实验七干燥曲线及干燥速率曲线测定实验.docx

实验七干燥曲线及干燥速率曲线测定实验.docx
实验七干燥曲线及干燥速率曲线测定实验.docx

实验七干燥曲线及干燥速率曲线测定实验

一、实验目的

⒈了解干燥设备的基本构造与工作原理,掌握干燥曲线和干燥速率曲线的测定方法。

⒉ 学习物料含水量的测定方法。

⒊加深对物料临界含水量Xc 的概念及其影响因素的理解。

⒋ 学习恒速干燥阶段物料与空气之间对流传热系数的测定方法。

二、实验内容

⒈ 在空气流量和温度不变的条件下,测量物料干燥曲线、干燥速率曲线和临界含水量。

⒉ 测定恒速干燥阶段物料与空气之间对流传热系数。

三、实验原理

对于一定的湿物料 , 在一定的干燥条件下(温度、湿度、风速、接触方式)与干燥介质

相接触时,物料表面的水分开始气化,并向周围介质传递。干燥过程可分为两个阶段。

第一个阶段为恒速干燥阶段。在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段亦称为表面气化控制阶段。在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸汽分压也维持恒定,故干

燥速率恒定不变。

第二个阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速干燥阶段。

此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速

率,干燥速率为水分在物料内部的传递速率所控制。故此阶段亦称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率也逐渐减少,故干燥速率不断下降。

影响恒速阶段干燥速率和临界含水量的主要因素有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。

恒速阶段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒定干燥条件下对毛粘物料进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干

燥速率和临界含水量的测定方法及其影响因素。

四、实验装置

干燥器类型:洞道;

洞道截面积: 1 #A=0.13 ×0.17 = 0.0221m2、2#A=0.15 ×0.20 = 0.030m2

加热功率: 500w —1500w;空气流量: 1-5m 3/min ;干燥温度:40-120℃。

孔板流量计:孔板孔径d0=0.040( m) ,孔流系数C0=0.65 。

重量传感器显示仪:量程(0-200g),精度 0.1 级;

干球温度计、湿球温度计显示仪:量程( 0-150 ℃),精度 0.5 级;孔板

流量计处温度计显示仪:量程( -50-150 ℃),精度 0.5 级;

孔板流量计压差变送器和显示仪:量程(0-10KPa),精度0.5级;

图 7-1 洞道干燥实验流程示意图

1.中压风机;

2. 孔板流量计;

3. 空气进口温度计;

4. 重量传感器;

5. 被干燥物料;

6. 加热器;

7. 干球温度计;

8. 湿球温度计;

9. 洞道干燥器; 10. 废气排出阀; 11. 废气循环阀;12.新鲜空气进气阀; 13. 干球温度显示控制仪表; 14. 湿球温度显示仪表; 15. 进口温度显

示仪表; 16. 流量压差显示仪表; 17. 重量显示仪表; 18. 压力变送器。

五、物料

物料:毛毡,干燥面积:S=0.141*0.082*2=0.023124(m2)(以实验室现场提供为准)。

绝干物料量 (g) :1 # G C=22.8 ,2 # G C=25.36 (以实验室现场提供为准)。

六、操作方法及步骤

(一)实验前的准备

⒈ 将干燥物料(毛粘)放入水中充分浸湿(提前一天进行),向湿球温度计的蓄水池内补充适量的水,使池内水面上升至适当位置(保证湿球温度计湿润且无向外溢水)。

⒉调节送风机吸入口的蝶阀12 到全开的位置后,按下电源的绿色按钮,再按风机按钮,启动风机。

⒊用废气排出阀10 和废气循环阀11 调节到指定的流量后,开启加热电源。在智能仪

表中设定干球温度,仪表自动调节到指定的温度。

干球温度设定方法:

第一套:长按SET键至设定状态,<——定位、△ ——增大,设定好数值后,

、A/M键确定。

按SET

第二套:,<——定位、△/▽——增大/减小,设定好后,自动确认。

⒋干燥器的流量和干球温度恒定达 5 分钟之后,既可开始实验。此时,读取数字显示

仪的读数作为试样支撑架的重量。

(二)实验操作

1.将被干燥物料(毛粘)从水中取出,控去浮挂在其表面上的水分(最好挤去所含的

水分,以免干燥时间过长),将支架从干燥器内取出,将被干燥物料夹好。

2.将支架连同试样放入洞道内,并安插在其支撑杆上并与气流平行放置。

注意:传感器支架要轻拿轻放,不能用力过大,避免传感器受损。

3.立即按下秒表开始计时,并记录显示仪表的显示值。然后每隔 3 分钟记录一次数据总重量和时间,直至干燥物料的重量不再明显减轻(重量变化小于0.1 克)为止。

4.关闭加热电源,待干球温度降至常温后关闭风机电源和总电源。

5.实验完毕,一切复原。

七、注意事项

⒈重量传感器的量程为( 0--200克),精度较高。在放置干燥物料时务必要轻拿轻放,

以免损坏仪表。

⒉ 干燥器内必须有空气流过才能开启加热,防止干烧损坏加热器,出现事故。

⒊ 干燥物料要充分浸湿,但不能有水滴自由滴下,否则将影响实验数据的正确性。

⒋ 实验中不要改变智能仪表的设置。

八、数据处理及计算实例

干燥实验数据整理表

设备编号: 1 #

空气孔板流量计读数R(KPa)0.5干球温度 t( ℃)60

流量计处空气温度t o ( ℃)48.8湿球温度 t w( ℃)40

流量计孔流系数 C00.65洞道截面积 A(m2 )0.0221

00.04物料干燥面积20.023124

孔板孔径 d ( m)S(m )

