西华大学EDA课程设计

西华大学EDA课程设计
西华大学EDA课程设计

目录

1、EDA技术的介绍 (2)

1.1、EDA技术的简介 (2)

1.2、EDA技术的发展阶段 (2)

1.3、EDA技术的发展趋势 (3)

2、总体方案设计 (4)

2.1、设计内容 (4)

2.2、设计方案比较 (4)

2.3、设计方案论证 (5)

2.4、设计方案选择 (6)

3、单元模块设计 (6)

3.1、IC191模块 (6)

3.2、8位升降计数器的顶层电路 (9)

3.3、D/A转换电路 (10)

4、软件实现 (12)

5、系统仿真及调试 (15)

5.1、仿真 (15)

5.2、调试 (16)

6、总结 (17)

6.1、设计小结 (17)

6.2、设计收获 (17)

6.3、致谢 (17)

7、参考文献 (18)

1、EDA技术的介绍

1.1、EDA技术的简介

EDA是电子设计自动化(Electronic Design Automation)缩写,是90年代初从CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAT(计算机辅助测试)和CAE(计算机辅助工程)的概念发展而来的。EDA技术是以计算机为工具,根据硬件描述语言HDL ( Hardware Description language)完成的设计文件,自动地完成逻辑编译、化简、分割、综合及优化、布局布线、仿真以及对于特定目标芯片的适配编译和编程下载等工作。

硬件描述语言HDL是相对于一般的计算机软件语言,如:C、PASCAL而言的。HDL 语言使用与设计硬件电子系统的计算机语言,它能描述电子系统的逻辑功能、电路结构和连接方式。设计者可利用HDL程序来描述所希望的电路系统,规定器件结构特征和电路的行为方式;然后利用综合器和适配器将此程序编程能控制FPGA和CPLD内部结构,并实现相应逻辑功能的的门级或更底层的结构网表文件或下载文件。目前,就FPGA/CPLD 开发来说,比较常用和流行的HDL主要有ABEL-HDL、AHDL和VHDL。

1.2、EDA技术的发展阶段

EDA技术的发展分为三个阶段:

第一代EDA技术是电子图版时期,也就是CAD阶段,这一阶段人们开始用计算机辅助进行 IC 版图编辑和PCB 布局布线,这取代了手工操作,产生了计算机辅助设计的概念。

第二代EDA技术的核心是电路辅助设计和仿真分析技术,这一时期分支软件迅速发展。与 CAD 相比,除了纯粹的图形绘制功能外,又增加了电路功能设计和结构设计,并且通过电气连接网络表将两者结合在一起,以实现工程设计,这就是计算机辅助工程的概念。

第三代也是最新一代EDA技术是集成综合概念设计时期。即ESDA阶段。

1.3、EDA技术的发展趋势

从目前的EDA技术来看,其发展趋势是政府重视、使用普及、应用广泛、工具多样、软件功能强大。

在信息通信领域,要优先发展高速宽带信息网、深亚微米集成电路、新型元器件、计算机及软件技术、第三代移动通信技术、信息管理、信息安全技术,积极开拓以数字技术、网络技术为基础的新一代信息产品,发展新兴产业,培育新的经济增长点。要大力推进制造业信息化,积极开展计算机辅助设计(CAD)、计算机辅助工程(CAE)、计算机辅助工艺(CAPP)、计算机机辅助制造(CAM)、产品数据管理(PDM)、制造资源计划(MRPII)及企业资源管理(ERP)等。有条件的企业可开展“网络制造”,便于合作设计、合作制造,参与国内和国际竞争。开展“数控化”工程和“数字化”工程。自动化仪表的技术发展趋势的测试技术、控制技术与计算机技术、通信技术进一步融合,形成测量、控制、通信与计算机(M3C)结构。在ASIC和PLD设计方面,向超高速、高密度、低功耗、低电压方面发展。

目前的EDA产业正处在一场大变革的前夕,对更低成本、更低功耗的无止境追求和越来越短的产品上市压力正迫使IC供应商提供采用0.13μm或以下的千万门级的系统芯片,而这些系统芯片的高复杂性设计更加依赖于EDA供应商提供全新的设计工具和方法以实现模拟前后端、混合信号和数字电路的完全整合。然而,这些新的需求为当代EDA 工具和设计方法带来了不少新的挑战与机会。

2、总体方案设计

2.1、设计内容

可逆计数器是这次设计的基础。可逆计数器主要由CPLD\FPGA器件完成,通过硬件描述语言,在Quartus II中输入可逆计数器的程序,在编译成功后进行时序仿真,在仿真时可看到8位可逆计数器就是由0到255的升降计数。再加在存有波形数据的ROM,将ROM的数字读出加到DAC0808进行数字信号到模拟信号的转换,这样从DAC0808就能输出一个稳定的信号波形。

