碳纤维制品的应用

碳纤维制品的应用

活性碳纤维的特性

活性碳纤维的特性 1) 吸附量大 活性碳纤维对有机气体及恶臭物质(如正丁基硫醇等)的吸附量比粒状活性炭( GAC )大几倍至十几倍。对无机气体也有较好的吸附能力。对水溶液中的无机物、染料、有机物及贵金属的吸附量比 GAC 高 5 — 6 倍。对微生物及细菌也有很好的吸附能力(如对大肠杆菌的吸附率可达 94 — 99% )。对低浓度吸附质的吸附能力特别优良。如对于吸附质的浓度在几 ppm 级时仍可保持很好的吸附量,而 GAC 等吸附材料往往在几十ppm浓度时才有良好的吸附能力。 2) 吸附速度快 对于从气相中吸附气态污染物的吸附速度非常快,对液体的吸附也可很快达到吸附平衡,其吸附速率比 GAC 高数十倍至数百倍。 3) 再生容易,脱附速度快 在多次吸附和脱附过程中,仍能保持原有的吸附性能。如用 120-150 ℃蒸汽或热空气再生处理 ACF 10-30 分钟即可达到完全脱附。 4) 耐热性好 在惰性气体中可耐高温 1000 ℃以上,在空气中的着火点高达 500 ℃以上。 5) 耐酸、耐碱,具有较好的导电性能和化学稳定性。 6) 灰份少。 7) 成型性好,易加工成毡、丝、布、纸等形态。 活性碳纤维的介绍 一般传统上所使用的活性炭可分为粉末状活性炭(AC)和颗粒状活性炭(GAC),上世纪六十年美、日、俄等国家相继研发出第三种形态的活性炭称为活性碳纤维( Activated Carbon Fibers, /ACF )。国内在七十年代末八十年初, 也研发出活性碳纤维。因为活性炭纤维其表面遍布微孔,以及可经二次加工,成为不同形态的毡及布状的材料,与传统的颗粒炭相比,具有较快的吸附、脱附的速度和更便利的操作维护等优点 活性碳纤维(以下简称ACF)的诞生在整个环保产业是一场革命。ACF是以粘胶基纤维为原料,经高温碳化、活化后制成的纤维状新型吸附材料,与社会上公认的比较好的吸附材料颗粒状活性炭相比,ACF具有以下显著的的特点:(一)、比表面积大,有效吸附量高。由于同样重量的纤维的表面积是颗粒的近

高性能碳纤维的性能及其应用

科技进展 高性能碳纤维的性能及其应用 张新元 何碧霞 李建利 张 元 (陕西省纺织科学研究所) 摘要: 探讨高性能碳纤维的性能及其应用领域。介绍了碳纤维的分类、制备、性能特征、应用以及国内 外产业发展状况,分析了国际碳纤维产业的情况和我国碳纤维产业的现状及发展趋势。碳纤维应用涉及航空航天、体育运动、一般制造业、土木建筑、能源开发等领域。随着科技的发展和碳纤维应用技术的不断完善,碳纤维产业的发展空间必将越来越广。 关键词: 碳纤维;强度;比电阻;结晶度;聚丙烯腈;碳纤维机织物 中图分类号:TS102 .52+7 2 文献标志码:A 文章编号:1001 7415(2011)04 0065 04Property and Application of H igh perfor m ance Carbon Fiber Zhang X i n yuan H e B i x ia L i J i a nli Zhang Y uan (Shaanx iT extil e Sc i ence and T echno logy Instit ute) A bstrac t H igh perfor m ance carbon fi ber prope rty and appli cati on we re d i scussed .C l assifi cation and m anu fact ure o f carbon fiber w ere i ntroduced ,carbon fi ber property ,appli cation ,deve l op m ent at hom e and abroad w ere i n troduced as w ell as .The applica ti on fie l d i nc l udes aerospace field ,spo rts field ,genera l m anufacturi ng field ,civ il constructi on fi e l d and energy dev elopment fi e l d et a.l Interna ti ona l carbon fi ber i ndustry situati on ,current situati on and deve lop m ent trend o f dom estic carbon fi be r industry w ere ana l y sed .carbon fiber i ndustry dev elopment w ou l d be m ore and mo re w i de l y as the deve lopment o f techno logy and the perfection o f carbon fibe r app licati on technology . K ey W ords Carbon F i ber ,Strength ,Specific R esistance ,Cry sta lli nity ,Po l yacrylon itr ile ,Carbon F i ber W oven F abr i c 高性能纤维具有高强度、高模量、耐高温、耐气候、耐化学试剂等特性,是近年来纤维高分子材料领域中发展迅速的一类特种纤维。高性能纤维品种较多,目前已规模化生产的有碳纤维、芳纶纤 维等,既可作为结构材料承载负荷,又可作为功能材料发挥作用,是性能优越的战略性新型材料。 目前,高性能纤维中碳纤维是大规模生产的一个品种,具有较高的比强度、比模量和较小的体积质量。碳纤维既具有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,具有优异的力学性能,近年来被广泛应用于航空、航天、汽车、化工、能源、交通、建筑、电子、体育运动器材等领域。 1 碳纤维的制备及分类 碳纤维的制备目前是采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机 作者简介:张新元(1962-),男,高级工程师,西安,710038 收稿日期:2010 12 23 纤维与塑料树脂结合在一起,放在稀有气体的环境中,在一定张力、温度、压强下,经过一定时间的 预氧化、碳化和石墨化处理等强热过程制成。碳纤维按原丝类型可分为聚丙烯腈(P AN )基碳纤维、沥青基碳纤维、粘胶基碳纤维和酚醛基碳纤维4类。P AN 基碳纤维是目前制备碳纤维的第一大原料,其产量约占世界总产量的95%左右。沥青基碳纤维约占4%,粘胶基碳纤维约占1%,酚醛基碳纤维尚处于实验室研究,未形成产业化。 碳纤维按形态可分为长丝、短纤维和短切纤维。长丝应用在工业结构件和宇航结构件中,短纤维主要应用在建筑行业,如短碳纤维石墨低频电磁屏蔽混凝土、工业用碳纤维毡等。碳纤维按力学性能分为通用型和高性能型。通用型碳纤维强度为1000M Pa 、模量为100GPa 左右。高性能型碳纤维又分为高强型(强度2000MPa 、模量250GPa )和高模型(模量300GPa 以上)。强度大于4000MPa 的又称为超高强型;模量大于450GPa 的称为超高模型。

