数的运算法则 (文)3.2 导数的计算 3.2.1 基本初等函数的导数公式及导数的运算法则 [素养目标] 1.能利用导数的四则运算法则和复合函数的求导法则求解导函数,培养数学运算的核心素养。 2.导数的应用让学生进一步理解导数的几何意义及其应用,达成逻辑推理的核心素养。 【课前·预习案】 [问题导学] 知识点1. 导数的运算法则 【思考1】一个函数可以求其导数,那么两个函数加、减、乘、除能求导吗? 【提示】能. 〖梳理〗导数的运算法则 设两个函数f (x ),g (x )可导,则 (1)和(差)的导数 符号表示:[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)积的导数 符号表示:[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). 特别地,当g (x )=c (c 为常数)时,[cf (x )]′=cf ′(x ). (3)商的导数 符号表示:????f (x )g (x )′=f′(x )g (x )-f (x )g′(x ) g 2(x ) (g (x )≠0). (理)知识点2. 复合函数的导数 【思考2】如何求y =cos ????3x -π 4的导数. 【提示】令u =g (x )=3x -π 4 ,y =f (u )=cos u , ∴y =f (u )=f (g (x ))=cos ? ???3x -π4. 〖梳理〗复合函数的导数 复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为y x ′=y u ′· u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [达标自评] 1.判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”: (1)和的导数就是导数的和,差的导数就是导数的差.( ) (2)积的导数就是导数的积,商的导数就是导数的商. ( ) (3)(x 2cos x )′=-2x sin x .( ) 解析:(1)正确.和、差的导数就是导数的和、差;(2)错.根据导数的运算法则知积的导数不是导数的积,商的导数也不是导数的商;(3)错. (x 2cos x )′= (x 2)′·cos x +x 2·(cos x )′=2x cos x -x 2sin x . 答案:(1)√ (2)× (3)× 2.已知函数f(x)=cos x +ln x ,则f ′(1)的值为( ) A .1-sin 1 B .1+sin 1 C .sin 1-1 D .-sin 1

数学:1.2.2基本初等函数的导数公式及导数的运算法则教案

§1.2.2基本初等函数的导数公式及导数的运算法则 教学目标: 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 教学重点:基本初等函数的导数公式、导数的四则运算法则 教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景 四种常见函数y c =、y x =、2y x =、1y x = 的导数公式及应用 二.新课讲授 (一)基本初等函数的导数公式表 )

(2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单 位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的 01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t = 所以'10(10) 1.05ln1.050.08p =≈(元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =x x --+1111; (3)y =x · sin x · ln x ; (4)y = x x 4; (5) y =x x ln 1ln 1+-.

(6)y =(2 x 2-5 x +1)e x (7) y =x x x x x x sin cos cos sin +- 【点评】 ① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为 5284()(80100)100c x x x =<<- 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数. '' ' '252845284(100)5284(100)()()100(100)x x c x x x ?--?-==-- 20(100)5284(1)(100)x x ?--?-=-25284(100) x =- (1) 因为' 25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨. (2) 因为'25284(98)1321(10090) c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨. 函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.

高二数学寒假作业 专题12 导数的概念与运算(练)(含解析)

专题12 导数的概念与运算 【练一练】 一.选择题 1.设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=() A. 1 B. 0.5 C. 0.5 - D. -1 2. 某物体的运动路程S(单位:m)与时间t(单位:s)的关系可用函数S(t)=t3﹣2表示,则此物体在t=1s时的瞬时速度(单位:m/s)为() A.1 B.3 C. -1 D.0 3. 设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为 ] 2 , 4 [ π π ,则点P横坐标 的取值范围为() A. (﹣∞,5.0] B. [﹣1,0] C. [0,1] D. [5.0,+∞] 4. 函数y=xsin2x的导数是() A. y′=sin2x﹣xcos2x B. y′=sin2x﹣2xcos2x C. y′=sin2x+xco s2x D. y′=sin2x+2xcos2x 【答案】D 【解析】 试题分析:由y=xsin2x,则y′=(xsin2x)′=x′sin2x+x(sin2x)′=sin2x+xcos2x?(2x)′=sin2x+2xcos2x. 5. 已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有 2 ) ( ) ( 1 2 1 2> - - x x x f x f 恒成立, 则a的取值范围是() A. (0,1] B. (1,+∞) C. (0,1) D. [1,+∞)

