计算脂肪酸氧化的能量

计算脂肪酸氧化的能量

计算脂肪酸氧化的能量

(四)脂肪酸氧化的能量计算

1分子软脂酸(16C)经7次β-氧化可生成8个乙酰CoA、7个NADH+H+、7个FADH2。每个乙酰CoA进入TCA循环生成3个NADH+H+、1个FADH2、1个GTP,并释放2分子CO2。

总反应方程式是:软脂酰CoA+23 O2+131Pi+131ADP→CoASH+16 CO2+123H2O+131ATP

净生成的ATP数:12×8+3×7+2×7-2 =129。(脂肪酸活化消耗2个高能磷酸键,相当消耗2个ATP)

当以脂肪为能源时,生物体还获得大量的水。骆驼的驼峰是储存脂的“仓库”,既提供能量,又提供所需的水。

22 脂肪酸的分解代谢

第28章、脂肪酸的分解代谢(p230) 本章重点:1、脂肪酸分解代谢过程,2、脂肪酸代谢的能量产生,3、脂肪酸分解脱氢,4脂肪酸分解代谢和糖酵解的关系。 本章主要内容: 一、脂肪的水解——脂酶的水解作用(细胞质中) 生物体内脂肪是由脂肪酶水解,在脂肪酶的催化下生成一分子甘油和三分子脂肪酸,脂肪酶的特点:主要作用于有酯键的化合物,不论脂肪来源于什么组织,不论脂肪酸碳链的长短,只要是酯键,脂肪酶就可以使其断裂,这就是酶的专一性即键专一性。 事实上,脂肪的水解不是一步完成的,而是分步完成,分步进行水解。第一步脂肪酶水解第一或第三全酯键,即α或α′酯键,如果第一步水解α-酯键,第二水解α′酯键,生成α和α′脂肪酸和甘油-酯,最后,β-位的脂肪酸在转移酶的催化下β-的脂肪酸转到α或α′位上,再在脂肪酶的作用下,脂肪酸水解下来,共生成三分子脂肪酸和一分子甘油,水解过程为: 脂肪(甘油三酯)水解的产物:一分子甘油和三分子脂肪酸。 二、甘油的转化 脂肪的水解产物甘油是联系脂肪代谢和糖代谢的重要化合物,它可以轩化成磷酸甘油醛进入糖代谢,其代谢过程为: 生成的磷酸2羟丙酮有两种去路: 1、DHAP可以进入EMP途径生成pyr,再经脱氢、脱羟生成乙酰COA,经TCA循环氧化 成CO2和H2O。 2、G-3-P可以与DHAP逆EMP途径在醛缩酶催化下生成F-1.6-P,继续转化成糖类。 甘油被彻底氧化以后可以生成多少molATP呢?首先总结氧化的部位: ①α-磷酸甘油脱氢,生成1molNADH·H+ ②G-3-P生成1,3-DPG 1molNADH·H+ ③Pyr脱氢 1molNADH·H+ ④异柠檬酸脱氢1molNADH·H+ ⑤α-酮戊二酸脱氢 1molNADH·H+ ⑥平果酸脱氢 1molNADH·H+ ⑦琥珀酸脱氢 1molFADH2 琥珀酰COA→琥珀酸 另外,甘油还可在代谢的过程中转化到蛋白质中去,如进入TCA后生成Pyr、OAA、α-Kg等可经转氨基作用生成Ala、Asp和Glu参与到蛋白质的合成中去。 三、脂肪酸的降解 脂肪酸的降解(分解)即氧化分解有几种形式,最重要的是β-氧化,其次是α-氧化和ω-氧化。 (一)β-氧化(线粒体内进行) 1、概念:脂肪酸的β-氧化作用是脂肪酸经一系列酶的作用,从α、β碳位之间断裂生 成1mol乙酰COA和比原来脂肪酸少两个碳原子的脂酰COA。 2、β-氧化过程:脂肪酸β-氧化的合成过程包括下列几个主要步骤: 1)活化或叫做脂酰COA的形成:脂肪酸首先与辅酶A缩合同时消耗一分子ATP,形成活化的脂酰COA,这步反应要消耗ATP的两个高能磷酸键。 第一步反应是在脂酰 COA合成酶的催化下进行的,活化了的脂酰COA借线粒体内膜两侧的肉毒碱脂酰COA转移酶的作用,进入线粒体内。 肉毒碱脂酰COA转移酶 脂酰COA++COA 肉毒碱的结构: 肉毒碱起携带脂肪酸酰基通过线粒体内膜的作用。

九年级上第二章 能量转化及计算基础练习

能量转化及计算 一.选择题(共19小题) 1.下列关于能量转化的说法,正确的是() A.图中,风力发电将空气的动能转化为电能 B.图中,拉开的弹弓将石子弹出的过程,弹性势能增大 C.图中,“神舟五号”载人飞船成功返航,返回舱在减速着陆过程中机械能守恒 D.图中,水平路面上疾驰的汽车,将重力势能转化为动能 2.如图所示的情景中,关于能量的说法正确的是() A.水力发电,将电能转化为机械能 B.在空中飞行的C919,只具有重力势能 C.张弓待发,弓静止,所以没有能量

D.过山车冲上高处的过程中,重力势能增加 3.下列事例中,关于能量转化说法正确的是() A.手机充电过程是化学能转化为电能 B.发电机发电过程是电能转化为机械能 C.搓手取暖过程是机械能转化为内能 D.汽车的发动机工作过程是机械能转化为电能 4.下列关于热和能的说法正确的是() A.燃料燃烧过程中,内能转化为化学能 B.热机做功过程中,内能转化为机械能 C.燃料的热值越大,燃烧时放出的热量越多 D.热机的效率越高,做功越快 5.下列实例与能量转化相对应的是() A.热机:机械能转化为内能 B.发电机:电能转化为机械能 C.电动机:电能转化为机械能 D.燃料燃烧:内能转化为化学能 6.如图所示是我国自主研发的油电混合动力轿车在水平平直公路上高速行驶情形,下列说法正确的是() A.轿车以汽油模式行驶是将汽油化学能直接转换为机械能 B.轿车上表面空气流速大压强小 C.轿车对地面的压力等于重力 D.轿车行驶过快惯性增大,容易造成危险 7.下列能量转化的描述正确的是() A.手机电池充电:化学能→电能 B.发电机工作:电能→机械能