碳纤维的特性及应用

碳纤维的特性及应用 碳纤维是高级复合材料的增强材料,具有轻质、高强、高模、耐化学腐蚀、热膨胀系数小等一系列优点,归纳如下: 一、轻质、高强度、高模量 碳纤维的密度是1.6-2.5g/cm3,碳纤维拉伸强度在2.2Gpa以上。因此,具有高的比强度和比模量,它比绝大多数金属的比强度高7倍以上,比模量为金属的5倍以上。由于这个优点,其复合材料可广泛应用于航空航天、汽车工业、运动器材等。 二、热膨胀系数小 绝大多数碳纤维本身的热膨胀系数,室内为负数(-0.5~-1.6)×10-6/K,在200~400℃时为零,在小于1000℃时为1.5×10-6/K。由它制成的复合材料膨胀系数自然比较稳定,可作为标准衡器具。 三、导热性好 通常无机和有机材料的导热性均较差,但碳纤维的导热性接近于钢铁。利用这一优点可作为太阳能集热器材料、传热均匀的导热壳体材料。 四、耐化学腐蚀性好 从碳纤维的成分可以看出,它几乎是纯碳,而碳又是最稳定的元素之一。它除对强氧化酸以外,对酸、碱和有机化学药品都很稳定,可以制成各种各样的化学防腐制品。我国已从事这方面的应用研究,随着今后碳纤维的价格不断降低,其应用范围会越来越广。 五、耐磨性好 碳纤维与金属对磨时,很少磨损,用碳纤维来取代石棉制成高级的摩檫材料,已作为飞机和汽车的刹车片材料。 六、耐高温性能好 碳纤维在400℃以下性能非常稳定,甚至在1000℃时仍无太大变化。复合材料耐高温性能主要取决于基体的耐热性,树脂基复合材料其长期耐热性只达300℃左右,陶瓷基、碳基和金属基的复合材料耐高温性能可与碳纤维本身匹配。因此碳纤维复合材料作为耐高温材料广泛用于航空航天工业。 七、突出的阻尼与优良的透声纳 利用这二种特点可作为潜艇的结构材料,如潜艇的声纳导流罩等。 八、高X射线透射率 发挥此特点已经在医疗器材中得到应用。 九、疲劳强度高 碳纤维的结构稳定,制成的复合材料,经应力疲劳数百万次的循环试验后,其强度保留率仍有60%,而钢材为40%,铝材为30%,而玻璃钢则只有20%-25%.因此设计制品所取的安全系数,碳纤维复合材料为最低。

活性炭纤维

活性炭纤维是一种新型、高效、多功能吸附材料,产品为黑色、毡状织物,具有比表面积大,孔径分布窄,在液相、气相中对有机物和阴、阳离子吸附效率高,吸、脱附速度快,可再生循环使用,同时耐酸、碱,耐高温,适应性强,且可加工成任何形状,该产品在防止环境污染、食品加工、医疗卫生、劳动保护及国防等领域,具有广泛的应用前景,如饮用水净化、工业污水处理、空气净化、脱臭、防毒、液体脱色、溶剂回收等。 二.活性炭纤维毡(布)系列主要指标: 比表面积(m2/g):700-1500 碘吸附(mg/g):700-1500 苯吸附(%):25-50 亚甲蓝脱色(mg/g):100-200 其它数据 原料:聚丙稀晴基,粘胶基,复合型 规格: 长度:0.5-30m 宽度:0.6-1.2m 厚度:1-5mm 包装:10KG/纸箱 体积:1200mm 活性炭纤维毡(ACF FELT) 活性炭纤维毡采用天然纤维或人造纤维无纺毡经炭化、活化等系列工艺制成。性能:极大的比表面积:900-220m2/g,吸附容量大。微孔直径:5-100A。,吸附速度快,是颗粒活性碳的10-100倍。脱附方便,且脱附以后活性炭纤维吸附能力基本不变。良好的导电性,耐酸、碱,成型性好。用途:溶剂回收,空气净化,水净化防毒、防化,医用,除味,除臭,耐高温及保温电极材料。 粘胶基活性炭纤维毡是以粘胶纤维毡为原料制得的活性炭纤维,用途①溶剂回收:对苯类、酮类、酯类、石油类均能吸附回收; ②空气净化:能吸附过滤空气中的恶臭、体臭、烟气、毒气、O3、SO2等。 ③水净化:能去除水中的重金属离子、致癌物质、臭味、霉味、细菌及脱色等;可用于自来水、食品工业用水及工业用纯水等处理;