框架重量 G(g)72.2绝干物料重量C22.8 D

干燥速率累计时间总重量干基含水量 X平均含水量X AV U × 104序号T(分)T(g)(kg/kg )(kg/kg )2

G[kg/ (s·m)] 10128.6 1.4737 1.4452 3.123 23127.3 1.4167 1.3904 2.883 36126.1 1.3640 1.3399 2.643 49125.0 1.3158 1.2939 2.403 512124.0 1.2719 1.2500 2.403 615123.0 1.2281 1.2083 2.162 718122.1 1.1886 1.1689 2.162 821121.2 1.1491 1.1294 2.162 924120.3 1.1096 1.0899 2.162 1027119.4 1.0702 1.0504 2.162 1130118.5 1.0307 1.0110 2.162 1233117.60.99120.9715 2.162 1336116.70.95180.9320 2.162 1439115.80.91230.8925 2.162 1542114.90.87280.8531 2.162 1645114.00.83330.8136 2.162 1748113.10.79390.7741 2.162 1851112.20.75440.7346 2.162 1954111.30.71490.6952 2.162 2057110.40.67540.6557 2.162 2160109.50.63600.6162 2.162 2263108.60.59650.5789 1.922 2366107.80.56140.5439 1.922 2469107.00.52630.5110 1.682 2572106.30.49560.4803 1.682 2675105.60.46490.4474 1.922 2778104.80.42980.4123 1.922 2881104.00.39470.3794 1.682 2984103.30.36400.3487 1.682 3087102.60.33330.3202 1.442 3190102.00.30700.2961 1.201

3293101.50.28510.27630.961 3396101.10.26750.2566 1.201 3499100.60.24560.2346 1.201 35102100.10.22370.21490.961 3610599.70.20610.1952 1.201 3710899.20.18420.1732 1.201 3811198.70.16230.15350.961 3911498.30.14470.13600.961 4011797.90.12720.11840.961 4112097.50.10960.10310.721 4212397.20.09650.08990.721 4312696.90.08330.07890.481 4412996.70.07460.07020.481 4513296.50.06580.06140.481 4613596.30.05700.05260.481 4713896.10.04820.04390.481 4814195.90.03950.03730.240 4914495.80.0351

50147

t o( ℃) 空气密度ρ (Kg/m 3)=1.11t w℃下水的气化热 (kJ/ kg)γtw =2600对流传热系数α (w/m 2℃)=40.60

干燥器内空气实际体积流量

t3

干燥器内空气流速u(m/s)=1.1477 V (m / s)=0.0254

计算实例:

以第一组数据为例

1、计算干基含水量X ( kg 水 /kg 绝干物料)

X=总重

-

框架重

-

绝干物料重

=

G

T

- G

D

- G

C= 128.6 - 72.2 - 22.8 =1.4737 绝干物料重G C22.8

2、计算平均含水量X AV( kg 水 /kg 绝干物料)

X

AV

X1+X2 1. 4737 + 1 . 4167

==

2

= 1 .4452 2

3、计算干燥速率U [kg/ (s· m 2)]

U = -绝干物料重 G C DX

= -

22.8′0.001 1. 4167 - 1.4737

= 0.0003123干燥面积 S

0. 023124

DT 3 ′60

4、绘制干燥曲线(X —T 曲线)和干燥速率曲线(U—X AV曲线)

干燥曲线 X--T

) g K / g K (X 1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9X--T 0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

010 20 30 40 50 60 70 80 90 100 110 120 130140 150

T(分钟)

干燥速率曲线 U—Xav

3.5

3.0

)

2.5

2m

.

s

2.0

/

g

K

U—Xav 4

(

1.5

-0

1

*

1.0

U

0.5

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

X av (Kg/Kg)

5、计算恒速干燥阶段物料与空气之间对流传热系数α[W/m2℃]

a =Uc ′r tw′10000. 0002162 ′2600 ′1000

=

60 -

= 28.11 t - t w40

其中: Uc—恒速干燥阶段的干燥速率,kg/ ( m 2?s) =0.0002162γtw—湿球温度t w下水的气化热,t w=40( ℃) 。

查表( P351), t c-t=374-40=334 ℃ ,γtw=2600 kJ/ kg 。

6、计算干燥器内空气实际体积流量V t(m 3/ s) 。

V t = V t0′ 273 + t= 0 .0245 ′273 + 60

= 0 .0254

273 + t 0273 + 48 .8其中:

V t0—t0℃时空气的流量,m3/ s;

V t0= C0′A0′2′DP

= 0. 65 ′0. 001256 ′

2′500

= 0 .0245 r 1 .11

C0—流量计流量系数, C0=0.65;

A 0—流量计孔面积, m2。

A0= p

d 02 =

3 .14

* 0 . 04 2= 0. 001256 44

d0—孔板孔径, d0=0.04 m 。

P—流量计压差,P =500 Pa。

ρ— t0=48.8( ℃) 时空气密度,查表得空气密度ρ =1.11(Kg/m3) 。

t0—流量计处空气温度, t0=48.8 ℃;

t—干燥器内空气温度,t =60℃;

7、计算干燥器内空气流速U( m/s)。

U=V

t =

0. 0254

= 1 . 1477A 0 .0221

其中: A —洞道截面积 A =0.0221(m 2 )

九、思考题

1.影响干燥速率的因素有哪些?