2.2、设计方案比较

方案一:

由单片机来完成设计。目前,单片机的功能已比较强大,集成度日益增高且其设计和控制比较容易。利用AT89C51单片机外接数模转换器和运算放大电路,由用户通过按键选择输出实验室中经常使用到的几种基本波形:方波、锯齿波、正弦波和三角波。方波由AT89C51单片机将最大值和最小值输出给D/A进行转换,并由用户通过键盘选择波形周期。与微处理器兼容的8位数模转换器DAC0808将数字量转换为模拟量电压信号,通过运放电路得到锯齿波、正弦波、三角波信号,波形保证了它的精度、平滑和稳定。总体原理框图,如图2-1所示:

图2-1 单片机实现原理框图

方案二:

利用FPGA来完成设计。FPGA编程灵活,可以实现三角波和正弦波的数字化处理,将一个周期内的采样点存储起来,生成频率和幅值都可调的正弦波或者三角波,再通过D/A转换和滤波电路便可得到模拟波形。总体原理框图,如图2-2所示:

图2-2 FPGA实现原理框图

2.3、设计方案论证

通过方案一二的比较,可以看出方案一的设计使用分立元件电路较为多,因此会增加电路调试难度,且电路的不稳定性也会随之增加,而采用FPGA芯片实现的电路,由于在整体性上较好,在信号的处理和整个系统的控制中,FPGA的方案能大大缩减电路的体积,提高电路的稳定性。此外其先进的开发工具使整个系统的设计调试周期大大缩短,一般来讲,同样的逻辑,基于FPGA要比基于单片机要快很多,因为它们工作的原理是完全不同的。单片机是基于指令工作的,同样的激励到达单片机后,单片机首先要判断,然后读取相应的指令,最后作出响应,这每一步都是需要在单片机的时钟驱动下一步步的进行。

而基于FPGA则是把相应的逻辑“暂时”固化为硬件电路了,它对激励作出的响应速度就是电信号从FPGA的一个管脚传播另一个管脚的传播速度,当然这指的是异步逻辑,同时电信号也要在芯片内进行一些栅电容的充放电动作,但这些动作都是非常非常快的。而且由于在传统的单片机设计系统中必须使用许多分立元件组成单片机的外围电路,因此整个系统显得十分复杂,随着正弦波或三角波采用数据的增加,需要占用系统很多存储资源,造成其抗干扰性差,在运行过程中容易死机或进入死循环,可靠性降低,而功耗费用增高。

2.4、设计方案选择

结合本设计的要求及综合以上比较的情况,我们选择了基于FPGA的波形发生器方案。

3、单元模块设计

本设计由现场可编程门矩阵(FPGA)作为控制芯片,通过Verilog HDL硬件描述语言设计,运用自顶而下的设计思想,按功能逐层分割实现层次化的设计。完整的系统由4个部分组成:波形发生控制电路,波形数据ROM,D/A转换和滤波电路。波形发生控制电路由FPGA来完成,正弦波在一个周期内的波形可以通过数字采样,即用N个幅值离散的等间隔采样点表示。FPGA波形发生控制电路通过外来控制信号和高速时钟信号,向波形数据ROM发出地址信号,ROM的大小由采样点的个数决定。波形ROM中存有发生器的波形数据,如正弦波或三角波数据。当接受来自FPGA的地址信号后,将从数据线输出相应的波形数据。取出采样点的幅值,这样就可以产生数字化的波形。

3.1、IC191模块

IC191模块,即一个单时钟输入的8位加/减同步计数器的模块电路,根据74LS191的功能表(74LS191是单时钟输入的4为同步加/减计数器)设计而成。

(1)74LS191管脚图,如图3-1所示:

RCO 进位/借位输出端

E 计数控制端

Q0-Q3 计数输出端

D/U 计数控制端

CLK 时钟输入端

PL 异步并行置入端(低电平有效)

TC 进位/借位输出端

图3-1 74LS191管脚图

74LS191功能表,如表3-1所示:

表3-1 74LS191功能表

(2)IC191模块,如图3-2所示:

图3-2 IC191模块

利用Verilog HDL语言完成IC191模块功能的程序设计,代码如下:

3.2、8位升降计数器的顶层电路

8位升降计数器由模块IC191、JK触发器和门电路组成。模块IC191功能是当加减控制端UD=0时,计数器在时钟信号作用下完成8位二进制加法计数,当加计数加到255时,计数器发出一个进位脉冲信号CO;当UD=1时计数器在时钟信号作用下完成8位二进制减法计数,在减计数到0时,计数器发出一个借位脉冲信号BO。JK触发器和门电路的功能是控制8位同步计数器加/减计数,JK触发器的输出端Q直接接入8位加/减同步计数器加减控制端UD,同时8位加/减同步计数器的进位脉冲信号CO或借位脉冲信号BO(作CLK)触发JK触发器(J=K=S=1)的输出Q,JK触发器输出端Q的翻转即可切换8位加/减同步计数器作加计数或作减法计数,从而实现升降计数器的功能。