全球碳纤维材料知名企业

全球碳纤维材料知名企业——全球碳纤维顶尖企业 东丽公司 东丽公司是一家综合型化工企业,以生产合成纤维为主,是世界最大的碳纤维生产公司,在塑料、复合材料、化工、水处理事业、电子材料、医药、医疗器械等领域在全世界各地展开着广泛的业务。创立日期 1926年1月总销售额 1兆5,460亿日元(2007年3月)员工人数约36,000人(日本国内约16,500人、海外20,100人)关连公司日本国内118家、海外在20个国家和地区有124家,合计238家经营内容(1)综合化学公司:合成纤维、树脂、薄膜、碳纤维、电子材料、医药医疗设备、水处理事业等(2)世界第一的纤维公司:从原料到聚合、纺丝、织布、印染、缝制的一条龙生产业务(3)积极开展的海外事业:为各国的经济发展(技术水平提高、扩大出口、增加就业机会)做贡献 1960年以来,在东南亚3国展开合成纤维一条龙事业、薄膜事业 1980 年以来,在欧美展开纤维、薄膜、碳纤维事业 1990年以来,在中国展开合成纤维的一条龙生产业务、塑料加工事业等 2000年以来,在经济增长地区设立控股管理公司,向地区本部制过渡(4)重视基础研究.基本技术(5)注重安全.防灾.环保及保护地球环境 西格里集团 西格里集团创建于 1992 年,由德国 SIGRI 集团与美国大湖碳素(Great Lakes Carbon)集团合并而成,总部位于德国威斯巴登。西格里集团(SGL Group - The Carbon Company)是全球领先的碳素石墨材料以及相关产品的制造商之一。拥有从碳石墨产品到碳纤维及复合材料在内的完整业务链。凭借对原材料透彻深入的了解、精湛的生产技术以及广泛的应用和工程技能,能够为客户提供量身定做的解决方案。通过遍布欧洲、北美和亚洲40 多个生产基地所形成的全球网络,我们与客户更加贴近。 三菱丽阳株式会社 三菱丽阳株式会社创立于1933年8月31日,是日本三菱集团旗下最著名的高分子材料制造商。所生产的聚乙烯中空纤维膜,被广泛应用在供水、排水、水处理设备及医院手术用的无菌水装置、发电厂的叶轮机液化水过滤等领域。 产品范围:MBR专用中空纤维微滤膜片、MBR专用膜组器、净水专用中空纤维微滤膜组件、水处理装置、商用/家庭用净水器、全屋净水装置。 三菱丽阳自1933年作为人造短纤维的生产公司创业以来,应用合成纤维和合成树脂领域所积累的高分子技术,不断拓展中空纤维膜、光纤、碳素纤维等新兴业务领域。现在,三菱丽阳集团已经建立了世界上独特且强有力的丙烯系列业务实体(MMA[甲基丙烯酸甲酯]系列及AN[丙烯腈]系列),发展成为以此为支柱业务的高分子化学制造企业。 Hexcel Composites