2.实验过程中,干球湿度、湿球湿度是否变化?为什么?

3.为什么在操作中要先开风机送风,而后再通电加热?

4.如果 t, t w不变,增加风速,干燥速率如何变化?

实验测绘小灯泡的伏安特性曲线

实验:测绘小灯泡的伏安特性曲线 [学习目标] 1.理解电流表的内接法和外接法,并会进行正确选择.2.理解滑动变阻器的两种接法,能进行正确地应用.3.学会描绘小灯泡的伏安特性曲线并掌握分析图线的方法. 一、电流表的内接法和外接法的比较 1.两种接法的比较 2. (1)直接比较法:当R x R A时,采用内接法,当R x R V时,采用外接法,即大电阻用内接法,小电阻用外接法,可记忆为“大内小外”. (2)公式计算法 当R x>R A R V时,用电流表内接法, 当R x<R A R V时,用电流表外接法, 当R x=R A R V时,两种接法效果相同. (3)试触法: 图1 如图1,把电压表的可动接线端分别试接b、c两点,观察两电表的示数变化,若电流表的示数变化明显,说明电压表的分流作用对电路影响大,应选用内接法,若电压表的示数有明显变化,说明电流表的分压作用对电路影响大,所以应选外接法. 二、滑动变阻器两种接法的比较

1.实验原理 用电流表测出流过小灯泡的电流,用电压表测出小灯泡两端的电压,测出多组(U,I)值,在I -U坐标系中描出各对应点,用一条平滑的曲线将这些点连起来,即得小灯泡的伏安特性曲线,电路图如图2所示. 图2 2.实验器材 学生电源(4~6 V直流)或电池组、小灯泡(“4 V0.7 A”或“3.8 V0.3 A”)、滑动变阻器、电压表、电流表、开关、导线若干、铅笔、坐标纸. 3.实验步骤 (1)根据小灯泡上所标的额定值,确定电流表、电压表的量程,按图3所示的电路图连接好实物图.(注意开关应断开,滑动变阻器与小灯泡并联部分电阻为零) (2)闭合开关S,调节滑动变阻器,使电流表、电压表有较小的明显示数,记录一组电压U和电流I. (3)用同样的方法测量并记录几组U和I,填入下表. (4) 4.数据处理 (1)在坐标纸上以U为横轴、I为纵轴建立直角坐标系. (2)在坐标纸中描出各组数据所对应的点. (3)将描出的点用平滑的曲线连接起来,就得到小灯泡的伏安特性曲线. 5.实验结果与数据分析 (1)结果:描绘出的小灯泡灯丝的伏安特性曲线不是直线,而是向横轴弯曲的曲线. (2)分析:灯泡灯丝的电阻随温度变化而变化.曲线向横轴弯曲,即斜率变小,电阻变大,说明小灯泡灯丝的电阻随温度升高而增大.

化工原理干燥实验报告.doc

化工原理干燥实验报告 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数kH及降速阶段的比例系数KX。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得

到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流化速度(umf)。 在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2、干燥特性曲线 将湿物料置于一定的干燥条件下,测定被那干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见下图)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速

实验八干燥实验

实验八 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其 影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥 操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的 机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来 说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚 度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目 前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大 多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥 实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料, 且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不 变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量 变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量, 即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干 基料为基准的含水量X 表示更为方便。ω与X 的关系为: X =-ωω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。 干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干 基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而 变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较 小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

干燥速率曲线测定实验讲义

干燥速率曲线测定实验讲义 一、实验目的 1.掌握干燥曲线和干燥速率曲线的测定方法。 2.学习物料含水量的测定方法。 3.加深对物料临界含水量Xc的概念及其影响因素的理解。 4.学习恒速干燥阶段物料与空气之间对流传热系数的测定方法。 二、实验内容 1.每组在某固定的空气流量和某固定的空气温度下测量一种物料干燥曲线、干燥速率曲线和临界含水量。 2.测定恒速干燥阶段物料与空气之间对流传热系数。 三、实验原理 当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。根据干燥过程中不同期间的特点,干燥过程可分为两个阶段。 第一个阶段为恒速干燥阶段。在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段亦称为表面气化控制阶段。在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸汽分压也维持恒定,故干燥速率恒定不变。 第二个阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速干燥阶段。此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制。故此阶段亦称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率也逐渐减少,故干燥速率不断下降。 恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。 恒速段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒

北京化工大学-干燥实验报告

e北京化工大学 实验报告 课程名称:化工原理实验实验日期:2012.5.9 班级:化工0903班姓名:徐晗 同组人:高秋,高雯璐,梁海涛装置型号:FFRS-Ⅱ型 流化干燥实验 一、摘要 本实验通过空气加热装置测定了空气的干、湿球温度,通过孔板流量计测定了空气的流量,并采用湿小麦为研究对象,对其进行干燥,分别记录了物料温度、床层压降、孔板压降等参数,测定了小麦的干燥曲线、干燥速率曲线,以及流化床干燥器中小麦的流化曲线。实验中通过Excel作图并进行了实验结果分析。 关键词:流化床干燥含水量床层压降速率曲线 二、实验目的 1. 了解流化床干燥器的基本流程及操作方法。 2.掌握流化床流化曲线的测定方法、测定流化床床层压降与气速的关系曲线。 3.测定物料含水量及床层温度随时间变化的关系曲线。 4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数k H及降速阶段的比例系数K x。 三、实验原理 1.流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。如图1所示。 图1 流化曲线 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加

(进入BC阶段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处得流速被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而使沿CA’变化。C点处的流速被称为起始流化速度(u mf)。 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2.干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(如图2所示)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线(如图3所示)。干燥过程可分为以下三个阶段。 图2 物料含水量、物料温度与时间的关系 图3 干燥速率曲线 (1)物料预热阶段(AB段) 在开始干燥前,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时

干燥速率曲线的测定实验

干燥速率曲线的测定实验 一、实验内容 (1)在一定干燥条件下测定硅胶颗粒的干燥速率曲线; (2)测定气体通过干燥器的压降。 二、实验目的 (1)了解测定物料干燥速率曲线的工程意义 (2)学习和掌握测定干燥速率曲线的基本原理和实验方法。 (3)了解影响干燥速率的有关工程因素,熟悉流化床干燥器的结构特点及操作方法。 三、实验基本原理 干燥时指采用某种方式将热量传给湿物料,使其中的湿分(水或者有机溶剂)汽化分离的单元操作,在化工,轻工及农、林、渔业产品的加工等领域有广泛的应用。 干燥过程不仅涉及到气、固两相间的传热和传质,而且涉及到湿分以气态或液态的形式自物料向内部表面传质的机理。由于物料的含水性质和物料的形状及内部结构不同,干燥过程速率受到物料性质,含水量,含水性质,热介质性质和设备类型等各种因素的影响。目前,尚无成熟的理论方法来计算干燥速率,工业上仍需依赖于实验解决干燥问题。 物料的含水量,一般多用相对于湿物料总量的水分含量,即以湿物料为基准的含水率,用ω(kg水分/kg湿物料)来表示,但干燥时物料总量不断发生变化,所以,采用以干物料为基准的含水率X(kg水分/kg干物料)来表示较为方便。ω和X之间有如下关系: X= ω ω= X 1+X 在干燥过程的设计和操作时,干燥速率是一个非常重要的参数。例如对于干燥设备的设计或选型,通常规定干燥时间和干燥工艺要求,需要确定干燥器的类型和干燥面积,或者,在干燥操作时,设备的类型及干燥器的面积已定,规定工艺要求,确定所需干燥时间。这都是需要知道物料的干燥特性,即干燥速率曲线。 干燥速率一般用单位时间内单位面积上汽化的水量表示 N A=dωAdτ 式中N A——干燥速率,kg/(m2·s); ω——干燥除去的水量,kg; A——平均面积,m2; τ——干燥时间,s。 干燥速率也可以以干物料为基准,用单位质量干物料在单位时间内所汽化的水量表示 N A‘= dωG c dτ 式中G c——干物料质量,kg。因为

伏安特性曲线实验报告

《描绘小灯泡的伏安特性曲线》的实验报告 一、实验目的 描绘小灯泡的伏安特性曲线,并对其变化规律进行分析。 二、实验原理 1。金属导体的电阻率随温度的升高而增大,导致金属导体的电阻随温度的升高而增大。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I—U图像。 2。小灯泡电阻极小,所以电流表应采用外接法连入电路;电压应从0开始变化,所以滑动变阻器采用分压式接法,并且应将滑动变阻器阻值调到最大。 三、实验器材 小灯泡一盏,电源一个,滑动变阻器一个,电压表、电流表各一台,开关一个,导线若干,直尺一把。 四、实验电路 五、实验步骤 1。按照电路图连接电路,并将滑动变阻器的滑片P移至A端,如图: 2。闭合开关S,将滑片P逐渐向B端移动,观察电流表和电压表的示数,并且注意电压表示数不能超过小灯泡额定电压,取8组,记录数据,整理分析。 3。拆除电路,整理桌面,将器材整齐地放回原位。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I—U图像。

六、实验结论 1。小灯泡的伏安特性曲线不是一条直线 2。曲线原因的分析:根据欧姆定理,R U应该是一条直线,但是那仅仅是理想IU来说,RI电阻,R是恒定不变的但是在现实的试验中,电阻R是会受到温度的影响的,此时随着电阻本身通过电流,温度就会增加,R自然上升,对于R代表图线中的斜率,当R不变时,图像是直线,当变化时,自然就是曲线。 七、误差分析 1。测量时未考虑电压表的分流,造成电流I的实际值大于理论值。 2。读数时没有读准确,在估读的时候出现误差。 3。描绘图像时没有描绘准确造成误差。