其顶层电路,如图3-3所示:

图3-3 8位升降计数器的顶层电路

3.3、D/A 转换电路

典型的D/A 转换电路如图3-4所示。DAC0808是8位并行D/A 转换器,使用十分方便,只要给芯片提供Vcc (+5V )和Vss (-12V )电源、参考电压V REF (+5V),同时在芯片输入端加上8位二进制数字量,就可以在输出端获得相应的模拟量。为了实现三角波/锯齿波发生器,可以将8位升降计数器顶层电路的8位输出端(LED8-LED1),即8位二进制数字量直接加上DAC0808转换器芯片输入端,就可以在DAC0808输出端获得相应的三角波/锯齿波。

图3-4 D/A 转换电路

DAC0808管脚图,如图3-5所示:

图3-5 DAC0808管脚图

A1—A8:8位并行数据输入端(A1为最高位,A8为最低位)

VREF(+):正向参考电压(需要加电阻)

VREF(-):负向参考电压,接地

IOUT:电流输出端

VEE:负电压输入端

COMP:compensation(补偿),补偿端,与VEE之间接电容(R14=5kΩ时,(R14为14引脚的外接电阻),一般为0.1uF,电容必须随着R14的增加而适当增加)

GND:接地端,

VCC:电源端,在proteus中都已隐藏

4、软件实现

通过至顶向下(TOP--DOWN)的设计方法,我们对电路的设计要求作了分析,从电路要实现的功能着手,逐层分析电路设计的步骤,再具体到各个模块的设计实现以及各模块实现方案的选择。

程序设计如下:

module boxing(fout,change,clk);

input clk;

input [1:0] change; //定义输入变量,用来切换输出波形,一共4个档位

output[7:0] fout; //输出8为rom的值,用来驱动DA转化芯片,输出波形

//地址累加器,实现地址的分段累加,从而实现四种不同波形的切换输出

reg [5:0] addr;

always @(posedge clk)

begin

begin

if(change==0)

begin

if(addr>=0&&addr<15) //切换正弦波

addr=addr+1;

else

addr=0;

end

else if(change==1)

begin

if(addr>=16&&addr<31) //切换方波

addr=addr+1;

else

addr=16;

end

else if(change==2)

begin

if(addr>=32&&addr<47) //切换正三角波

addr=addr+1;

else addr=32;

end end end//制作rom的函数function [7:0] rom;

input [63:0] address;

case(address)

0:rom=120; //正弦波的rom值

1:rom=165;

2:rom=204;

3:rom=230;

4:rom=240;

5:rom=230;

6:rom=204;

7:rom=165;

8:rom=120;

9:rom=74;

10:rom=35;

11:rom=9;

12:rom=0;

13:rom=9;

14:rom=35;

15:rom=74;

16:rom=10; //方波的rom值17:rom=10;

18:rom=10;

19:rom=10;

20:rom=10;

21:rom=10;

22:rom=10;

23:rom=10;

24:rom=250;

25:rom=250;

26:rom=250;

27:rom=250;

28:rom=250;

29:rom=250;

30:rom=250;

31:rom=250;

32:rom=30; //正三角波的rom值

33:rom=60;

34:rom=90;

35:rom=120;

36:rom=150;

37:rom=180;

38:rom=210;

39:rom=240;

40:rom=210;

41:rom=180;

42:rom=150;

43:rom=120;

44:rom=90;

45:rom=60;

46:rom=30;

47:rom=0;

endcase endfunction

assign fout=rom(addr);// //把读到的rom的值赋给输出端口,输出驱动DA转换芯片endmodule

5、系统仿真及调试

5.1、仿真

通过QuartusII软件仿真,仿真结果如下:

当change为00时,ROM读正弦波数据给ADC0808:

图5-1输出正弦波数据仿真图当change为01时,读取ROM中的方波数据给DAC0808:

图5-2 输出方波数据仿真图

当change为10时,读取三角波数据给DAC0808:

图5-3 读取三角波时的输出数据

5.2、调试

在QuartusII软件中,通过对所设计的硬件描述语言代码进行波形仿真后,达到了预期效果,于是,我们在该软件上进行下载配置设置。在Assignments菜单下选中Devices,在Family栏选择ACEX1K,选中EP1K30TC144-2器件。再在Assignments菜单下选中Pins按照相应要求对管脚进行锁定。最后在Tools菜单下,选中Programmer,对配置方式进行设置,这里选择Passive Serial(PS)被动串行模式。选择好要下载的硬件设备后点击Start即可开始编程下载了。

