同济大学航空航天与力学学院弹性力学讲义第一章
2024版弹性力学ppt课件[1]
![2024版弹性力学ppt课件[1]](https://img.taocdn.com/s3/m/bb24bd477dd184254b35eefdc8d376eeaeaa172c.png)
弹性力学ppt课件•弹性力学基本概念与原理•弹性力学分析方法与技巧目录•一维问题分析与实例讲解•二维问题分析与实例讲解•三维问题分析与实例讲解•弹性力学在工程领域应用探讨01弹性力学基本概念与原理弹性力学定义及研究对象定义弹性力学是研究弹性体在外力作用下产生变形和内力分布规律的科学。
研究对象弹性体,即在外力作用下能够发生变形,当外力去除后又能恢复原状的物体。
弹性体基本假设与约束条件基本假设连续性假设、完全弹性假设、小变形假设、无初始应力假设。
约束条件几何约束(物体形状和尺寸的限制)、物理约束(物体材料属性的限制)。
单位面积上的内力,表示物体内部的受力状态。
应力物体在外力作用下产生的变形程度,表示物体的变形状态。
应变物体上某一点在外力作用下的位置变化。
位移应力与应变之间存在线性关系,位移是应变的积分。
关系应力、应变及位移关系虎克定律及其适用范围虎克定律在弹性限度内,物体的应力与应变成正比,即σ=Eε,其中σ为应力,ε为应变,E为弹性模量。
适用范围适用于大多数金属材料在常温、静载条件下的力学行为。
对于非金属材料、高温或动载条件下的情况,需考虑其他因素或修正虎克定律。
02弹性力学分析方法与技巧0102建立弹性力学基本方程根据问题的具体条件和假设,建立平衡方程、几何方程和物理方程。
选择适当的坐标系和坐标…针对问题的特点,选择合适的坐标系,如直角坐标系、极坐标系或柱坐标系,并进行必要的坐标系转换。
求解基本方程采用分离变量法、积分变换法、复变函数法等方法求解基本方程,得到位移、应力和应变的解析表达式。
确定边界条件和初始条件根据问题的实际情况,确定位移边界条件、应力边界条件以及初始条件。
验证解析解的正确性通过与其他方法(如数值法、实验法)的结果进行比较,验证解析解的正确性和有效性。
030405解析法求解思路及步骤将连续体离散化为有限个单元,通过节点连接各单元,建立单元刚度矩阵和整体刚度矩阵,求解节点位移和单元应力。
同济大学弹性力学讲义

同济大学结构工程与防灾研究所
(李遇春编)
§1-2 弹性力学的基本假设 (1)连续性假设 假定所研究的固体材料是连续无间隙(无空洞)的介质,从微观上讲,固体材料中的原子与原子之
间是有空隙的,固体在微观上是间断的(或不连续的);而从宏观上看,即使是很小一块固体,里面也 挤满了成千上万的原子,宏观上的固体看起来是密实而连续的,弹性力学正是从宏观上研究固体的弹性 变形及应力状态。根据这一假设,可以认为物体中的位移、应力与应变等物理量都是连续的,可以表示 为空间(位置)坐标的连续函数。
同济大学结构工程与防灾研究所
(李遇春编)
第一篇 弹性力学
第一章 弹性力学绪论
§1-1 弹性力学的研究对象与任务 弹性力学是固体力学的一个分支学科,是研究固体材料在外部作用下(外部作用一般包括:荷载、
温度变化以及固体边界约束改变),弹性变形及应力状态的一门学科。 土木工程中的结构物设计是与力学是息息相关、紧密联系的。我们已学过材料力学及结构力学,那
如图 1-8 所示的物体,在水平力作用下,物体产生如虚线所示的变形,最大弹性变形 δ 与物体(最
小)尺寸相比很小,可忽略不计,物体与物体(最小)尺寸相比很小
(4)完全弹性假设 假设固体材料是完全弹性的,首先材料具有弹性性质,服从 Hooke(虎克)定律,应力与应变呈线 性关系,同时物体在外部作用下产生变形,外部作用去除后,物体完全恢复其原来的形状而没有任何残 余变形,即完全的弹性。 (5)无初始应力假设 假定外部作用(荷载、温度等)之前,物体处于无应力状态,由弹性力学所求得的应力仅仅是由外 部作用(荷载、温度等)所引起的。若物体中已有初始应力存在,则由弹性力学所求得的应力加上初 始应力才是物体中的实际应力。
弹性力学大大扩展了解决土木结构问题的范围。理论上,弹性力学包容材料力学及结构力学,可以 说弹性力学是土木工程中最基本的力学工具。
(同济大学)第1讲_弹性力学及有限元方法概述