热量计算公式

热量计算公式-CAL-FENGHAI.-(YICAI)-Company One1

热量计算公式 一、将1吨冷水从15℃加热到55℃所需要的热量计算公式:Q=1000公斤×(55℃-15℃)×1千卡/公斤℃=40000千卡二.各供热水器能耗费用明细(每吨热水能耗费用) 1、电热水器 A.电热水器的电热转换率为95%,每度电产生的最大热量是Q=860千卡/度×95%=817千卡/度 吨热水的耗电量为 40000千卡÷817千卡/度 =度 C.民用电价为元/度,则 每吨热水费用:元/度×度=元 2、液化石油气 A.液化石油气的热转换率为80%,每公斤最大热量是 Q=12000千卡/公斤×80%=9600千卡/公斤 吨热水的耗液化气量为 40000千卡÷8400千卡/公斤=公斤 C.瓶装液化石油气的价格为元/公斤,则 每吨热水费用:公斤×元/公斤=元 公斤液化石油气相当于立方汽化石油气 管道液化石油气的价格为元/立方,则 每吨热水费用:公斤×立方/公斤×元/立方=元

3、天然气 A.天然气的热转换率为70%,每立方天然气的最大热量是 Q=8500千卡/立方×70%=5950千卡/立方 吨热水的耗液化气量为 40000千卡÷5950千卡/立方=立方 C.民用天然气的价格为元/立方,则 每吨热水费用:立方×元/立方=元 4 、柴油 A.柴油的热转换率为70%,每公斤柴油产生的最大热量是10200千卡/公斤 Q=10200千卡/公斤×70%=7140千卡/公斤 吨热水所耗的柴油量为 40000千卡÷7140千卡/公斤=公斤 #柴油为元/公斤,则 每吨热水费用:公斤×元/公斤=元 5、太阳能热水器 A.按长江流域全年平均120天无日照(阴天、下雨),需电加热补充,则 每吨热水费用:( 度×120天)÷365天=度×元/度=元 6、空气能热水器 A.空气热能热水器全年平均热效率是电热水器的3倍,每度电产生的热量为

能量转化效率专题

能量转化效率专题 一、能量转化效率计算(公式:能量转化效率=有效利用的能量÷总能量) 1、炉子的效率: 例题:用天然气灶烧水,燃烧0.5m 3 的天然气,使100kg 的水从20℃升高到70℃.已知水的比 热容c=4.2×103J/(kg ·℃),天然气的热值q=7.0×107J/m 3 。求: (1)0.5m 3 天然气完全燃烧放出的热量Q 放。 (2)水吸收的热量Q 吸。 (3)燃气灶的效率η。 2、太阳能热水器的效率: 例题:某太阳能热水器的水箱接受太阳热辐射2.4×107 J,如果这些热量使水箱内50L 温度30℃的水,温度上升到57℃,求太阳能热水器的效率。 3、汽车的效率: 例题:泰安五岳专用汽车有限公司是一家大型的特种专用汽车生产基地。该厂某型号专用车在 车型测试中,在一段平直的公路上匀速行驶5.6km ,受到的阻力是3.0×103 N ,消耗燃油1.5×10-3m 3(假设燃油完全燃烧)。若燃油的密度ρ=0.8×103kg/m 3,热值q =4×107 J/kg ,求: (1)专用车牵引力所做的功。 (2)已知热机效率η=W Q (式中W 为热机在某段时间内对外所做的功,Q 为它在这段时间内所消耗的燃油完全燃烧所产生的热量),则该专用车的热机效率是多少? 4、电热水器的效率: 例题:标有“220V,1000W ”的电水壶内装有2kg 的水,正常工作10min ,使水温升高了50℃,求:(1)水吸收的热量是多少J ? (2)电水壶消耗了多少J 的电能? (3)此电水壶的效率是多少?

5、电动机车的效率: 电动自行车以其轻便、经济、环保倍受消费者青 睐。某型号电动自行车的主要技术参数如表所示。在某平直路段上,电动自行车以额定功率匀速行驶时,受到的平均阻力为40N 。若自行车以7m/s 的速度行驶了1min 则, ①此时自行车克服阻力做了多少功? ②消耗了多少J 的电能? ③电动自行车的效率多大? 巩固练习: 1、天然气在我市广泛使用,已知天然气的热值为4×107 J /m 3 。,完全燃烧0.05m 3 天然气可以放出多少J 的热量,这些热量若只有42%被水吸收,则可以使常温下5kg 的水温度上升多少℃。 [水的比热容为4.2×103 J/(kg ·℃)] 2、小红家里原来用液化石油气烧水,每天用60℃的热水100kg 。她参加“探究性学习”活动后,在老师和同学的帮助下,制造了一台简易的太阳能热水器。 (1)若用这台热水器每天可将100kg 的水从20℃加热到60℃,这些水吸收的热量是多少? (2)若液化石油气燃烧放出的热量有70%被水吸收,她家改用太阳能热水器后平均每天可节约液化石油气多少kg ?(液化石油气的热值是8.0×107 J/kg ) (3)请你说出太阳能热水器的优点。(至少说出一条) 3、太阳能热水器是直接利用太阳能给水加热的装置,下表是小明家的太阳能热水器某天在阳光 照射下的相关信息:其中太阳辐射功率是指1h 内投射到1m 2 面积上的太阳能 求:(1)水在10h 内吸收的热量; (2)太阳能热水器的能量转化效率。 4、如图所示为小艳家新买的一辆小汽车.周末,爸爸开车带着小艳出去游玩,途中,这辆汽车在1h 的时间内,在水平路面上匀速行驶了72km ,消耗汽油6kg .若已知该汽车发动机的功率(即 牵引力的功率)为23kW ,汽油的热值为4.6×107 J/kg ,g=10N/kg .则 (1)该汽车克服阻力做的功是多少; (2)该汽车的牵引力是多少N (3)该汽车发动机的效率是多少。 5、随着“西气东输”,天然气进入扬州市民家庭,小明家已经开始使用天然气了。小明家原来