活性炭纤维研究与应用进展_程祥珍

第21卷 第2期V ol 121 N o 12 材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering 总第82期Apr.2003 文章编号:10042793X (2003)022******* 收稿日期:2002208211;修订日期:2002210223 作者简介:程祥珍(1977-),女,国防科技大学航天与材料工程学院博士生,现从事高性能S iC 纤维研究. 活性炭纤维研究与应用进展 程祥珍,肖加余,谢征芳,宋永才 (国防科技大学航天与材料工程学院CFC 重点实验室,湖南长沙 410073) 【摘 要】 活性炭纤维(ACF )是由有机纤维先驱体制得的一种理想的高效吸附材料。ACF 以其特殊的表面 化学结构和物理吸附特性广泛应用于环境保护、电子工业、化工、医疗卫生、低成本S iC 纤维制备等领域。本文就ACF 的结构与吸附特性、制备与应用等做了较系统的综述,并对其发展趋势做出了展望。 【关键词】 活性炭纤维;制备;结构;吸附特性;应用中图分类号:T Q342+174 文献标识码:A R esearch and Application Progress of Activated C arbon Fiber CHENG Xiang 2zhen ,XIAO Jia 2yu ,XIE Zheng 2fang ,SONG Yong 2cai (College of Aerosp ace &Materials E ngineering ,N ational U niversity of Defense T echnology ,Ch angsh a 410073,China) 【Abstract 】 As high effective ideal ads orbents ,activated carbon fibers (ACF )are prepared from the precurs ors of s ome organic fibers.Due to the special sur face structure and ads orption properties ,ACF are widely used in the fields such as environmental protection ,electronic industry ,medical treatment ,chemical engineering ,and low 2cost S iC fiber.The microstructures ,ads orption properties ,preparation methods ,and applications of activated carbon fibers are briefly reviewed.Meanwhile ,the next research objective is prospected. 【K ey w ords 】 activated carbon fiber ;preparation ;structure ;ads orption properties ;application 1 前 言 活性炭纤维(Activated Carbon Fiber ,ACF )作为一种理想的高效吸附材料,是在碳纤维技术和活性炭技术相结合的基础上发展起来的,是继粉状和粒状活性炭(G ranular Activated Carbon ,G AC )之后的第三代活性炭产品[1~4] ,并以 其特殊的表面化学结构和物理吸附特性广泛应用于环保、电子、医用卫生、化工等领域。 1962年,美国专利首次涉及到ACF 技术,Abbott 以粘胶 纤维为原料,进行炭化和活化等处理后成功地制成了ACF ;同年,日本进藤以特种聚丙烯腈为原料,制得PAN 基ACF ; 1972年,Arons 和Macnair 以酚醛为原料制得ACF ;1975年, 东洋纺织公司制成高性能粘胶基ACF 和再生ACF ;1983年,日本炭素公司和尤尼吉卡公司开发生产沥青基ACF ; 1977年,商品粘胶(纤维素)基ACF 问世,其后聚丙烯腈 (PAN )基、酚醛基、沥青基相继实现工业化生产;日本、美 国、俄罗斯、英国,特别日本是研究和使用ACF 的大国,年产量近千吨[4,5]。 20世纪80年代,我国上海纺织科学研究院、中国纺织 大学、中山大学和中国科学院山西煤炭化学研究所、复旦大 学、天津工业大学、天津大学、吉林工学院等单位也开展了 ACF 的研究工作。90年代以来,我国在ACF 的研究和生产 方面也取得了很大进步,ACF 的生产能力已达数百吨[4~6]。如1995年鞍山东亚碳纤维有限公司建成年产45吨的沥青基Carboflex ACF 生产线[5]。此外,秦皇岛紫川炭纤维有限公司是国内生产粘胶基ACF 及其制品的规模较大的专业化企业之一。 2 ACF 的制备 作为ACF 先驱体的有机纤维主要有粘胶基、聚丙烯腈 (PAN )基、酚醛基、沥青基、聚乙烯醇(PVA )基、苯乙烯Π烯烃共聚基和木质素纤维等,其中前四种均已实现工业化[1~6]。不同原料生产的ACF 的主要优缺点如表1所示[1,2]。 以PAN 基ACF 及其制品为例,其制备工艺如图1所示[2~4]。 预处理主要有盐浸渍和预氧化两种方式[2,4]。盐浸渍是将原料纤维充分浸渍在盐(磷酸盐、碳酸盐、硫酸盐等)溶液中,然后使其干燥。该法用在粘胶基ACF 生产中,与直

碳纤维的性能与应用论文

碳纤维的性能与应用 系别:食品化工系 专业纺织品检验与贸易 班级:级纺检 学生姓名: 指导教师: 完成日期:

碳纤维的性能与应用 第1页共19 页 河南质量工程职业学院毕业设计(论文)任务书

碳纤维的性能与应用 第2页共19 页目录 摘要 (3) Abstract (4) 绪论 (5) 1 碳纤维的定义及其分类 (6) 1.1 什么是碳纤维 (6) 1.2 分类 (6) 2 碳纤维的制造 (6) 3 碳纤维的性能 (7) 3.1 碳纤维的优良特性 (7) 3.1.1 在纤维轴向方向显示高抗拉强度和高弹性模量 (7) 3.1.2 密度小 (7) 3.1.3 纤维细 (7) 3.1.4 不生锈、耐腐蚀 (7) 3.1.5 即耐低温,又耐高温 (7) 3.1.6 耐温度骤变,热膨胀系数小 (8) 3.1.7 常温下导热性能良好,高温下导热性能低 (8) 3.1.8 突出的导电性能 (8) 3.1.9 优良的吸附性能 (8) 3.1.10 具有耐辐射,能反射中子等特性 (9) 3.2 碳纤维的缺点 (9) 3.2.1 比较脆,怕受压和剪切 (9) 3.2.2 抗氧化性差 (9) 3.2.3 破坏前无预报 (9) 4 碳纤维的应用 (10) 4.1 碳丝 (10) 4.2 碳纤维毡和碳素短纤维 (10) 4.3 碳纤维织物 (10) 4.4 活性炭碳纤维 (10) 5 碳纤维的发展前景 (10) 6结论 (11) 参考文献 (12) 致谢 (13)

碳纤维的性能与应用 摘要 碳纤维是一种新型材料,本文主要阐述了碳纤维的分类、生产制造等,碳纤维的高强度、高模量、耐高温等主要特性,及在各行业中的应用,并对其近年来的市场前景的展望,使人们对其有一定的了解。(可以说的详细些,让别人看了摘要就知道你本篇论文写了那些东西) 关键词:新型碳纤维应用 第3页共19 页