有限元分析
的一般规律物体在空间的位置随时间的改变
对象内容
任务
对象内容
任务
概述
ANSYS 静力分析z起重机械有限元应用
整机模态分析
车辆安全性
工件淬火3.06 min 时的温度、组织分布(NSHT3D)
同济大学
同济大学
金属反挤压成型:温度分布和变化铸造成型:温度变化和气泡
速度
压力导流管分析
超音速飞行压力分布汽车气动分析
高速导弹气动
同济大学
两根热膨胀系数不同的棒焊接在一起,加热后的变形情况
子结构方法分析大型结构的早期应用法
梁单元
建模时充分利用重复性。
弹性力学_同济大学

变形前p x, y,变形后 pxu,yv.
思考题
1. 试画出正负 y 面上正的应力和正的面力 的方向。
2. 在d x d y 1的六面体上,试问x面和y面 上切应力的合力是否相等?
第一章 绪 论
研究方法
§1-3 弹性力学中基本假定
弹性力学的研究方法,在体积V 内: 由微分体的平衡条件,建立平衡微分方程;
正应变 x , y,以伸长为正。
切应变 xy, 以直角减小为正,用弧度表示。
第二节 弹性力学中的几个基本概念
正的正应力对应于正的线应变, 正的切应力对应于正的切应变。
oz
x
P
yx α
B y
α
A
xy
C
第二节 弹性力学中的几个基本概念
位移
位移 -- 一点位置的移动,用 u, v表示,
第一节 弹性力学的内容 第二节 弹性力学中的几个基本概念 第三节 弹性力学中的基本假定
第一章 绪 论
定义
§1-1 弹性力学的内容
弹性力学 --研究弹性体由于受外力、边 界约束或温度改变等原因而发生的应力、形 变和位移。
研究弹性体的力学,有材料力学、结构 力学、弹性力学。它们的研究对象分别如下:
第一节 弹性力学的内容
(表示) σ x-- x 面上沿 x向正应力, xy-- x 面上沿 y向切应力。
(符号)应力成对出现,坐标面上的应 力以正面正向,负面负向为正。
第二节 弹性力学中的几个基本概念
例:正的应力
O(z)
y
x
yx
xy
x
x
xy
yx
y
y
第二节 弹性力学中的几个基本概念
弹性力学第一章

第一章 教学参考资料(一)本章的学习要求及重点1.弹性力学的研究内容,及其研究对象和研究方法,认清他们与材料力学的区别。
2.弹性力学的几个主要物理量的定义、量纲、正负方向及符号规定等,及其与材料力学相比的不同之处。
3.弹性力学的几个基本假定,及其在建立弹性力学基本方程时的应用。
(二)本章内容提要1.弹性力学的内容─弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2.弹性力学中的几个基本物理量:体力—— 分布在物体体积内的力、记号为,,,x y z f f f 。
量纲为L -2MT -2,以坐标正向为正。
面力—— 分布在物体表面上的力,记号为,,,x y z f f f 。
量纲为L -2MT -2 ,以坐标正向为正。
应力—— 单位截面面积上的内力,记号x xy στ⋯⋯,量纲为L -2MT -2,以正面正向为正,负面负向为正;反之为负。
形变—— 用线应变, x y εε和切应变xy γ表示,量纲为1,线应变以伸长为正,切应变以直角减小为正。
位移—— 一点位置的移动,记号为,,u v w ,量纲为L ,以坐标正向为正。
3.弹性力学中的基本假定理想弹性体假定—连续性,完全弹性,均匀性,各向同性。
小变形假定。
4.弹性力学问题的研究方法已知:物体的边界形状,材料性质,体力,边界上的面力或约束。
求解:应力、形变和位移。
解法:在弹性体区域V 内,根据微分体上力的平衡条件,建立平衡微分方程;根据微分线段上应变和位移的几何条件,建立几何方程;根据应力和应变之间的物理条件,建立物理方程。
在弹性体边界S 上,根据面力条件,建立应力边界条件,根据约束条件,建立位移边界条件。
然后在边界条件下,求解区域内的微分方程,得出应力、形变和位移。
(三)弹性力学的发展简史与其他任何学科一样,从这门力学的发展史中,我们可以看出人们认识自然的不断深化的过程:从简单到复杂,从粗糙到精确,从错误到正确的演变历史。
弹性力学 第1章绪论