中考物理热量计算的压轴题(含答案)

中考物理热量计算的压轴题及答案 中考真题 人类的祖先钻木取火,为人类文明揭开了新的一页,钻木取火的一种方法如图所示,将削尖的木棒伸到木板的洞里,用力压住木棒来回拉动钻弓,木棒在木板的洞里转动时,板与棒互相摩擦,机械能转化为内能.而热集中在洞内,不易散发,提高了木棒尖端的温度,当达到约260℃时木棒便开始燃烧,因木头是热的不良导体,故受热厚度很薄,木棒受热部分的质量只有0.25g.已知:来回拉一次钻弓需1.0s,弓长为s=0.25m,人拉弓的力为16N,木头比热c=2×103 J/(kg·℃),室温为20℃. 问: (1)人来回拉一次钻弓克服摩擦力所做的功为多少? (2)人克服摩擦力做功使机械能转化为内能,若其中有25%被木 棒尖端吸收,则1s内可使木棒尖端温度提高多少℃? (3)请你估算用多长时间才能使木棒燃烧起来? 【示范解析】 (1)人来回拉一次钻弓克服摩擦力所做的功W=2FS=2×16N×0.25m=8J;(2)木棒尖端吸收的热量Q=ηW=25%×8J=2J,木棒尖端升高的温度△t=Q/cm=2 J/[2×103J/(kg.℃)×0.25×10-3kg]=4℃;(3)使木棒燃烧起来的时间 t=(260℃-20℃)÷4℃/s=60s. 拓展延伸 1.阅读下面的短文,回答问题, 太阳能热水器 太阳能热水器是利用太阳能把水从低温加热到高温,以满足人们日常生活的需要.它具有安全、节能、环保等优点.

如图1所示,太阳能热水器主要由两部分构成:一部分是妾许多根玻璃吸热管组成的集热器,每根玻璃吸热管由双层玻璃管组成,双层玻璃管之间是真空.如图1所示是玻璃吸热管的工作原理图,它的结构与保温瓶的玻璃内胆相似,只是在玻璃吸热管的内表面涂了一层黑色的吸热材料;另一部分是保温储水箱,保温储水箱下部与玻璃吸热管相通. 玻璃吸热管工作原理如图2所示:当太阳光入射到黑色的吸热层上时,黑色吸热层能把太阳能更有效地转化为内能,将管内的水加热.向光一侧的水被加热后体积增大、密度变小而向上运动;背光一侧的水由于温度较低、密度较大而向下运动,形成冷热水循环,最终整箱水都升高至一定的温度.玻璃吸热管具有吸热保温作用 . 请回答以下问题: (1)玻璃吸热管内向光一侧的水吸热后体积增大、密度变小,所受到的浮力_______重力. (2)能否将黑色的吸热材料涂在玻璃吸热管的外表面上?简单说明理 由.___________ _____________________________________________________________________ _______. (3)将质量为100kg初温为20℃的水加热到60℃,求这些水需要吸收多少热量?[水的比热容是4.2×103J/(kg.℃)] (4)某品牌太阳能热水器集热器面积为S=2m2,热效率为η=40%(即热水器能将照射到玻璃吸热管上的太阳能的40%转化为水的热能),该地点太阳能辐射到地面的平均功率为P=1.4×103W/m2(即平均每平方米每秒钟太阳辐射能为1.4×103J).在第(3)小题中水吸收的热量由该热水器提供,求需要加热多少小时?

脂肪酸氧化

脂肪酸氧化 脂肪酸的β-氧化过程肝和肌肉是进行脂肪酸氧化最活跃的组织,其最主要的氧化形式是β-氧化。此过程可分为活化,转移,β-氧化共三个阶段。 1. 脂肪酸的活化 和葡萄糖一样,脂肪酸参加代谢前也先要活化。其活化形式是硫酯——脂肪酰C oA,催化脂肪酸活化的酶是脂酰CoA合成酶(acyl CoA synthetase)。 活化后生成的脂酰CoA极性增强,易溶于水;分子中有高能键、性质活泼;是酶的特异底物,与酶的亲和力大,因此更容易参加反应。 脂酰CoA合成酶又称硫激酶,分布在胞浆中、线粒体膜和内质网膜上。胞浆中的硫激酶催化中短链脂肪酸活化;内质网膜上的酶活化长链脂肪酸,生成脂酰CoA,然后进入内质网用于甘油三酯合成;而线粒体膜上的酶活化的长链脂酰CoA,进入线粒体进入β-氧化。 2. 脂酰CoA进入线粒体 催化脂肪酸β-氧化的酶系在线粒体基质中,但长链脂酰CoA不能自由通过线粒体内膜,要进入线粒体基质就需要载体转运,这一载体就是肉毒碱(carnitine),即3-羟-4-三甲氨基丁酸。 长链脂肪酰CoA和肉毒碱反应,生成辅酶A和脂酰肉毒碱,脂肪酰基与肉毒碱的3-羟基通过酯键相连接。催化此反应的酶为肉毒碱脂酰转移酶(carnitine acyl tran sferase)。线粒体内膜的内外两侧均有此酶,系同工酶,分别称为肉毒碱脂酰转移酶I和肉毒碱脂酰转移酶Ⅱ。酶Ⅰ使胞浆的脂酰CoA转化为辅酶A和脂肪酰肉毒碱,后者进入线粒体内膜。位于线粒体内膜内侧的酶Ⅱ又使脂肪酰肉毒碱转化成肉毒碱和脂酰CoA,肉毒碱重新发挥其载体功能,脂酰CoA则进入线粒体基质,成为脂肪酸β-氧化酶系的底物。 长链脂酰CoA进入线粒体的速度受到肉毒碱脂酰转移酶Ⅰ和酶Ⅱ的调节,酶Ⅰ受丙二酰CoA抑制,酶Ⅱ受胰岛素抑制。丙二酰CoA是合成脂肪酸的原料,胰岛素通过诱导乙酰CoA羧化酶的合成使丙二酰CoA浓度增加,进而抑制酶Ⅰ。可以看出胰岛素对肉毒碱脂酰转移酶Ⅰ和酶Ⅱ有间接或直接抑制作用。饥饿或禁食时胰岛素分泌减少,肉毒碱脂酰转移酶Ⅰ和酶Ⅱ活性增高,转移的长链脂肪酸进入线粒体氧化供能。 3. β-氧化的反应过程 脂酰CoA在线粒体基质中进入β氧化要经过四步反应,即脱氢、加水、再脱氢和硫解,生成一分子乙酰CoA和一个少两个碳的新的脂酰CoA。 第一步脱氢(dehydrogenation)反应由脂酰CoA脱氢酶活化,辅基为FAD,脂酰CoA在α和β碳原子上各脱去一个氢原子生成具有反式双键的α,β-烯脂肪酰辅酶A。 第二步加水(hydration)反应由烯酰CoA水合酶催化,生成具有L-构型的β-羟脂酰CoA。 第三步脱氢反应是在β-羟脂肪酰CoA脱饴酶(辅酶为NAD+)催化下,β-羟脂肪酰CoA脱氢生成β酮脂酰CoA。