描绘小灯泡的伏安特性曲线 《测量小灯泡伏安特性曲线》实验课题任务是:电学知识告诉我们当电压一定时电流I与电阻R成反比,但小灯炮的电阻会随温度的改变而变化,小灯泡(6。3V、0。15A)在一定电流范围内其电压 与电流的关系为UKIn,K和n是与灯泡有关的系数。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《测量小灯泡伏安特性曲线》的整体方案,内容包括:(写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤),然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方 法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出测量小灯泡伏安曲线的电路和实验步骤,要具有可操作性。 ⑶验证公式UKIn; ⑷求系数K和n;(建议用最小二乘法处理数据)

化工原理实验资料

实验一 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其 影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X 表示更为方便。ω与X 的关系为: X = -ω ω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

干燥特性曲线实验报告

洞道干燥特性曲线测定实验 一、实验目的 1. 了解洞道干燥装置和流化床干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求干燥速率曲线、恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 二、基本原理 在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。由于实际生产中被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定而取得。 1. 干燥速率的定义 干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即: C G dX dW U Ad Ad ττ= =- kg/(m2s) (11-1) 式中,U -干燥速率,又称干燥通量,kg/(m2s );A -干燥表面积,m2;W -汽化的湿分量,kg ; τ -干燥时间,s ;Gc -绝干物料的质量,kg ;X -物料湿含量,kg 湿分/kg 干物料 2. 干燥速率的测定方法 (1)将电子天平开启,待用。将快速水分测定仪开启,待用。 (2)将0.5~1kg 的湿物料(如取0.5~1kg 的黄豆放入60~70℃的热水中泡30min ,取出,并用干毛巾吸干表面水分,待用。 (3)开启风机,调节风量至40~60m3/h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出10克左右的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量i G 和终了质量iC G 。则物料中瞬间含水率 iC iC i i G G G X -= 。 计算出每一时刻的瞬间含水率i X ,然后将i X 对干燥时间i τ作图,如图11-1,即为干燥曲线。

小灯泡伏安特性曲线实验报告范文

2020 小灯泡伏安特性曲线实验报告范 文 Contract Template

小灯泡伏安特性曲线实验报告范文 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 篇一:《描绘小灯泡的伏安特性曲线》的实验报告 一、实验目的 描绘小灯泡的伏安特性曲线,并对其变化规律进行分析。 二、实验原理 1。金属导体的电阻率随温度的升高而增大,导致金属导体的电阻随温度的升高而增大。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I―U图像。 2。小灯泡电阻极小,所以电流表应采用外接法连入电路;电压应从0开始变化,所以滑动变阻器采用分压式接法,并且应将滑动变阻器阻值调到最大。 三、实验器材 小灯泡一盏,电源一个,滑动变阻器一个,电压表、电流表

各一台,开关一个,导线若干,直尺一把。 四、实验电路 五、实验步骤 1。按照电路图连接电路,并将滑动变阻器的滑片P移至A 端,如图: 2。闭合开关S,将滑片P逐渐向B端移动,观察电流表和电压表的示数,并且注意电压表示数不能超过小灯泡额定电压,取8组,记录数据,整理分析。3。拆除电路,整理桌面,将器材整齐地放回原位。 以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I―U图像。 八、实验结论 1。小灯泡的伏安特性曲线不是一条直线 2。曲线原因的分析:根据欧姆定理,RU应该是一条直线,但是那仅仅是理想IU来说,RI电阻,R是恒定不变的但是在现实的试验中,电阻R是会受到温度的影响的,此时随着电阻本身通过电流,温度就会增加,R自然上升,对于R 代表图线中的斜率,当R不变时,图像是直线,当变化时,自然就是曲线。九、误差分析 1。测量时未考虑电压表的分流,造成电流I的实际值大于理论值。2。读数时没有读准确,在估读的时候出现误差。3。描绘图像时没有描绘准确造成误差。 篇二:描绘小灯泡的伏安特性曲线

化工原理实验思考题整理

1.洞道干燥实验及干燥特性曲线的测定 (1)什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行? 答:恒定干燥条件指干燥介质的温度、湿度、流速及与物料的接触方式,都在整个干燥过程中均保持恒定。 本实验中所采取的措施:干燥室其侧面及底面均外包绝缘材料、用电加热器加热空气再通入干燥室且流速保持恒定、湿物的放置要与气流保持平行。 (2)控制恒速干燥速率阶段的因素是什么?降速的又是什么? 答:①恒速干燥阶段的干燥速率的大小取决于物料表面水分的汽化速率,亦取决定于物料外部的干燥条件,所以恒定干燥阶段又称为表面汽化控制阶段。 ②降速阶段的干燥速率取决于物料本身结构、形状和尺寸,而与干燥介质的状态参数关系不大,故降速阶段又称物料内部迁移控制阶段。 (3)为什么要先启动风机,再启动加热器?实验过程中干湿球温度计是否变化?为什么?如何判断实验已经结束? 答:①让加热器通过风冷慢慢加热,避免损坏加热器,反之如果先启动加热器,通过风机的吹风会出现急冷,高温极冷,损坏加热器; ②理论上干、湿球温度是不变的,但实验过程中干球温度不变,但湿球温度缓慢上升,估计是因为干燥的速率不断降低,使得气体湿度降低,从而温度变化。 ③湿毛毡恒重时,即为实验结束。 (4)若加大热空气流量,干燥速率曲线有何变化?恒速干燥速率,临界湿含量又如何变化?为什么?