如果除上述基本假设以外,还引用某 些补充的假设,例如对于薄板(或薄壳), 引用补充的几何假设,即直线素假设,这 样的弹性理论也可称为应用弹性理论。
弹性力学的主要对象和基本内容 弹性力学是研究非杆状弹性体(例如板、壳、 挡土墙、堤坝和地基等实体结构)在外力作用下或 由于温度改变等原因所产生的应力、应变和位移。
钱伟长(1912.10.9-2010.7.30)
钱伟长,著名力学家、应用数学家、教育家和 社会活动家。是我国近代力学的奠基人之一。 兼长应用数学、物理学、中文信息学,著述甚 丰。特别在弹性力学、变分原理、摄动方法等领域 有重要成就。早年提出的薄板薄壳非线性内禀统一 理论对欧美的固体力学和理性力学有过重大的影响。 创办了我国第一个力学研究室,筹建了中国科学院 力学研究所和自动化研究所。长期从事高等教育领 导工作,为培养我国科学技术人才作出重要贡献。 社会活动十分活跃,积极推动了祖国的统一大业。
弹性力学的任务 分析各种结构物或其构件在弹性阶段的应力和位移
校核它们是否具有所需的强度和刚度
寻求或改进它们的计算方法
材料力学与弹性力学的区别 在材料力学中研究杆状构件,除了从静力学、 几何学、物理学三方面进行分折以外,大多还需 要引用一些关于构件的应变状态或应力分布的假 定,这就大大简化了数学推演。但是,得出的解 答有时是近似的。在弹性力学中研究杆状构件一 般都不引进那些假定。因此,得出的结果就比较 精确,其解可以用来校核材料力学所得出的近似 解答。
弹性力学的基本假设与材料力学完全相 同,但是在研究方法上有较大的差别,主要 体现在
研究对象:材料力学研究的主要是杆件;而弹性 力学研究的是块、板、壳等复杂结构。 研究方法:材料力学主要是借助一些平面假设, 在构件分析中简化了数学推导,或者说舍弃了数学 严格性,但在保证精度的前提下为工程计算提供了 简便算法;而弹性力学则是数学严格的。故有时本 学科亦称为弹性结构的数学理论。
同济大学弹性力学-总复习

弹性力学 主讲 邹祖军 总复习
第十一章 弹性力学的变分原理
基本概念
fi uidV Ti uidS ijijdV
(11.1)
V
ST
V
虚位移方程或位移变分方程,表示外力所做的虚功等于真实内力所
做的虚功
(1) (2)
由问题的条件求出满足式(8.13)的应力函数 (r, )
4
2 r 2
1 r
r
1 r2
2
2
2
0
(8.13)
由式(8.12)求出相应的应力分量: r , , r
r
1 r
r
1 r2
2 2
2
(8.14)
位移分量:
ur
1 E
(1 )
A r
2(1 )Br (ln r 1) (1 3 )Br
2(1 )Cr I cos K sin (8.15)
u
4Br
E
Hr
I
sin
K
cos
弹性力学 主讲 邹祖军 总复习
弹性力学极坐标求解归结为:
fr r
1 r
f
)0
r
1 r
r
1 r2
2 2
r
2
r 2
1 r2
1 r
2 r
同济大学硕士弹性力学第1讲_绪论、张量简介