能量流动的转换率计算

生态系统中能量流动转换率的计算 要做好生态系统中能量流动的转换率的计算题,首先要理解食物链、食物网和营养级的关系,其次要理解生态系统中能量流动的过程和规律。 1、某一食物链中关于能量流动的计算 生态系统的能量流动具有两个特点:能量流动的单向性和不可逆性,能量在流动过程中会逐级减少。生态系统各营养级之间的能量转化效率为10%-20%。在某一食物链中,若求最高营养级获得最多能量或提供最少生产者,一般取20%作为转化效率;反之,则取10%作为转化效率。 生态系统的总能量=第一营养级通过光合作用固定的太阳能的总量 ① ② 某一营养级得到的能量 = 第一营养级的能量 × (转换率)某一营养级数-1 ③ 第M 营养级得到的能量 = 第N 营养级的能量 × (转换率)M-N ④ 例题1:假定某生态系统中有绿色植物,蛙、蛇、鹰、昆虫和食虫鸟等生物,此生态系统的总能量为24000千焦,如营养级之间能量转化效率为15%,第三营养级和第四营养级所利用的能量分别是( )。 解析:套用公式③,第三营养级所利用的能量= 24000千焦 × (15%)3-1= 540千焦 ;第四营养级所利用的能量= 24000千焦 × (15%)4-1=81千焦。 2、某一食物网中关于能量流动的计算 首先要能识别食物网中的各条食物链,理解同一营养级的概念,然后结合食物链中的能量流动。 其一:只涉及食物网中一条食物链,根据要求选择相应的食物链,计算某一生物获得的最多(或最少)的能量。 例题2:在图-1中海鸟获得能量最多的食物链是 _______。海鸟每增加1千克,需消耗生产者生产的有机 物至少是___________千克。 解析:由于能量在流动过程中会逐级减少,食物链 越长,损失的能量也越多。因此,海鸟获得能量最多的食物链应该是最短的食物链,即水藻→甲壳类→海鸟。海鸟消耗生产者生产的某一营养级得到的能量 上一营养级的总能量 ×100% 两个营养级之间能量流动的转换率 = 水藻甲壳类水绵海鸟水蚤大鱼小鱼淡虾图-1

运动消耗能量计算方法

运动消耗能量计算方法 二十多年前,国立台湾师范大学体育研究所的运动生理学实验室,即已利用Douglas 袋与Scholander 气体分析仪,进行人体运动前、运动中与运动后的摄氧量与二氧化碳产生量测量。其实,透过运动过程中的氧气消耗量与二氧化碳产生量推算,不仅可以评估运动过程的实际能量消耗,更可以用来评量运动时的脂肪与葡萄糖消耗比例。 首先,运动参与者必须先了解到,如果人体以葡萄糖做为能量来源时,每消 耗 1 公升的氧气会产生 1 公升的二氧化碳,也就是说,以葡萄糖为能量来源时的呼吸商(respiratory of quotient ,简称RQ体内局部组织的二氧化碳产生 量除以氧气摄取量)等于1 ;以脂肪为能量来源时的RQ约等于0.7 ;以蛋白质为能量来源时的RQ约等于0.8。不过,人体内的组织呼吸状况评量,有其执行上的困难存在,因此,透过人体参与运动时的肺部气体交换状况(呼吸交换率,respiratory exchange ratio ,简称RER肺部气体交换时的二氧化碳增加量 除以氧气消耗量)的测量,再加上蛋白质仅在激烈运动时,才有少量参与提供能量的现象; 运动生理学研究者可以依据肺部的气体交换,评量出运动过程的能量消耗特征。 一般来说,人体安静休息时的REF约0.82、在极低强度(散步、慢跑、轻松骑车)运动时的RER反而下降(约0.75至0.80之间)、接近最大运动时的RER 约等于1。也就是说,人体在低强度运动状态下,脂肪参与提供能量的比例较高,随着运动强度的增加,RER也随着上升,葡萄糖参与提供能量的比例也增加;在最大运动状态下,则几乎皆以葡萄糖提供能量。当RER等于0.85时,葡萄糖与 脂肪各提供一半的身体能量需求。除此之外,随着RER的上升,人体每消 耗1公升氧气所能产生的能量也随着增加;例如当RER等于0.8时,人体消耗每公升氧气能够产生4.801kcal的能量;当REF等于0.9时,人体消耗每公升氧气能够产生4.924kcal的能量;当RER等于1时,人体消耗每公升氧气则能够产生5.047kcal 的能量。尽管最低与最高能量产生的差异不及 1 %,但是,随 着运动强度增加,逐渐提高每公斤氧气的能量消耗趋向,却也是不争的事实。 以下的实例,可以让您更清楚运动时的能量消耗评量。「如果您昨天花了三十分钟骑脚踏车逛街,运动时的强度是5METs即5X 3.5ml/kg/min的摄氧量强度)运动过程中的呼吸交换率平均为0.9 ,请问在骑车的三十分钟内,您共消耗多少克的葡萄糖与脂肪?」。 首先,必须先确定您的体重是多少公斤。如果您的体重正好是70公斤,那么三十分钟内的总氧气消耗量为 5 X 3.5ml/kg/min X 70kg X 30min= 36750ml 的氧气,共消耗4.924kcal/每公升氧气X 36.75公升氧气二180.96kcal的能量(运动后的过耗氧量并不在此计算的范围内)。 在不考虑运动后的心跳率与耗氧量,会有缓慢下降的事实下,三十分钟的中等强度骑脚踏车运动期间,能量消耗约180kcal 左右。如果运动的过程中,蛋白质没有提供身体能量来源(只有葡萄糖与脂肪提供能量),那么0.9 的RER