活性炭纤维及其在水处理中的应用

活性炭纤维及其在水处理中的应用活性炭纤维(ACF) 是继粉状活性炭( PAC) 和颗粒活性炭( GAC) 之后的第三代活性炭产品,是20世纪70 年代后期发展起来的一种高效活性吸附材料和环保工程材料。ACF 的前驱体是炭纤维,是由有机纤维原料经炭化、活化而成。根据生产中前驱体的不同,目前实现工业化生产的活性炭纤维产品主要分为粘胶基ACF、酚醛基ACF、聚丙烯腈基ACF、沥青基ACF等。由于前驱体的差异,不同的ACF 产品具有不同的功能。实际工作中应根据需要选取相应的ACF。 1、ACF的特点及性能 ACF有丰富的微孔结构和巨大的比表面积,它有多种形式的制成品, 与粉末状和颗粒状吸附材料相比,吸附和脱附速率更快,而且使用更灵活方便。另外, ACF在震动下不产生装填松动和过分密实的现象,克服了在操作过程中形成沟槽和沉降的问题。与AC相比, ACF的优势极其明显。首先, ACF的细孔结构不同于AC, ACF的微孔结构丰富且孔径分布集中(1-2nm), 微孔体积占总孔体积的90%左右, 没有过渡10 %左右; ACF的比表面积较大, 一般都在1000m2/g以上, 甚至可达3000m2 / g , 从而具有更大的吸附容量;ACF的微孔直接分布于纤维的表面,因而吸附质扩散的路径短、时间短,其吸附和再生的速率快,可在较温和条件下再; AC的细孔由大孔(控制扩散速率)、中孔和微孔组成,吸附质扩散要相继经过大孔、中孔和微孔,其扩散路径长、时间长,吸附和再生的速率慢, 因而ACF具有比AC大的吸附动力系数,吸附速

率较AC高2 -3个数量级, 再生容易且再生率高, 可重复使用上千次, 使用寿命达数年之久。其次, ACF的化学组成与AC有差别。不同原料或相同原料但不同方法制得的ACF, 其表面有不同的官能团,如胺基、亚胺基及磺酸基等,它们对某些吸附质具有特殊的吸附能力和氧化还原及催化特性。因为ACF具有电性能, 可利用ACF的导电性,将其作为电极,通过电杀菌作用解决细菌繁殖问题。 2、活性炭纤维在水处理中的应用 1)废水处理 ACF用于水的净化处理具有吸附容量大、吸附速度快、脱附速度快、灰分少、处理量大且使用时间长的优点。将ACF用于环保工程中, 其操作安全, 由于体积密度小和吸脱层薄, 不会造成蓄热和过热现象,也不易发生事故, 且节能和经济, 可用于大型上水、净水处理,不仅净化效率高, 而且处理量大,装置紧凑, 占地面积小, 设备投资小和效益高。ACF适用于各种有机废水的处理。可对含氯废水、制药厂废水、有机染料废水、造纸黑液、苯酚废水、四苯废水、己内酰胺废水、二甲基乙酰胺和异丁醇废水进行处理。其吸附能力比粉状活性炭的吸附能力高得多, 尤其适用于高平衡浓度时, 每克ACF的吸附量约为粉状活性炭的3倍。其吸附能力随温度升高而提高。 用剑麻基ACF 可有效去除水中的各种有机染料, 如亚甲基兰、结晶紫、铬兰黑R等,去除率高达100 %; 沥青基ACF可有效地吸附酸性染料, 如酸性蓝74、酸性橙10等, 也用于直接染料如直接蓝19、直

利用活性碳纤维治理有机废气

利用活性碳纤维治理有机废气 1 背景 有机废气就是气态污染物的一部分,来自各个行业所排放的化工废气、含氟废气、气态碳氢化合物、恶臭气体等。机废气的治理方法有三种:第一种是催化燃烧法,它利用某种催化剂来分解或使有机废气燃烧后变成无害气体,不能回收;第二种是吸收法,以特定的某种化学液体来吸收有机废气,然后再进行分离,运行成本较高,回收效果不好,局限性比较大;第三种就是吸附法,它以活性炭物理吸附为主,应用范围最广,具有运行成本低及可回收物料的特点。 吸附法的关键是吸附剂和吸附工艺设备配置。该方法是将有机气体吸附到吸附剂上,然后再将其从吸附剂上脱离下来成为液体,收集并处理后即可重新回用于生产或出售。 2 材料 长期以来,人们一直以活性碳颗粒作为吸附剂来吸附这些化学有机物废气,但是由于活性碳颗粒的表面积较小,所以为了增大活性碳接触面积,就须大量填充,使得吸附装置体积庞大,而且时间一长,碳颗粒会变成粉末,影响吸附量,更有甚者,它需要经常更换,在更换时黑尘四起,严重污染工作场所。黑尘还会进入操作者呼吸道,危害人类健康。 活性碳纤维(以下简称ACF)的诞生在整个环保产业是一场革命。ACF是以粘胶基纤维为原料,经高温碳化、活化后制成的纤维状新型吸附材料,与社会上公认的比较好的吸附材料—颗粒状活性炭相比,ACF具有以下显著的的特点: (一)、比表面积大,有效吸附量高。由于同样重量的纤维的表面积是颗粒的近百倍,所以需要填充的活性碳纤维的重量非常小,然而吸附效率却非常高,根据所处理废气的有机气体含量和其它物理特性的不同,吸附效率在85%至98%之间,多级吸附工艺可以达到99.99%,远远高于活性碳颗粒吸附法的最高吸附率88%,而且体积及总重量也都很小。 (二)、吸附﹑脱附行程短,速度快;脱附﹑再生耗能低。ACF对有机气体吸附量比颗粒状活性炭(GAC)大几倍至几十倍,对无机气体也有很好的吸附能力,并能保持较高的吸附脱附速度和较长的使用寿命。如用水蒸气加热6-10分钟,即可完全脱附,耐热性能好,在惰性气体中耐高温1000℃以上,在空气中着火点达500℃以上。 (三)、形状可变,使用方便。由于活性碳纤维可以做成毡式,所以更换起来非常方便,不

颗粒活性炭与活性炭纤维对比.