硕士研究生课程弹塑性力学II(C)第一讲绪论、张量分析简介同济大学地下建筑与工程系《弹性力学》,徐芝伦,高等教育出版社,2006v4《弹性力学》,杨桂通,高等教育出版社,1998《弹塑性力学引论》,杨桂通,清华大学出版社2004《塑性力学》,夏志皋,同济大学出版社,1991《塑性力学基础》,王仁等,科学出版社,1982《塑性力学基础》,北川浩,高等教育出版社,1982《岩土塑性力学原理》,郑颖人等,建筑工业出版社,2002相关书籍Timoshenko S.P, Goodier J N. Theory of elasticity. 3rd ed. New York: McGraw-Hill Book Co, 1970 (徐芝伦译)Chen W.F. Limit analysis and soil plasticity. 1975, New York: Elsevier Scientific Publishing Company;J. C. Simo, T. J. Hughes. Computational Inelasticity.1998,Springer.弹性力学部分目录§1.1弹性力学的任务、内容和方法§1.2弹性力学的基本假设§1.3弹性力学的发展简史§1.1弹性力学的任务、内容和方法•弹性力学,也称弹性理论,是固体力学学科的一个分支基本任务:解决构件的强度、刚度和稳定问题。
最大限度解决并统一经济与安全的矛盾。
研究对象:完全弹性体(包括构件、实体)。
主要研究内容:在外界因素(载荷或温度变化)作用下,弹性体的应力和变形问题。
•弹性是变形固体的基本属性。
弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。
绝对弹性体是不存在的。
物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。
•“完全弹性”是对弹性体变形的抽象。
弹性力学讲义绪论p

§1-2 弹性力学的发展
第1章 绪论1-2
线性问题发展期(约于1854 一1907 )
A.Castigliano( 意)(卡斯蒂利亚诺 )—1873-1879 , 建立了最小余能原理 D.C.L.Rayleigh;W.Ritz (瑞利一里茨)—1877-1908, 提出了Rayleigh-Ritz 法 B.G.Galerkin (俄)(伽辽金法)—1915, 迦辽金近似 计算法
合的构架等。
§1-1 弹性力学的内容
弹性力学与材料力学等学科的比较
第1章 绪论1-1
构件承载能力分析是固体力学的基本任务
不同的学科分支,研究对象和方法是不同的
从研究对象看 从研究的方法上看
§1-1 弹性力学的内容
弹性力学与材料力学等学科的比较
第1章 绪论1-1
? 研究对象——弹性体—近似 ?研究内容和基本任务—基本相同 ?研究方法—却有比较大的差别
《弹性力学》教学大纲
教材要求
建议教材: 陈国荣.弹性力学.
南京:河海大学出版社,2002
参考书:S.P.Timoshenko. Theory of Elasticity (Third Edition)
内容与初步安排: (共48学时)
第1章 绪论(3学时) 第2章 平面应力与平面应变(5学时) 第3章 平面问题的直角坐标解答(4学时) 第4章 平面问题的极坐标解答 (6学时) 第5章 三维问题的基本理论 (8学时) 第6章 三维问题的基本解法与弹性力学的一般原理(4学时
§1-2 弹性力学的发展
第1章 绪论1-2
非线性问题发展期(1907一)
1907年,卡门首先提出了薄板大挠度问题(大位移)
1937-1939 ,F.D.Murnaghan;M.A.Biot 提出大应 变问题
弹性力学课件全本