生物化学讲义13-脂肪酸的氧化及合成 考研生物化学辅导讲义

第二部分生物能学和代谢 §13.1 脂肪代谢 1 脂类概述 2脂肪动员 3甘油的氧化 4脂肪酸的氧化 5酮体的生成与利用 6脂肪酸的合成 7脂肪的合成 By Wang Ziiffeng 第二部分生物能学和代谢 ?脂类的分类与结构: 脂肪:甘油三酯脂类磷脂 鞘脂 糖脂 类脂 胆固醇 胆固醇脂By Wang Z iiff eng 第二部分生物能学和代谢 脂肪作为储能物质的优缺点: ?脂肪具有高度还原性,彻底氧化释放的能量是同等重量的糖或蛋白质的两倍多。 ?脂肪具有高度疏水性,因而不会增加细胞胞浆的渗透压,也不会因水化增加额外的重量。但消化需要乳化,运输需要其他蛋白质协助。 ?脂肪具有化学惰性,不易产生副反应。但C-C键的断裂需要激活。 By Wang Z iiff eng 第二部分生物能学和代谢 §13.1 脂肪代谢 1 脂类概述 2 脂肪动员 3甘油的氧化 4脂肪酸的氧化 5酮体的生成与利用 6脂肪酸的合成 7脂肪的合成 By Wang Ziiffeng 第二部分生物能学和代谢 第十三节脂肪酸的氧化及合成 §13.1 脂肪代谢 §13.2 膜脂、类固醇血浆 脂蛋白的代谢 By Wang Z iiff eng 第二部分生物能学和代谢 第十三节脂肪酸的氧化及合成 By Dr.Wang 2008.08 By Wang Z iiff eng

历年真题讲解 一、填空题 17.糖尿病是由于胰岛素绝对不足或相对不足而导致的,从生物化学的角度来说糖原病病人血中除了血糖水平升高外,水平也升高。(07) 答案:甘油三酯 By Wang Ziiffeng 第二部分生物能学和代谢 §13.1 脂肪代谢 1脂类概述 2脂肪动员 3 甘油的氧化 4脂肪酸的氧化 5酮体的生成与利用 6脂肪酸的合成 7脂肪的合成 By Wang Ziiffeng 第二部分生物能学和代谢 甘油的氧化: ?主要部位在肝、肾、肠。 ?甘油氧化通过三步反应转化为3-磷酸甘油醛。 ?脂肪和骨骼肌组织中甘油激酶活性很低,所以不能很好地利用甘油。 By Wang Ziiffeng 第二部分生物能学和代谢 §13.1 脂肪代谢 1脂类概述 2脂肪动员 3甘油的氧化 4 脂肪酸的氧化 5酮体的生成与利用 6脂肪酸的合成 7脂肪的合成 第二部分生物能学和代谢 脂肪动员: ?指脂肪组织中脂肪在激素的调节下,被一系列脂肪酶水解为脂肪酸和甘油,然后释放进入血液,脂肪酸以与血清白蛋白非共价结合的方式运输到其它组织利用的过程。 By Wang Z iiff eng 第二部分生物能学和代谢激素敏感的脂肪酶 脂肪动员的激素调节 By Wang Ziiffeng 限 速 酶

初中物理专题复习能量转化中的效率计算

初中物理专题复习能量转化中的效率计算 能量可以从一种形式转化为另一种形式,要实现这种能量的转化需要一定的设备,由于设备本身的限制,不可能将一种能量全部转化为另一种能量,这就出现了设备的效率问题。笔者发现,2011年各地中考以设备的效率为载体,围绕有用的能量和总能量涉及的相关知识设置考点,试题的综合性较强,覆盖初中物理的力、热、电、能量等知识。 1.锅炉的效率 例1.(2011鞍山)某中学为学生供应开水,用锅炉将200kg的水从25℃加热到100℃,燃烧了6kg 的无烟煤。水的比热容是4.2×103J/(kg·℃),无烟煤的热值是3.4×l07J/kg。求: (1)锅炉内的水吸收的热量是多少? (2)无烟煤完全燃烧放出的热量是多少? (3)此锅炉的效率是多少? 解析:试题以锅炉为载体,考查了吸热升温公式和燃料燃烧放热公式。要求锅炉的效率,需要清楚锅炉将燃料燃烧放出的热量转化为水的内能,因此水温度升高吸收的热量是有用的能量,无烟煤完全燃烧放出的热量是总能量。 答案:(1) (2) (3)锅炉的效率

2.柴油抽水机的效率 例2.(2011荆门)今年我省出现大面积干旱,造成农田缺水,严重影响农作物生长,为缓解旱情,很多地方采用柴油抽水机从江湖中引水灌溉。某柴油抽水机把湖水抬升4.5m流入沟渠,再去灌溉农田。已知在2h内抬升了1600m3的水,此柴油抽水机的效率为40%,柴油的热值为4.5×107J/kg,g取10N/kg,求:(1)此柴油抽水机2h做了多少有用功?℃ (2)此柴油抽水机工作2h消耗了多少柴油? (3)此柴油抽水机的总功率为多少千瓦? 解析:柴油抽水机将柴油完全燃烧产生的能量通过克服重力做功转化为水的重力势能。试题以此为载体,考查了质量、密度、重力、热值、功和功率等知识。 (1)虽然抽水机是将水连续地分批抽上去,我们可以想象成抽水机将全部1600m3的水一次性地在2h 内缓慢抬升4.5m,这就是等效法的应用。这样利用计算出水的质量,再用计算重力,然后用就可以计算出有用功。 (2)要计算柴油的质量,需要先计算柴油燃烧放出的热量。这就要利用柴油抽水机的效率为40%这个数据。教学中发现很多同学常犯一个错误,就是利用柴油抽水机做的有用功去乘以效率。避免错误的方法 是想清楚柴油燃烧放出的热量是总的能量,总的能量要比有用的能量数值大。应该根据,得到 。 (3)柴油抽水机的总功率应该用总能量除以时间计算,总能量就是柴油燃烧放出的热量,时间是2h,要注意把单位化成秒。 答案:(1)