颗粒活性炭与活性炭纤维对比 活性炭(AC-activated carbon) 活性碳,是一种具有多孔结构和大的内部比表面积的材料。由于其大的表面积、微孔结构、高的吸附能力和很高的表面活性而成为独特的多功能吸附剂,且其价廉易得,部分还可再生活化,同时它可有效去除废水、废气中的大部分有机物和某些无机物,所以它被世界各国广泛地应用于污水及废气的处理、空气净化、回收稀有金属及溶剂等环境保护和资源回收等领域。 活性碳分为粒状活性碳、粉末活性碳及活性碳纤维,但是由于粉末活性碳有二次污染且不能再生赋活而被限制利用。 粒状活性碳(GAC-granular activated carbon GAC的85%~90%用于水处理和气体吸附处理,它的粒径为500~5000μm, GAC 的孔结构一般是具有三分散态的孔分布,既具有按国际纯粹与应用化学会(IUPAC)分类的孔径>50nm的大孔,也有2.0~50nm 的中孔(过渡孔)和<2.0nm的微孔。 由于GAC的孔状结构所致,它的吸附速度较慢,分离率不高,特别是它的物理形态使其在应用和操作上的有诸多不便,限制了GAC的应用范围。 活性碳纤维(ACF- activated carbon) ACF是继粉状与粒状活性碳之后的第三代活性碳产品。70年代发展起来的活性碳纤维是随着碳纤维工业发展起来的一种新型、高效的吸附剂。 活性炭纤维的特点 ACF是多孔碳家族中具有独特性能的一员,与传统的粒状活性碳(GAC)相比,ACF具有以以下特点: ①ACF与GAC的孔结构有很大的差异,如图1和图2所示。ACF的孔分布基本上呈单分散态,主要由小于2.0nm的微孔组成,且孔口直接开口在纤维表面,其吸附质到达吸附位的扩散路径短,纤维直径细,故与被吸附物质的接触面积大,增加了吸附几率,且可均匀接触。 ②比表面积大,最大可达2500㎡/g,约是GAC的10~100倍:吸附容量大,约是GAC的1.5~100倍;吸附能力为GAC的400倍以上;吸附、脱附速度快,ACF 对气体的吸附数10秒至数分钟可达平衡。

纳米碳纤维及其应用

功能材料论文:纳米碳纤维及其应用 学校:上海电力学院 班级:应用化学110103 姓名:赵立 学号:ys1110122026

纳米碳纤维及其应用 摘要:作为一种新型碳基纳米材料,纳米碳纤维由于具有优异物理化学性能和可控微结构受到越来越多研究者的重视。本文主要介绍了纳米碳纤维的现状与发展,包括纳米碳纤维的制备、性能与应用。并讨论了纳米碳纤维的市场和发展前景。 关键词:纳米碳纤维;性能;应用;发展前景 一、前言 作为高性能纤维的一种,碳纤维既有碳材料的固有本征。又兼备纺织纤维的柔软可加工性,是新一代军民两用新材料,已广泛用于航空航天、交通、体育与休闲用品、医疗、机械、纺织等各领域。纳米碳纤维是当代纤维研究领域的前沿课题。也是一项多学科交叉、多技术集成的系统工程。 纳米碳纤维(Carbon Nanofibers 简称CNF)是化学气象生长碳纤维的一种形式,是由通过裂解气相碳氢化合物制备的非连续石墨纤维。纳米碳纤维的研究开始于1991年,日本科学家饭岛利用高分辨电子显微镜在石墨棒放电所形成的阴极沉积物中发现纳米碳纤维,自从发现了纳米碳纤维,它就引起了理论研究者以及工业应用者的兴趣。纳米碳纤维/聚合物基复合材料在世界范围内的研究工作刚刚起步,我国亦在进行跟踪研究。 从物理尺寸、性能和生产成本来看纳米碳纤维的构成是以碳黑、富勒烯、单壁和多壁纳米碳管为一端,以连续碳纤维为另一端链节中的一环。纳米碳纤维的直径在50~200nm之间,但目前不少研究工作者把直径在100nm以下的中空纤维称之为纳米碳管,亦即纳米碳纤维的直径介于纳米碳管和气相生长碳纤维之间[1]。与纳米碳管相比纳米碳纤维的制备更易于实现工业化生产。CNFs除了具有CVD法碳纤维低密度、高比模量、高比强度、高导电、热稳定性等特性外,还具有缺陷数量非常少、长径比大、比表面积大、结构致密等优点。由于纳米碳纤维具有许多优异的物理和化学性质,因此可应用于电子器件、聚合物添加剂、储能材料、催化剂载体、电磁屏蔽材料、防静电材料、电磁波吸收材料等诸多领域。 二、制备 制备纳米碳纤维的三种主要方法以及特性是: (1) 基体法在石墨或陶瓷基体上分散纳米级催化剂颗粒的“种粒”,并在高温下通人碳氢气体化合物,热解后在催化剂颗粒上析出纳米碳纤维[2]。利用基体法可制备出纯度较高的纳米碳纤维,但由于超细催化剂颗粒的制备较为困难,且受从板温度和热解气体浓度不均及催化剂粒子在基板上分布不均等因素的影响,纤维生长疏密不匀,也很难得到直径较细的制品。此外,纳米碳纤维仅在有催化剂的基体上生长,产量不高,难以连续生长,不易实现工业生产。 (2) 喷淋法在苯等液体有机化合物中掺人催化剂,并将含催化剂的混合溶液在外力作用下喷淋到高温反应室中,制备出纳米碳纤维[3]。喷淋法可实现催化剂连续喷入,为工业化连续生产提供了可能,但催化剂与烃类气体的比例难以优化,喷淋过程中催化剂颗粒分布不