© 2006.Wei Yuan. All rights reserved.
2. 应力:单位截面面积的内力.
内力:发生在物体内部的力,即物体 本身不同部分之间相互作用的力。
lim
ΔV 0
z
Ⅱ
F A p P
Ⅰ
F p A
o x
y
p: 极限矢量,即物体在截面mn上的、在P点的应力。 方向就是F的极限方向。 应力分量:, 量纲:N/m2=kg∙m/s2∙m2=kg/m∙s2 即:L-1MT-2
(Theory of Elasticity),研究弹性体由于受外力、边界
约束或温度改变等原因而发生的应力、形变和位移。 研究对象:弹性体 研究目标:变形等效应,即应力、形变和位移。
2. 对弹性力学、材料力学和结构力学作比较
弹性力学的任务和材料力学, 结构力学的任务一样, 是分析各种结构物或其构件在弹性阶段的应力和位 移, 校核它们是否具有所需的强度和刚度, 并寻求或 改进它们的计算方法.
x
zx
A
y
可以证明,已知x, y, z, yz, zx, xy, 就可求得经过 该点任一线段上的线应变 .也可以求得经过该点任 意两个线段之间的角度的改变。因此,此六个形变 分量可以完全确定该点的形变状态。
© 2006.Wei Yuan. All rights reserved.
(2)研究方法: 弹性力学与材料力学有相似,又有一 定区别。
© 2006.Wei Yuan. All rights reserved.
弹性力学:在弹性体区域内必须严格考虑静力学、 几何学和物理学三方面条件,在边界上严格考虑受 力条件或约束条件,由此建立微分方程和边界条件 进行求解,得出精确解答。 材料力学:虽然也考虑这几个方面的的条件,但不是 十分严格。
弹性力学第一章

3 均匀性假设
整个物体是同一材料组成的,这样, 整个物体是同一材料组成的,这样,整个物体的所有各 部分才具有相同的弹性 。
25
1.2
基本假设
4 假定物体是各向同性的
物体的弹性在所有各个方向都相同。这样, 物体的弹性在所有各个方向都相同。这样,物体的弹性 常数才不随方向而变。 常数才不随方向而变。
5 假定位移和形变是微小的
假定物体受力以后,整个物体所有各点的位移都远远小 假定物体受力以后, 于物体原来的尺寸,而且应变和转角都远小于1。 于物体原来的尺寸,而且应变和转角都远小于 。在考 察物体的形变及位移时, 察物体的形变及位移时,转角和应变的二次幂或乘积都 可以略去不计 。
sin α ≈ α
tan α ≈ α
1 ≈ 1− ε x 1+ ε x
16
1.1
弹性力学
二 弹性力学与材料力学及结构力学之间的不同点: 弹性力学与材料力学及结构力学之间的不同点: 1 研究内容不同 材料力学:杆件构件, 材料力学:杆件构件,即长度远大于高度和宽度 的构件,拉压、剪切、 的构件,拉压、剪切、弯曲和扭转作用下的应力 和位移。 和位移。 结构力学:在材料力学的基础上,杆状构件所组 结构力学:在材料力学的基础上, 成的结构,也即杆件系统,例如,桁架、 成的结构,也即杆件系统,例如,桁架、刚架等
15
1.1
一 概念
弹性力学
弹性力学,又称为弹性理论。 弹性力学,又称为弹性理论。 研究对象: 研究对象:弹性体 研究内容: 研究内容:受外力作用或由于温度改变等原因 而发生的应力、 而发生的应力、形变和位移 研究任务: 研究任务:分析各种结构物或构件在弹性阶段 的应力和位移, 的应力和位移,校核它们是否具有所需要的强 度和刚度, 度和刚度,并寻求或改进它们的计算方法
同济大学理论力学孙杰第一章基本概念与基本理论PPT课件