能量转化中的效率计算

能量转化中的效率计算 能量可以从一种形式转化为另一种形式,要实现这种能量的转化需要一定的设备,由于设备本身的限制,不可能将一种能量全部转化为另一种能量,这就出现了设备的效率问题。笔者发现,2019年各地中考以设备的效率为载体,围绕有用的能量和总能量涉及的相关知识设置考点,试题的综合性较强,覆盖初中物理的力、热、电、能量等知识。 1.锅炉的效率 例1.(2019鞍山)某中学为学生供应开水,用锅炉将200kg 的水从25℃加热到100℃,燃烧了6kg的无烟煤。水的比热容是4.2×103J/(kg·℃),无烟煤的热值是3.4×l07J/kg。求: (1)锅炉内的水吸收的热量是多少? (2)无烟煤完全燃烧放出的热量是多少? (3)此锅炉的效率是多少? 解析:试题以锅炉为载体,考查了吸热升温公式和燃料燃烧放热公式。要求锅炉的效率,需要清楚锅炉将燃料燃烧放出的热量转化为水的内能,因此水温度升高吸收的热量是有用的能量,无烟煤完全燃烧放出的热量是总能量。 答案:(1) (2) (3)锅炉的效率

2.柴油抽水机的效率 例2.(2019荆门)今年我省出现大面积干旱,造成农田缺水,严重影响农作物生长,为缓解旱情,很多地方采用柴油抽水机从江湖中引水灌溉。某柴油抽水机把湖水抬升4.5m 流入沟渠,再去灌溉农田。已知在2h内抬升了1600m3的水,此柴油抽水机的效率为40%,柴油的热值为4.5×107J/kg,g取10N/kg,求: (1)此柴油抽水机2h做了多少有用功?℃ (2)此柴油抽水机工作2h消耗了多少柴油? (3)此柴油抽水机的总功率为多少千瓦? 解析:柴油抽水机将柴油完全燃烧产生的能量通过克服重力做功转化为水的重力势能。试题以此为载体,考查了质量、密度、重力、热值、功和功率等知识。 (1)虽然抽水机是将水连续地分批抽上去,我们可以想象成抽水机将全部1600m3的水一次性地在2h内缓慢抬升 4.5m,这就是等效法的应用。这样利用计算出水的质量,再用计算重力,然后用就可以计算出有用功。 (2)要计算柴油的质量,需要先计算柴油燃烧放出的热量。这就要利用柴油抽水机的效率为40%这个数据。教学中发现很多同学常犯一个错误,就是利用柴油抽水机做的有用功去乘以效率。避免错误的方法是想清楚柴油燃烧放出的热量是总的能量,总的能量要比有用的能量数值大。应该根据,得

实验九脂肪酸β-氧化

实验九脂肪酸β-氧化 目的要求: (1)了解脂肪酸的β-氧化作用。 (2) 掌握测定β-氧化作用的方法和原理。 实验原理: 在肝脏中,脂肪酸经β-氧化作用生成乙酰辅酶A。2分子乙酰辅酶A可缩合生成乙酰乙酸。乙酰乙酸可脱羧生成丙酮,也可还原生成β-羟丁酸。乙酰乙酸、β-羟丁酸和丙酮总称为酮体。 本实验用新鲜肝糜与丁酸保温,生成的丙酮在碱性条件下,与碘生成碘仿。反应式如下: 2NaOH +I2─→NaOI +NaI +H2O CH3COCH3 +3NaOI ─→CHI3(碘仿)+CH3COONa +2NaOH 剩余的碘,可以用标准硫代硫酸钠滴定。 NaOI +NaI +2HCl ─→I2 +2NaCl +2H2O I2 +2Na2S2O3─→Na2S4O6 +2NaI 根据滴定样品与滴定对照所消耗的硫代硫酸钠溶液体积之差,可以计算由丁酸氧化生成丙酮的量。 试剂和器材 一、试剂 0.1%淀粉溶液;0.9%氯化钠溶液;15%三氯乙酸溶液;10%氢氧化钠溶液。 10%盐酸溶液:浓盐酸一般浓度35%~37%,取浓盐酸277.8 mL定容到1000 mL。 0.5mol/L丁酸溶液:取5 mL丁酸溶于100 mL0.5mol/L氢氧化钠溶液中。 0.1mol/L碘溶液:称取12.7g碘和约25g碘化钾溶于水中,稀释到1000 mL,混匀,用标准0.05mol/L硫代硫酸钠溶液标定。 标准0.01mol/L硫代硫酸钠溶液:临用时将已标定的0.05mol/L硫代硫酸钠溶液稀释成0.01mol/L。 1/15mol/L pH7.6磷酸盐缓冲液:1/15mol/L磷酸氢二钠溶液86.8mL与1/15mol/L磷酸二氢钠溶液13.2mL混合。 二、材料

动能势能做功与能量转化的关系

动能势能做功与能量转化 的关系 Newly compiled on November 23, 2020

第2讲 动能 势能 [目标定位] 1.明确做功与能量转化的关系.2.知道动能的表达式,会用公式计算物体的动能.3.理解重力势能的概念,知道重力做功与重力势能变化的关系.4.理解弹性势能的概念,会分析决定弹性势能大小的因素. 一、功和能的关系 1.能量:一个物体能够对其他物体做功,则该物体具有能量. 2.功与能的关系:做功的过程就是能量转化的过程,做了多少功,就有多少能发生转化,所以功是能量转化的量度.功和能的单位相同,在国际单位制中,都是焦耳. 二、动能 1.定义:物体由于运动而具有的能量. 2.大小:物体的动能等于物体的质量与它的速度的平方乘积的一半,表达式:E k =12 m v 2,动能的国际单位是焦耳,简称焦,用符号J 表示. 3.动能是标量(填“标量”或“矢量”),是状态(填“过程”或“状态”)量. 三、重力势能 1.重力的功 (1)重力做功的特点: 只与物体运动的起点和终点的位置有关,而与物体所经过的路径无关. (2)表达式 W G =mg Δh =mg (h 1-h 2),其中h 1、h 2分别表示物体起点和终点的高度. 2.重力势能 (1)定义:由物体所处位置的高度决定的能量称为重力势能. (2)大小:物体的重力势能等于它所受重力的大小与所处高度的乘积,表达式为E p =mgh ,国际单位:焦耳. 3.重力做功与重力势能变化的关系 (1)表达式:W G =E p1-E p2=-ΔE p . (2)两种情况: 4.重力势能的相对性 (1)重力势能总是相对某一水平面而言的,该水平面称为参考平面,也常称为零势能面,选择不同的参考平面,同一物体在空间同一位置的重力势能不同. (2)重力势能为标量,其正负表示重力势能的大小.物体在参考平面上方时,重力势能为正值;在参考平面下方时,重力势能为负值. 想一想 在同一高度质量不同的两个物体,它们的重力势能有可能相同吗