碳纤维材料性能及应用

碳纤维材料的性能及应用 碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 碳纤维的微观结构类似人造石墨,是乱层石墨结构。另外,碳纤维是指含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。 性能特点: 碳纤维的比重小,抗拉强度高,轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。总之,碳纤维是一种力学性能优异的新材料。 应用领域: 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨炸弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。 目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。目前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐蚀化工设备等。羽毛球:现在大部分羽毛球拍杆由碳纤维制成。【碳纤维】carbon fibre 含碳量高于90%的无机高分子纤维。其中含

活性炭纤维的制备及在核生化防护服中的应用

国防技术基础 2008年5月 第5期 活性炭纤维的制备及在核生化防护服中的应用  摘 要:介绍了活性炭纤维的孔隙分布、特性、制备方法及活性炭纤维在核生化防护服上的应用;介绍了国内核生化防护服用活性炭纤维复合织物的研究进展。 关键词:活性炭纤维 核生化 防护服 复合织物 刘恩文 (总装备部防化军事代表局驻宜昌地区军事代表室) 活性炭纤维(Activated Carbon Fiber,ACF)是指炭纤维(Carbon Fiber,CF)及可炭化纤维(Carbonizable Fiber)经过物理活化、化学活化或两者兼有的活化反应所制得的具有丰富和发达孔隙结构的功能性炭纤维。基于ACF比一般活性炭(ActivatedCarbon,AC)有着更为优越的孔隙结构和形态,可用作功能材料,在国防、环境保护、化工、卫生、电子、电化学等领域得以广泛应用。 1.活性炭纤维的孔隙结构、分布及其特性活性炭和活性炭纤维均属多孔碳材料,活性炭纤维与粒状活性炭(GAC)的孔隙结构和细孔直径分布见图1,从图中可以看出,ACF的孔型开口在其表面,孔形为狭缝形,其细孔直径为单峰型分布;GAC的孔型为树枝状,有大孔、中孔和微孔,分布较宽,细孔直径为多峰型分布。两者结构不同,使其在吸、脱附速度及吸附量有很大差异;与活性炭比较具有以下特点[1] : (1)单丝直径细,约8~20μm,活性炭为1~3mm,表面积大,约比粒状活性炭大两位数,吸附面积大; (2)有效吸附孔分布窄,属于单分散型,活性炭属于多分散型孔分布; (3)没有或很少有大孔,且为径向开孔扩散阻力小,吸附、脱附的行程短,吸、脱附速度快 (约为活性炭的10~100倍) ; (4)外表面积(0.2~2.0m2/g),较活性炭(0.001m2/g)大得多,吸附位多,吸附容量大; (5)体密度小,漏损小,处理速度快,可实现设备小型化、高效化和自动化; (6)杂质少,纯度高,不会污染吸附的气体或液体; (7)强度高,粉尘少,不会造成二次污染;(8)形态多,后加工性好,适应性强,有纤维、布、毡、纸以及蜂窝状、波纹状和各种定型制品; (9)易再生,失活少,使用寿命长;(10)导电,导热,蓄热量小,操作、维修方便,使用安全。 图 1 活性炭纤维与粒状活性炭的细孔直径分布