刚体: 在任何外力作用下都不变形的物体 (特殊的质点系)
注:模型的选择并不仅仅取决于物体的大小
约束的概念 研究对象 (研究问题的性质) 约束:阻碍物体运动的限制物 (特定的装置)
约束力:约束施加于被约束物体的力 (被动力) (未知) 主动力:除约束力外 其它受到的作用力 (研究对象上)
F 2 Mr F rB F A 1 M 1 M 2 rC F D 2
2 CD 2
讨论:只要力偶矩矢保持不变
1).任意搬动 (水平、垂直) 2).可同时改变力的大小和力偶
M
F
臂的长短
1
F
0=
5
5
10
大小相同、转向不变
归纳: 两个推论
自由矢量
推论一 力偶可在其作用面内任意移动(或移到另一
同济大学出版社 书号:ISBN 7-5608-2879-5∕O·2
68
课代表(下周定出) 每单周一交作业
工程力学:研究“物体的机械运动”和“杆件的承载能 力” 包括:
理论力学 —— 研究物体的运动及其与力的关系 材料力学 —— 研究杆件的变形及其与力的关系
要求:
分别又称为: 刚体力学 与 变形体力学
力对轴之矩
Mz(F)Mz(Fxy)
Fxyd2AOAB
力对点之矩的投影
MOz = MOcos
M M
x y
(gF (F
) )
M M
Ox Oy
M z (F ) M Oz
力对轴之矩等于力对该轴上任意点之矩在该轴上的投影
力矩关系定理
例1-2:拖拉机摇手柄OAB在Oyz平面内,在B处作用一个力F。已知
弹性力学理论基础ppt课件

§1.1 弹性力学任务11
研究方法的差别造成弹性力学与材料力 学问题的最大不同。
•常微分方程,数学求解没有困难。
•偏微分方程边值问题,在数学上求解困难重重, 除了少数特殊问题,一般弹性体问题很难得到 解析解。
•这里并不是说弹性力学分析不再需要假设,事 实上对于任何学科,如果不对研究对象作必要 的抽象和简化,研究工作都是寸步难行的。
1. 连续性假设
•——假设所研究的整个弹性体内部完全由组成 物体的介质所充满,各个质点之间不存在任何 空隙。
•——变形后仍然保持连续性。
•根据这一假设,物体所有物理量,例如位移、 应变和应力等均为物体空间的连续函数。
•微观上这个假设不可能成立——宏观假设。
§1.2 基本假设4
2. 均匀性假设
•——假设弹性物体是由同一类型的均匀材料 组成的。因此物体各个部分的物理性质都是 相同的,不随坐标位置的变化而改变。
•弹性是变形固体的基本属性。
•“完全弹性”是对弹性体变形的抽象。
•完全弹性使得物体变形成为一种理想模型。 •完全弹性是指在一定温度条件下,材料的应力 和应变之间一一对应的关系。 •这种关系与时间无关,也与变形历史无关。
•材料的应力和应变关系通常称为本构关系;
•——物理关系或者物理方程
•线性弹性体和非线性弹性体
§1.2 基本假设2
•工程材料通常可以分为晶体和非晶体两种。
•金属材料——晶体材料,是由许多原子,离子 按一定规则排列起来的空间格子构成,其中间 经常会有缺陷存在。
•高分子材料——非晶体材料,由许多分子的集 合组成的分子化合物。
•工程材料内部的缺陷、夹杂和孔洞等构成了固 体材料微观结构的复杂性。
§1.2 基本假设3
同济大学弹性力学课件

应力-应变关系不再一一对应,
且一般是非线性的
单轴应力应变曲线
• 弹性、塑性 • 线性、非线性
典型的塑性本构模型
• 理想弹塑性模型 • 强化弹塑性模型 • 软化弹塑性模型
1)理想弹塑性模型
2)强化弹塑性模型
3)软化弹塑性模型
弹塑性力学基本方程
• 弹塑性力学的基本方程是:
• • • (1)平衡方程; (2)几何方程。 (3)本构方程。
1.3 塑性力学的主要内容
• (1)建立屈服条件。 • 对于给定的应力状态和加载历史,确定材料是否超出 弹性界限而进入塑性状态,即材料是否屈服 • (2)判断加载、卸载。 • 加载和卸载中的应力应变规律不同,需要建立准则进 行判断。 • (3)描述加载(或变形)历史。 • 应变不仅取决应力状态,还取决于达到该状态的历史, 在加载过程中必须对其历史进行记录。
形成独立学科: • 岩土塑性力学最终形成于20世纪50年代末期; • 1957年Drucker指出要修改Mohr-Coulomb准则,以 反映平均应力或体应变所导致的体积屈服; • 1958年剑桥大学的Roscoe等提出土的临界状态概念, 于1963年提出剑桥粘土的弹塑性本构模型,开创了 土体实用计算模型 • 从1970年前后至今岩土本构模型的研究十分活跃, 建立的岩土本构模型也很多。 • 1982年Zienkiewicz提出广义塑性力学的概念,指出 岩土塑性力学是传统塑性力学的推广。
1.4 塑性力学的研究方法
• 宏观塑性理论 • 以若干宏观实验数据为基础,提出某些假设 和公设,从而建立塑性力学的宏观理论。特 点是: • 数学上力求简单,力学上能反映试验结果的 主要特性。 • 实验数据加以公式化,并不深入研究塑性变 形过程的物理化学本质。
弹性力学