答:干燥曲线起始点上升,下降幅度增大,达到临界点时间缩短,临界点含水量降低。因为加快了热空气排湿能力。 (5)毛毡含水是什么性质的水分? 毛毡含水有自由水和平衡水,其中干燥为了除去自由水。 (6)实验过程中干、湿球温度计是否变化?为什么? 答:实验结果表明干、湿球温度计都有变化,但变化不大。 理论上用大量的湿空气干燥少量物料可认为符合定态空气条件。定态空气条件:空气状态不变(气流的温度t、相对湿度φ)等。干球温度不变,湿球温度不变。 绝热增湿过程,则干球温度变小,湿球温度不变。 (7)什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行? 答:①指干燥介质的温度、湿度、流速及与物料的接触方式,均在整个干燥过程中保持恒定;②本实验中本实验用大量空气干燥少量物料,则可以认为湿空气在干燥过程温度。湿度均不变,再加上气流速度以及气流与物料的接触方式不变。所以这个过程可视为实验在在恒定干燥条件下进行。

三极管伏安特性测量实验报告

实验报告 课程名称:__电路与模拟电子技术实验 _______指导老师:_____干于_______成绩:__________________ 实验名称:_______三极管伏安特性测量______实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1. 深入理解三极管直流偏置电路的结构和工作原理 2. 深入理解和掌握三极管输入、输出伏安特性 二、实验原理 三极管的伏安特性曲线可全面反映各电极的电压和电流之间的关系,这些特性曲线实际上就是PN结性能的外部表现。从使用的角度来看,可把三极管当做一个非线性电阻来研究它的伏安特性,而不必涉及它的内部结构。其中最常用的是输入输出特性。 1)输入特性曲线 输入特性曲线是指在输入回路中,Uce 为不同常数值时的Ib ~Ube 曲线。分两种情形来讨论。 (1) 从图(a)来看,Uce =0,即c、e间短路。此时Ib 与Ube 间的关系就是两个正向二极 管并联的伏安特性。每改变一次Ube ,就可读到一组数据(Ube ,Ib ),用所得数据在坐标纸上作图,就得到图(b)中Uce =0时的输入特性曲线。 2)输出特性曲线 输出特性曲线是指在Ib 为不同常量时输出回路中的Ic ~Uce 曲线。测试时,先固定一个Ib ,改变Uce ,测得相应的Ic 值,从而可在Ic ~Uce 直角坐标系中画出一条曲线。Ib 取不同常量值时,即可测得一系列Ic ~Uce 曲线,形成曲线族,如图所示。 专业:___ _________ 姓名:___ _________ 学号: ______ 日期:_____ ______ 地点:_____ ___

华工化工原理实验考试复习

化工原理实验复习 1.填空题 1.在精馏塔实验中,开始升温操作时的第一项工作应该是开循环冷却水。 2.在精馏实验中,判断精馏塔的操作是否稳定的方法是塔顶温度稳定 3.干燥过程可分为等速干燥和降速干燥。 4.干燥实验的主要目的之一是掌握干燥曲线和干燥速率曲线的测定方法。 5.实验结束后应清扫现场卫生,合格后方可离开。 6.在做实验报告时,对于实验数据处理有一个特别要求就是: 要有一组数据处理的计算示例。 7.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 8.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。

9.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa,如果达到0.008~0.01mPa,可能出现液泛,应该减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 10.在精馏实验中,确定进料状态参数q 需要测定进料温度,进料浓度参数。 11.某填料塔用水吸收空气中的氨气,当液体流量和进塔气体的浓度不变时,增大混合气体的流量,此时仍能进行正常操作,则尾气中氨气的浓度增大 12.在干燥实验中,提高空气的进口温度则干燥速率提高;若提高进口空气的湿度则干燥速率降低。 13.常见的精馏设备有填料塔和板式塔。 14.理论塔板数的测定可用逐板计算法和图解法。 15.理论塔板是指离开该塔板的气液两相互成平衡的塔板。 16.填料塔和板式塔分别用等板高度和全塔效率来分析、评价它们的分离性能。 2.简答题 一.精馏实验 1.其它条件都不变,只改变回流比,对塔性能会产生什么影响?答:精馏中的回流比R,在塔的设计中是影响设备费用(塔板数、再沸器、及冷凝器传热面积)和操作费用(加热蒸汽及冷却水消耗量)的一个重要因素,所以