活性碳纤维的制备及性能研究

第23卷 第4期2000年8月 鞍山钢铁学院学报 Journal of Anshan Institute of I.&S.Technology Vol.23No.4 Aug.2000活性碳纤维的制备及性能研究 高首山1,孙家军1,刘文川2 (1.鞍山钢铁学院数理系,辽宁鞍山 114002;2.中国科学院金属研究所,辽宁沈阳 110015) 摘 要:系统地研究了活性碳纤维的KOH活化法与水蒸气活化法,比较了两种活化方法的 活化条件,测量了比表面积,用碘值、苯值测定了活性碳纤维的吸附性能、脱附性能,用循环吸 附、脱附方法研究了活性碳纤维的再生能力,并与颗粒状活性碳进行了比较.结果显示KOH 活化的活性碳纤维无论从比表面积、微孔结构,还是在吸附、脱附性能上,都优于水蒸汽活化 的活性碳纤维. 关键词:活性碳纤维;活化;吸附;脱附;再生 中图分类号:TQ342 86 文献标识码:A 文章编号:1000 1654(2000)04 0249 05 吸附与分离技术是环境保护工程中的一项有效措施,应用各种吸附剂,把各种工业废水和废气中的有毒物质吸收出来(可以重新利用),使排放的气体和液体符合环保的标准.吸附与分离技术的关键在于吸附剂,常用的吸附剂有活性炭、硅胶、酸性白土和沸石分子筛等.但是,这些材料不仅吸附能力低,而且操作性能和再生能力差.因此,寻找更为优良的吸附材料,一直成为各国专家学者们关注的课题[1]. 活性碳纤维(Activated Carbon Fiber,AC F)是多孔碳家族中具有独特性能的一员,具有比表面积大,微孔丰富,孔径分布窄,吸附、脱附速度快,重量轻,容易再生等优点[2]. 活性碳纤维的前躯体为碳纤维或各类预氧化纤维,其主要成分为碳材料.常用的活性碳纤维制备即活化方法按活化剂的不同,分为气体活化法和化学试剂活化法两种.气体活化法以水蒸汽、二氧化碳或微量空气为氧化介质,使碳材料中无序碳部分氧化刻蚀成孔,这种方法使用的比较多,研究的也较为清楚[3];化学试剂活化法用化学药剂浸泡碳材料,在加热活化过程中,使其中的碳元素以一氧化碳、二氧化碳等小分子形式逸出,常用的化学药剂有ZnCl2,KOH等,由于这种方法产生的活性碳纤维性能不稳定[2],所以较少使用.本文对化学试剂活化法进行了系统的研究,用这种方法制出了性能优异的活性碳纤维,与气体活化制备的样品进行了比较. 1 活化工艺与样品制备 传统的化学试剂活化法是用KOH水溶液浸泡前躯体纤维,捞出烘干后,置于活化炉中,在氮气保护下升温加热,由于纤维中含有氢、氧等成分,反应激烈,不易控制,所以制得的样品性能不稳定. 本文采用的方法为先把前躯体聚丙烯晴基(PAN)纤维放入加热炉中隔绝空气加热碳化,使其中的氢、氧、氮等成分脱离逸出,制成碳纤维,然后把制得的碳纤维置于10%-40%的KOH水溶液中浸泡12 h,取出后,烘干称重,置于活化炉恒温区内,以5-20 /min的升温速度在氮气保护下升温至预定温度(700-850 ),恒温一定时间(20-60min)后,在氮气保护下降温取出后称重,反复水洗烘干,再称重,计算纤维收率,测量比表面积. 同时,用水蒸汽活化制得一定量的活性碳纤维样品,以便于比较.具体操作方法为:把PAN基碳纤 收稿日期:1999-11-14. 作者简介:高首山(1968-),男,辽宁朝阳人,讲师.

纳米碳纤维及其应用

综 述 纳米碳纤维及其应用 赵稼祥 (航天材料及工艺研究所,100076) 摘 要 介绍世界纳米碳纤维的现状与发展,包括纳米碳纤维的制备、性能、与应用。讨论纳米碳纤维的市场和发展前景。 关键词 碳纤维,纳米,应用 Carbon Nanofiber and It ’s Applications Zhao Jiaxiang (Aerospace Research Institute of Materials and Processing T echnology ,100076) ABSTRACT In this paper the present status and development of carbon nanofiber in the w orld were briefly introduced ,including manu facturing of carbon nanofiber ,properties and application of carbon nanofiber.The market and perspective of development were als o discussed. KEY WORDS carbon ,carbon nanofiber ,application ,market 1 前 言 2002年10~11月在美国北卡罗来纳州首府洛 利(Raleigh ,NC )参加了2002年世界碳纤维会(G lobal Outlook for Carbon Fiber 2002),会后参观、访问了北 卡罗来纳大学国家纺织实验室(State T extile Laborato 2ry ,N orth Carolina State University )和土木工程系,阿 拉巴马大学材料工程系(Department of Materials Engi 2neering ,University of Alabama ),乔治亚理工大学复合 材料教育研究中心(C om posite Education and Research Center ,G eorge University of T echnology )、材料科学与 工程系和机械工程系等,与有关教授、专家和学者,讨论、交换对碳纤维、复合材料与先进材料技术现状、应用与发展的看法,有很大收获[1]。本文简要介绍纳米碳纤维的定义、制备技术、性能、应用、生产与市场及其发展前景。 纳米碳纤维(Carbon Nanofibers 简称C NF )是化学气象生长碳纤维的一种形式,是由通过裂解气相碳氢化合物制备的非连续石墨纤维。从物理尺寸、性能和生产成本来看它是构成以碳黑、富勒烯、单壁和多壁纳米碳管为一端,以连续碳纤维为另一端链节中的一环。 纳米碳纤维的直径在50~200nm 之间,但目前不少研究工作者把直径在100nm 以下的中空纤维称之为纳米碳管,亦即纳米碳纤维的直径介于纳米碳管和气相生长碳纤维之间。与纳米碳管相比纳米碳纤维的制备更易于实现工业化生产。 表1 纳米碳纤维的性能 性 能热处理前 热处理后 抗拉强度(G Pa ) 2.77.0抗拉模量(G Pa )400600断裂应变(%) 1.50.5密度(g/cm 3) 1.8 2.1电阻率(Ωμ-cm )100055热导率(W/m -K ) 20 1950 2 制 备 制备纳米碳纤维的三种主要方法以及特性是:(1)基体法 在陶瓷或石墨基体上散布纳米催 化剂颗粒,高温下通入烃类气体,热解后析出纳米碳纤维[2]。基体法可制备出高纯纳米碳纤维,但纳米级催化剂颗粒制备困难,一般颗粒直径较大,较难制 第4期48  纤维复合材料N o.42003年12月 FIBER COMPOSITES Dec.,2003

相关文档
最新文档