弹性力学网络课程第一章绪论内容介绍知识点弹性力学的特点弹性力学的基本假设弹性力学的发展弹性力学的任务弹性力学的研究方法内容介绍:一. 内容介绍本章作为弹性力学课程的引言,主要介绍课程的研究对象、基本分析方法和特点;课程分析的基本假设和课程学习的意义以及历史和发展。
弹性力学的研究对象是完全弹性体,因此分析从微分单元体入手,基本方程为偏微分方程。
偏微分方程边值问题在数学上求解困难,使得弹性力学的基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题作准备,但是并不直接作强度和刚度分析。
本章介绍弹性力学分析的基本假设。
弹性力学分析中,必须根据已知物理量,例如外力、结构几何形状和约束条件等,通过静力平衡、几何变形和本构关系等,推导和确定基本未知量,位移、应变和应力等与已知物理量的关系。
由于工程实际问题的复杂性是由多方面因素构成的,如果不分主次地考虑所有因素,问题是十分复杂的,数学推导将困难重重,以至于不可能求解。
课程分析中使用张量符号描述物理量和基本方程。
目前,有关弹性力学的文献和工程资料都是使用张量符号的。
如果你没有学习过张量概念,请进入附录一学习,或者查阅参考资料。
二. 重点1.课程的研究对象;2.基本分析方法和特点;3.弹性力学的基本假设;4.课程的学习意义;5.弹性力学的发展。
特点:弹性力学,又称弹性理论。
作为固体力学学科的一个分支,弹性力学的基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题作准备,但是并不直接作强度和刚度分析。
构件承载能力分析是固体力学的基本任务,但是对于不同的学科分支,研究对象和方法是不同的。
弹性力学的研究对象是完全弹性体,包括构件、板和三维弹性体,比材料力学和结构力学的研究范围更为广泛。
弹性是变形固体的基本属性,而“完全弹性”是对弹性体变形的抽象。
弹性力学第一章

•The analysis in elasticity shows that the stresses are by no means uniform, but are concentrated near the hole.
•No assumption, that a plane section of the beam remains plane after bending, is made in Elasticity.
弹性力学 第一章
19
•A prismatical tension member with a small hole
弹性力学 第一章
7
Comparison among the three courses in solid mechanics
固体力学三门学科的比较
• Three branches have the same purpose and do differ from one another both in objects studied and the methods of analysis used.
Elasticity: 弹性力学
1. plates and shells 板,壳 2.blocks: 块体 e.g. dams,foundations 坝,基础
3.analyze bar element precisely 对杆件作精确分析
弹性力学 第一章
弹性力学课件 第1章 绪论