二、填空题 6. 已知函数f(x)=xex, 则f ′(2)=________. 【答案】3e2 【解析】f ′(x)=ex +xex ,f ′(2)=e2+2e2=3e2. 7. 已知P 点在曲线F :y =3x -x 上,且曲线F 在点P 处的切线与直线x +2y =0垂直,则点P 的坐标为_____. 【答案】(-1,0)或(1,0) 【解析】 y ′=32x -1=2 x =±1,∴P(±1,0). 三.解答题 8. 已知函数b x ax x f += 2)(,且f(x)的图象在x =1处与直线y =2相切. (1) 求函数f(x)的解析式; (2) 若P(x0,y 0)为f(x)图象上的任意一点,直线l 与f(x)的图象切于P 点,求直线l 的斜率的取值范围. 令t =110+x ,t ∈(0,1],则k =4(22t -t)=82)21(-t -12 ,∴k ∈]4,21[-.

高中数学《导数的计算》学案1 新人教A版选修

高中数学《导数的计算》学案1 新人教A版选 修 3、2 导数的计算 【成功细节】 张玥谈导数的计算的方法(xx年,北京文9) 已知是的导函数,则的值是____、本节内容公式和法则比较多,以公式的推导、记忆以及应用为主,重点是基本初等函数导数公式以及导数的四则运算法则的灵活运用,公式的形式多样,容易引起混淆,并且公式中往往会有一些条件容易忽略,导致遗漏错误、所以在学习时,我认为应注意以下几个方面:(1)要牢记常数函数和幂函数的求导公式,能用定义法求这些函数的导数的方法,注意四种常见函数实际上就是四种特殊的幂函数;(2)要熟记基本初等函数的导数公式,特别是对数函数和指数函数的导函数的形式,;(3)熟练掌握导数的四则运算法则,注意公式的形式以及前提条件,两个函数的和与差的导数与两个函数积的导数的形式是不同的;(4)和(或差)、积的函数的导数运算法则可以推广到两个以上函数的和(差)、积的求导;(5)在求函数的导数时,一定要先化简函数的表达式,尽量不使用积的函数的导数的法则;(6)若两个函数不可导,则它们的和、差、积、商不一定不可导。如,这个题主要考查基本初等

函数的导数公式以及函数和的导数的计算法则,是一个简单的小题,但计算时要细心,可先求出导函数,然后再求导数值,显然有公式可得,,所以、 【高效预习】 (核心栏目)“要养成学生阅读书籍的习惯就非教他们预习不可”。叶圣陶 【关注、思考】 1、阅读课本第8182页,总结四个常用函数的导数公式,认真阅读导数公式的推导过程,这四个常用函数有什么共同的特征,其导数有什么意义?细节提示:利用导数的定义求解四种函数的导数,对照函数图象,把握住导数的物理意义和几何意义;四种常用函数实际上都是幂函数,探讨规律时,应把导函数的系数与幂指数与原函数进行对比、 【领会、感悟】 1、这四种函数实质上都是特殊的幂函数,它们的导函数的系数为幂函数的指数,指数为幂函数的指数减去1所的数值;函数的导数的几何意义是函数图象在该点处的切线的斜率 【领会感悟】 2、基本初等函数的导数公式是我们求解函数导数的基础,要记准确,记牢,才可能在运算过程中不出现错误。例1是导数的简单应用、 【精读细化】

相关文档
最新文档