干燥速率曲线测定实验

一、实验目的 ⒈ 掌握干燥曲线和干燥速率曲线的测定方法。 ⒉ 学习物料含水量的测定方法。 ⒊ 加深对物料临界含水量Xc 的概念及其影响因素的理解。 ⒋ 学习恒速干燥阶段物料与空气之间对流传热系数的测定方法。 ⒌ 学习用误差分析方法对实验结果进行误差估算。 二、实验内容 ⒈ 每组在某固定的空气流量和某固定的空气温度下测量一种物料干燥曲线、干燥速率曲线和临界含水量。 ⒉ 测定恒速干燥阶段物料与空气之间对流传热系数。 三、实验原理 当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。根据干燥过程中不同期间的特点,干燥过程可分为两个阶段。 第一个阶段为恒速干燥阶段。在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段亦称为表面气化控制阶段。在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸汽分压也维持恒定,故干燥速率恒定不变。 第二个阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速干燥阶段。此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制。故此阶段亦称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率也逐渐减少,故干燥速率不断下降。 恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。 恒速段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒定干燥条件下对帆布物料进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。 ⒈ 干燥速率的测定 τ τ??≈= S W Sd dW U '' (8-1) 式中:U —干燥速率,kg /(m 2·h ); S —干燥面积,m 2,(实验室现场提供); τ?—时间间隔,h ;

非线性电阻伏安特性曲线实验

线性电阻和非线性电阻的伏安特性曲线 【教学目的】 1、测绘电阻的伏安特性曲线,学会用图线表示实验结果。 2、了解晶体二极管的单向导电特性。 【教学重点】 1、测绘电阻的伏安特性曲线; 2、了解二极管的单向导电特性。 【教学难点】 非线性电阻的导电性质。 【课程讲授】 提问:1.如何测绘伏安特性曲线? 2.二极管导电有何特点? 一、实验原理 常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。下面对它的结构和电学性能作一简单介绍。 图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。半导体的导电性能介于导体和绝缘体之间。如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。 晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。p-n结具有单向导电的特性,常用图2(b)所示的符号表示。 关于p-n结的形成和导电性能可作如下解释。

图3 p-n结的形成和单向导电特性 如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。随着扩散的进行,p区空穴减少,出现 了一层带负电的粒子区(以?表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表示)。 结果在p型与n型半导体交界面的两侧附近,形成了带正、负电的薄层,称为p-n结。这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子(电子、空穴)扩散运动的方向相反,使载流子的扩散受到内电场的阻力作用,所以这个带电薄层又称为阻挡层。当扩散作用与内电场作用相等时,p区的空穴和n区的电子不再减少,阻挡层也不再增加,达到动态平衡,这时二极管中没有电流。 如图3(b)所示,当p-n结加上正向电压(p区接正,n区接负)时,外电场与内电场方向相反,因而削弱了内电场,使阻挡层变薄。这样,载流子就能顺利地通过p-n结,形成比较大的电流。所以,p-n结在正向导电时电阻很小。 如图3(c)所示,当p-n结加上反向电压(p区接负,n区接正)时,外加电场与内场方向相同,因而加强了内电场的作用,使阻挡层变厚。这样,只有极少数载流子能够通过p-n 结,形成很小的反向电流。所以p-n结的反向电阻很大。 晶体二极管的正、反向特性曲线如图12-4所示。从图上看出,电流和电压不是线性关系,各点的电阻都不相同。凡具有这种性质的电阻,就称为非线性电阻。 图4晶体二极管的伏安特性图5测电阻伏安特性的电路 二、实验仪器 直流稳压电源,万用表(2台),电阻,白炽灯泡,灯座,短接桥和连接导线,实验用 九孔插件方板。

化工原理流化床干燥实验报告

北京化工大学 实验报告 流化床干燥实验 一、摘要 本实验通过对湿的小麦的干燥过程,要求掌握干燥的基本流程及流化床流化曲线的定,流化床床层压降与气速的关系曲线,物料含水量及床层温度随时间的变化 关系,并确定临界含水量X0及恒速阶段的传值系数kH及降速阶段的比例系数KX。 二、关键词:流化床干燥、物料干燥速率、物料含水量、流化床床层压降、临界含水量 三、实验目的及任务 1、熟悉流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度随时间变化的关系曲线。。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及 恒速阶段的传值系数k H及降速阶段的比例系数K X 四、实验原理 1.流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。(如图一) 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气

速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段,D点处的流速即被称为带出速度。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点当气速继续降低,曲线无法按CBA继续变化,而是沿CA'变化。C点处的流速被称为起始流化速度(umf)在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线,干燥过程可分为以下三阶段。

干燥速率曲线测定结果报告

背景; 干燥设备又称干燥器和干燥机。用于进行干燥操作的设备,通过加热使物料中的湿分(一般指水分或其他可挥发性液体成分)汽化逸出,以获得规定湿含量的固体物料。干燥的目的是为了物料使用或进一步加工的需要。如木材在制作木模、木器前的干燥可以防止制品变形,陶瓷坯料在煅烧两款干燥设备前的干燥可以防止成品龟裂。另外干燥后的物料也便于运输和贮存,如将收获的粮食干燥到一定湿含量以下,以防霉变。由于自然干燥远不能满足生产发展的需要,各种机械化干燥器越来越广泛地得到应用。 一、实验目的 ⒈ 掌握干燥曲线和干燥速率曲线的测定方法。 ⒉ 学习物料含水量的测定方法。 ⒊ 加深对物料临界含水量Xc 的概念及其影响因素的理解。 ⒋ 学习恒速干燥阶段物料与空气之间对流传热系数的测定方法。 ⒌ 学习用误差分析方法对实验结果进行误差估算。 二、实验内容 ⒈ 每组在某固定的空气流量和某固定的空气温度下测量一种物料干燥曲线、干燥速率曲线和临界含水量。 ⒉ 测定恒速干燥阶段物料与空气之间对流传热系数。 三、实验原理 当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。根据干燥过程中不同期间的特点,干燥过程可分为两个阶段。 第一个阶段为恒速干燥阶段。在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段亦称为表面气化控制阶段。在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸汽分压也维持恒定,故干燥速率恒定不变。 第二个阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速干燥阶段。此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制。故此阶段亦称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率也逐渐减少,故干燥速率不断下降。 恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。 恒速段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒定干燥条件下对帆布物料进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。 ⒈ 干燥速率的测定 τ τ??≈=S W Sd dW U ' ' (7-1) 式中:U —干燥速率,kg /(m 2 ·h ); s 燥面积,m 2 ,(实验室现场提供); τ?—时间间隔,h ; 'W ?—τ?时间间隔内干燥气化的水分量,kg 。 S ─干燥面积, [m 2] G C ─绝干物料量, [g] R ─空气流量计的读数, [kPa]