3. 各向同性(isotropy)假设
*假定物体在各个不同的方向上具有相同的物理性质 物体的弹性常数将不随坐标方向的改变而变化。 *宏观假设,材料性能是显示各向同性 *木材,竹子以及纤维增强材料等,属于各向异性材料 *这些材料的研究属于复合材料力学研究的对象。
4.完全弹性(线弹性linear elasticity)假设
n阶张量:有n个自由指标的量,如四阶弹性系数Dijkl
3. 应变 (1) 一点应变的度量
是描述物体受力后发生变形的相对概念的力学量 正应变——棱边的伸长和缩短
x , y , z
xy , yz , zx
z C
切应变——棱边之间夹角(直角)改变 应变的正负: 线应变:伸长时为正,缩短时为负;
*对应一定的温度,如果应力和应变之间存在一一对 应关系,而且这个关系和时间无关,也和变形历史 无关,称为完全弹性材料。 材料弹性常数不随应力或应变的变化而改变 *完全弹性分为线性弹性和非线性弹性 *弹性力学研究限于线性的应力与应变关系
5. 小变形(small deformation)假设
*假设在外力或者其他外界因素(如温度等)的影响下, 物体的变形与物体自身几何尺寸相比属于高阶小量。 *在弹性体的平衡等问题讨论时,可以不考虑因变形 所引起的尺寸变化 *忽略位移、应变和应力等分量的高阶小量,使基本 方程成为线性的偏微分方程组。
铁木辛柯(S.P.Timoshenko)做出了贡献。
中国科学家钱伟长,钱学森,徐芝伦,胡海昌,等在弹性
力学的发展,特别是在中国的推广应用做出了重要贡献。
钱学森
钱伟长
胡海昌
徐芝伦
杨桂通
弹性力学——促进数学和自然科学基本理论的建立和发展 广泛工程应用——造船、建筑、航空和机械制造等。 发展——形成了一些专门的分学科; 现代科学技术和工程技术——仍然提出新的理论和工程问题。 对于现代工程技术和科研工作者的培养——对于专业基础, 思维方法以及独立工作能力都有不可替代的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 弹性力学的任务及研究方法 1.2 弹性力学的基本假设 1.3 弹性力学的发展简史
1.1 弹性力学的任务及研究方法
1.研究对象
弹性体在受外力、温度变化以及支座沉陷等外界因素作用 下所产生的应力、应变和位移大小和分布规律的一门学科。
2.与材料力学、结构力学的区别
相同点: (1)基本任务都是解决各种结构或构件的强度和刚度问
题。 (2)基本方法上,均要从静力学方面,几何学方面和物
理学方面进行研究。
不同点: (1)对象上:
材料力学——杆状构件 结构力学——杆状构件系统 弹性力学——杆状构件、板、壳、水坝等实 体结构。
(2)范围上:
弹性力学——分析构件在弹性阶段的应力、应变 和位移的情况。只对“完全弹性体”研究。
材料力学还涉及到疲劳、蠕变、塑性变形以及构 件破坏规律等问题。
假设物体在不同的方向上具有相同的物理性质,因而 物体的弹性常数不随坐标方向的改变而改变。
(4)完全弹性假设
物体在引起其变形的外界因素被消除以后能完全恢复 原状。
(5)小变形假设
物体在力和温度变化等外界因素作用下所产生的位移 远小于物体原来的尺寸,因此应变分量和转角都远小于 1。又称为几何线性的假设。
(6)无初始应力的假设
假设物体处于自然状态,即在力和温度变化等外界因 素作用之前,物体内部是没有应力的。
1.3 弹性力学的发展简史
发展初期:通过试验探索物体的受力与变形之间的关 系。1687年牛顿确立运动三大定律,为弹性 力学奠定基础。
第二时期:纳维和柯西提出弹性力学基础问题,格林和 汤姆逊确立各向异性体有21个弹性系数。弹性 力学基础建立。
第三时期:线性各向同性体弹性力学的发展时期。弹 性力学广泛应用于工程实际问题。
第四时 弹性力学只从基本假定出发,结果精确。
材料力学对杆件的应力分布和变形状况作一些近 似的假定,结果近似,是在一定条件下使用的。
1.2 弹性力学的基本假设
(1)连续性假设 将可变性的固体看作是连续密实的物体,即组成物体的
质点之间不存在任何空隙。 (2)均匀性假设
假设所研究的物体是用同一类型的均匀材料组成的, 因此各部分的物理性质(如弹性)都是相同的,并不会随 着坐标位置的改变而发生变化。 (3)各向同性假设