能量换算

能量的转化与传递 1 总的情况食物从食入到排出的流程,可用图1-1表示。 每一环节都牵连能的收支与传递,而营养物质被吸收到营养库后的能量转化,实质上是组织内细胞水平的能量转化。主要包括糖酵解循环、三羧酸循环和氧化磷酸化循环三个垂直循环,以及由氨基酸组成的蛋白质合成、降解与周转和由脂肪酸、甘油组成的脂肪循环两个旁支构成的养分和能量代谢系统。简示如图1-2。 2. 能量的转化 在体内可供能量转化的基质有:葡萄糖、糖原、脂肪酸、甘油、氨基酸和发酵产生的乙酸、丙酸与丁酸。 2. 1 葡萄糖:葡萄糖在机体内的氧化供能分为两个阶段,即无氧条件下的糖酵 图1-1 食物从食入到排出的流程

糖原 图1-2 细胞水平代谢循环 A.葡萄糖经磷酸化成为葡萄糖-6-磷酸,消耗1分子ATP B.葡萄糖-6磷酸的异构体转化为果糖-6-磷酸,又消耗1分子ATP。 C.在由1,3-二磷酸甘油向3-磷酸甘油酸转化,以及由磷酸烯醇式丙酮酸向丙酮酸转化 的过程中,共产生4分子ATP。 D.NAD还原为NADH + H+参与氧化磷酸化循环,产生3分子ATP。但NADH + H+从胞液进 入线粒体要耗用1分子ATP,故净产生2分子ATP。因为1mol葡萄糖分解为2mol甘油醛,所以共得4molATP。这样,葡萄糖在糖酵解循环中实际产生6molATP(-1-1+4+4=6)。在糖酵解阶段,1摩尔的葡萄糖分解为2摩尔丙酮酸。其中,能量转化的具体过程是:1mol丙酮酸在三羧酸循环中的能量得失:有4次NAD还原为NADH+ H+,每 ,产生2分子ATP和1次ADP氧化次产生3分子ATP;有1次FAD还原为FADH 2 为ATP。按1mol葡萄糖计算,共30molATP,连同糖酵解的6分子ATP,1mol葡萄糖总共产出36分子ATP。以每摩尔供能7.3kcal计,共计262.8kcal。据测定

能量传递计算

生态系统中能量流动的计算方法 生态系统中能量流动的计算是近几年高考的热点,考生常因缺乏系统总结和解法归纳而容易出错。下面就相关问题解法分析如下: 一、食物链中的能量计算 1.已知较低营养级生物具有的能量(或生物量),求较高营养级生物所能获得能量(或生物量)的最大值。 例1.若某生态系统固定的总能量为24000kJ,则该生态系统的第四营养级生物最多能获得的能量是() A. 24kJ B. 192kJ C.96kJ D. 960kJ 解析:据题意,生态系统固定的总能量是生态系统中生产者(第一营养级)所固定的能量,即24000kJ,当能量的传递效率为20%时,每一个营养级从前一个营养级获得的能量是最多的。因而第四营养级所获得能量的最大值为:24000×20%×20%×20%=192kJ。 答案:D 规律:已知较低营养级的能量(或生物量),不知道传递效率,计算较高营养级生物获得能量(或生物量)的最大值时,可按照最大传递效率20%计算,即较低营养级能量(或生物量)×(20%)n(n为食物链中由较低营养级到所需计算的营养级的箭头数)。 2.已知较高营养级的能量(或生物量),求较低营养级应具备的能量(或生物量)的最小值。 例2.在一条有5个营养级的食物链中,若第五营养级的生物体重增加1 kg,理论上至少要消耗第一营养级的生物量为() A. 25 kg B. 125 kg C. 625 kg D. 3125 kg 解析:据题意,要计算消耗的第一营养级的生物量,应按照能量传递的最大效率20%计算。设需消耗第一营养级的生物量为X kg,则X=1÷(20%)4=625 kg 答案:C 规律:已知能量传递途径和较高营养级生物的能量(或生物量)时,若需计算较低营养级应具有的能量(或生物量)的最小值(即至少)时,按能量传递效率的最大值20%进行计算,即较低营养级的生物量至少是较高营养级的能量(或生物量)×5n(n为食物链中,由较低营养级到所需计算的营养级的箭头数)。 3.已知能量的传递途径和传递效率,根据要求计算相关生物的能量(或生物量)。 ,若能量传递效率例3.在能量金字塔中,生产者固定能量时产生了240molO 2 为10%~15%时,次级消费者获得的能量最多相当于多少mol葡萄糖? () A.0.04 B. 0.4 C.0.9 D.0.09 解析:结合光合作用的相关知识可知:生产者固定的能量相当于240÷6=40mol葡萄糖;生产者的能量传递给次级消费者经过了两次传递,按最大的能量传递效率计算,次级消费者获得的能量最多相当于40×15%×15%=0.9mol葡萄糖。 答案:C