干燥实验.

实验七 干燥实验 (一)沸腾干燥实验 沸腾干燥又称流化干燥,是固体流态化技术在干燥上的应用。沸腾床干燥器具有传热系数大,热效率高的特点,被广泛应用于化工、医药、食品等行业。本实验装置通过计算机在线数据采集和控制系统进行操作,是一种单层圆筒流化床干燥器,它适用于间歇操作,是小型化了的生产装置。 目前对干燥机理的研究尚不够充分,干燥速度的数据还主要依靠实验。在生产操作中,测量床层压力降可了解床层是否达到流态化,操作是否稳定等。因此,通过实验,可进一步掌握沸腾干燥的基本概念、基本理论和流化曲线、干燥曲线和干燥速率曲线等测定方法,同时还可了解操作故障的识别和排除,为今后的工业干燥器设计和生产操作打下坚实的基础。 一.实验任务(任选一个) 1. 通过对流化曲线的测定,确定干燥介质适宜的操作流速范围; 2.某工厂需要设计一个沸腾床干燥器,用于干燥绿豆。请根据实验室提供的设备(见第三部分,实验装置与流程),设计一实验方案并进行实验,为他们提供有关参数,如绿豆的含水量随干燥时间的变化曲线、绿豆表面温度随干燥时间的变化曲线、干燥速率曲线、含水量、临界含水量0X 等。 二.实验原理 1.流化曲线: 流化曲线也称床层压降与气速的关系曲线。在流化床的底部气体分布板处装有一压力传感器,测定床层底部的压力,在玻璃管上口处也装有一压力传感器,通过测定床层流化 前后压力降Δ P f 1)。 图中曲线的a 段(虚线)表明固定床阶段压力降ΔP f 与空床流速u 成正比;此后如再增加气速,压力降的增加变缓,此时床内颗粒变松,成为膨胀床,气速增到b 处附近,床

层开始流态化;此后气速再增,床层压力降基本上维持不变,如曲线的c 段所示,此即流化床阶段;过了c 段以后,气速再增,压力降反而变少,如曲线的b 段所示,此时颗粒开始为上升气流所带走,达到了气力输送阶段;若气流增大到将颗粒全部带走,此时压力降减到与气体流过空管的压力降相当。 如果到达流化阶段c 以后,把气速逐渐减少,可以测出压力降并不沿c -b -a 的路线返回,而是循着c -a’ 的路线返回。曲线的a’段亦相当于固定床阶段,但a’ 段与c 段之间有更为明显的转折,且a’ 段所显示的压力降比a 段所显示的低,此说明从流化床回复到固定床时,颗粒由上升气流中落下,所形成的床层较人工装填时疏松一些,阻力也就小一些。曲线的明显转折亦表明此过程中不存在与膨胀床要逆转的阶段。因b 的位置不够明确,故实测起始流化速度时,都以曲线c 段与a’段相交的交点为准。从流化曲线上可以获得起始流化速度mf u 与颗粒带出速率0u 这两流化床操作的重要参数。 流量的测量采用孔板流量计,其换算公式为: 21C R C V = (1) 式中: V ——流量 [ m 3/h ] R ——孔板压差,[ kPa ] 1C 、2C ——孔板流量计参数,本实验装置 1C = 26.2 2C = 0.52 故式(1)可写为: 52.02.26R V = (2) 2.干燥特性曲线 若将湿物料置于一定的干燥条件下,例如一定的温度、湿度和气速的空气流中,测定被干燥物料的重量和温度随时间的变化关系,则得图2所示的曲线,即物料含水量—时间曲线和物料温度—时间曲线。干燥过程分为三个阶段:Ⅰ物料预热阶段;Ⅱ恒速干燥阶段;Ⅲ降速阶段。图中AB 段处于预热阶段,空气中部分热量用来加热物料,故物料含水量和温 图2 干燥曲线 图3 干燥速率曲线 度均随时间变化不大(即dx/d τ较小)。在随后的第Ⅱ阶段BC ,由于物料表面存在自由水分,物料表面温度等于空气的湿球温度tw ,传入的热量只用来蒸发物料表面的水分,物料含水量随时间成比例减少,干燥速率恒定且较大(即dx/d τ较大)。到了第Ⅲ阶段,物料中含水

相关文档
最新文档