UV能量计的计算方法

UV能量计的计算方法 现在很多UV设备厂家或者UV设备的使用厂家都在用UV能量计测试UV机的能量值,看似很简单的一个仪器,但UV能量计是如何计算测试数值的呢?因此我来为此做一个详细的介绍。 首先从灯管供应商处取得灯管一些相关参数,包括:灯管线性功率W/cm,灯管发光长度cm,灯管功率W或者KW-用来考评灯管是否达到指标,视乎灯管口径。接着计算光强mW/cm*cm。公式为灯管线性功率W/cm*灯管发光长度cm*有效UV光谱17%*10%/12cm*灯管发光长度cm计算出来的结果单位为:mW/cm*cm。 下一步,计算产品曝光时间,视乎灯管排放方式,直放按灯管实际发光长度算,单位cm,(单管),再除以机器运转速度(cm/秒,s),横放按12cm算(单管),计算方法同上,如果多支灯管排放,则取时间总和。最后计算出UV曝光量=光强mW/cm*cm*时间s(秒),计算出来的结果为:mj/cm2。现在通常的UV检测方法,是测试UV灯管工作时峰值强度peak值,单位为:w/cm*cm或mw/cm*cm,和UV能量密度--曝光量,单位J/cm*cm 或者mj/cm*cm,峰值强度体现灯管UV射线的聚焦和衰减状况,来评估灯管适用性,UV曝光量(J/cm*cm)是我们关注的参数,对涂层固化至关重要,很多情况下涂层会标定基本的能量要求,即涂料配方设计时设定好的曝光量范围,对传送带型UV机器,可以通过调整速度来控制UV曝光量,而对于UV灯反光罩,可以通过曝光时间补偿或者对UV灯管强度调整来达到要求UV能曝光量。 严格来说,通常工业上根据应用将UV射线分为四个波段,UVA、UVB、UVC、UVV,各个UV能量计厂家对波段的定义有细微差别,UVA(320-390nm),UVB(280-320nm),UVC(250-260nm),UVV(395-445nm),各种灯管的光谱分布不同.通常在选择UV能量计时,要先了解,您关注的UV波段是哪一个区域,再作出选择相应的单波段UV能量计如美国EIT(UV ICURE PLUS),当然如果需要更多的信息,或是经常更换不同涂层的应用,选择四波段的UV能量计美国EIT(UV POWER PUCK)。 众所周知,在保证UV曝光量的前提下,UV机器在进行设计时,可以采取双灯混合固化,双灯可以提供独有的固化优势,混合4种不同光谱灯管。比如,传送带第一个灯管用UVB固化表面,防止臭氧影响表面褶皱,形成光滑表面。第二个灯管适用UVA型灯泡,长波长可以更有效渗透,实现深层的固化。这种方法优化涂层的反应速度.UV曝光能量大小,还受到物距,外部电源电压电流,灯管质量,好的灯管UV有效光谱可达到25%,正常状态下,物距取15cm上下,此时距离因子取0.1。故以公式计算出来的数据只是表述UV 曝光能量落在哪一个范畴,为了得到更加准确的数据,必要时还需要修正UV有效光谱参数以及距离因子。但是,所计算出来的数据与好的能量计所测量出来的数值并不会相差太大,相差10%左右还市能够接受。 UV能量计生产产家众多,有国产的也有进口的,可以这样说,不同牌子的能量计所测出来的数据都有差别,个别牌子相同型号甚至落差很大,真是令人大跌眼睛。这个时候,以公式法计算实际UV曝光强度就起到了一个极为重要的参照作用,市面上,一般采用德国产的UV能量计测量,品牌:KUHNAST,UV-DESIGN,这两个常见的品牌,美国的EIT,日本的ORC,国内的UV-BIKESU这些品牌质量相对可靠些,笔者认为很值得推荐。

生物化学计算题

生物化学计算题: 1、 计算赖氨酸的+-3NH ε 20%被解离时的溶液pH 。 解答: 80% ±Lys 20% -Lys 9.94 1lg 53.10][][lg 3.510][][lg =+=+=+=±-lys lys pKa pH 质子供体质子受体 2、计算谷氨酸的COOH -γ三分之二被解离时的溶液pH 。 解答: ±Glu - Glu 1 2 6.41 2lg 25.4][lg =+=+=±-Glu Glu pKa pH 3、向1 L 1 mol/L 的处于等电点的甘氨酸溶液加入0.3 mol HCl , 问所得溶液的pH 值是多少?如果加入0.3 mol NaOH 以代替HCl 时,pH 将是多少? 解答:(1) 1-0.3 0.3 0.3 71.23 .07.0lg 34.2][][lg 1=+=+=+±Gly Gly pKa pH (2)

0.7 ±Gly 0..3 -Gly 4、计算0.25 mol/L 的组氨酸溶液在pH 6.4时各种离子形式的浓度(mol/L )。 解答: ][][lg 21+++=His His pKa pH 同理得: 4)82.14.6(221080.310][][][][lg 82.14.6?==→+=--++++His His His His 51.210] [][][][lg 00.64.6)0.64.6(==→+=--+±+±His His His His 3)17.94.6(107.110] [][][][lg 17.94.6---±-±-?==→+=His His His His 25.0][][][][2=+++-±++His His His His 设x His =±][解上述方程得: 组氨酸主要以+±His His 和形式存在。 5、分别计算谷氨酸、精氨酸和丙氨酸的等电点。 解答: (1)根据谷氨酸的解离曲线,其pI 应该是它的-α羧基和侧链羧基的pKa 之和的算术平均 值。即:pI=(2.19 + 4.25)/2 =3.22; (2)精氨酸pI 应该是它的-α氨基和侧链胍基的pKa 之和的算术平均值,即 pI=(9.04 + 12.48)/2 =10.76; (3)丙氨酸pI 应该是它的-α氨基和-α羧基pKa 值之和的算术平均值,即 pI=(2.34 + 9.69)/2 =6.02; 6、计算下列肽的等电点。 (1)天冬氨酰甘氨酸 ,—末端10.2=COOHpK ,07.93=-+pK NH 末端53.4=-COOHpK β (2)谷胱甘肽 62 .9,66.8,53.3,12.23=-=-=-=-+SHpK pK NH COOHpK Gly COOHpK Glu 末端末端α(3)丙氨酰丙氨酰赖氨酰丙氨酸 末端—COOH pK=3.58,末端+3NH —pK=8.01,+-3NH εpK=10.58 解答: (1)Asp-Gly 二肽的解离情况如下: 两性离子

相关文档
最新文档