6、总结

6.1、设计小结

在本次设计中,我们完成本系统设计的要求及功能。在设计开始前我们对各个模块进行了详细的分析和设计准备工作,设计过程中,我们相互协调,积极参与完成各个技术实现的难点。本设计要求通过硬件描述语言,在Quartus II中输入可逆计数器的程序,在编译成功后进行时序仿真,在仿真时可看到8位可逆计数器就是由0到255的升降计数。再加在存有波形数据的ROM,将ROM的数字读出加到DAC0808进行数字信号到模拟信号的转换,这样从DAC0808就能输出一个稳定的信号波形。

6.2、设计收获

通过本次设计,我们在对EDA这门技术上有了更深刻的认识,也从实践的例子中去感受到了EDA设计给我们设计带来的改变与进步。我们不仅掌握Quartus II软件的使用,与此同时,我们还对电子设计的思路有了更多的认识。通过对EDA设计中的TOP-DOWN 设计方式的运用,体会到了对于一个大型系统的设计方案选取应从顶向下的设计思路,这与传统的至底向上的设计方式有很大改进,且设计效率得到大大提高。

通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,才能真正提高自己的实际动手能力、独立思考的能力,以及与具体项目、课题相结合开发、设计产品的能力。

在本次课程设计过程中,我们遇到了这样或那样的问题。通过查阅相关资料,我们解决了这些问题,在查阅资料的过程中,我们要判断优劣、取舍相关知识,不知不觉中我们查阅资料的能力也得到了很好的锻炼。我们学习的知识是有限的,在以后的工作中我们肯定会遇到许多未知的领域,这方面的能力便会使我们受益匪浅。

6.3、致谢

在老师们的辛勤指导下,我们小组同学积极讨论和思考,完成本此课程设计,此次

设计,使我们受益匪浅。在此我要感谢电气信息学院提供这次课程设计的机会;感谢电气信息学院各位老师的帮组。在这里我要特别感谢xxx老师,在设计过程中,至始至终都得到了xxx老师的悉心指导,我们的设计才得以顺利完成。

7、参考文献

[1]陈赜. CPLD/FPGA与ASIC设计实践教程. 北京:科学出版社.2005

[2]陈云洽. CPLD应用技术与数字系统设计. 北京:电子工业出版社.2003

[3]黄智伟. FPGA系统设计与实践. 北京:电子工业出版社.2005

[4]李国丽. EDA与数字系统设计. 北京:机械工业出版社.2004

[5]张洪润等. 电子线路及应用. 北京.科学出版社. 2002

[6]杨宝清. 实用电路手册. 北京. 机械工业出版社. 2002

[7]陈云洽. CPLD应用技术与数字系统设计. 北京:电子工业出版社.2003

[8]侯佰亨,顾新编著.VHDL硬件描述语言与实际应用[M].西安.西安电子科社.2000

西华大学产品结构原理课程设计说明书

课程设计说明书 课程名称:产品结构原理设计 课程代码: 106089439 题目:微型汽车变速器反求分析 学院(直属系) :机械工程学院 年级/专业/班: 学生姓名: 学号: 指导教师:杨昌明 开题时间: 2016 年 11 月 27 日 完成时间: 2016年 12 月 23 日 目录

摘要 (3) 引言 (5) 一、任务分析 (6) 二、微型汽车整车性能参数 (6) 三、微型汽车变速箱功能分析 (7) 3.1 分析变速箱在汽车中的功能 (7) 3.2 微型汽车变速器的位置 (7) 3.3 观察变速箱在微型汽车中怎样将发动机的动力和运动传递到车轮 (7) 3.4 怎样实现变速和保证变速的顺利进行的 (7) 3.5 怎样实现变速和保证变速的顺利进行的 (7) 3.6 利用黑箱(系统)分析方法画出功能结构图 (8) 四、微型汽车变速箱运动分析 (9) 4.1 测量微型汽车车轮直径 (9) 4.2 最高车速为120KM时变速箱的传动比 (9) 4.3 四档的传动比的分配 (9) 4.4 变速箱的最大和最小载状态 (9) 4.5 行驶速度分别为10、20、40、60km/h时应该使用档位的分析 (9) 五、微型汽车变速箱受力分析 (10) 5.1计算在受力最大时各轴的扭矩 (10) 5.2计算各轴的最小直径 (10) 5.3各档位齿轮强度校核 (10) 六、变速箱的拆装 (13) 七、微型汽车变速箱的外观功能分析 (14) 八、微型汽车变速箱结构原理方案反求分析 (16) 8.1 微型汽车变速箱整体结构及布置方案 (16) 8.2 微型汽车变速箱具体结构及布置方案反求 (16) 九、微型汽车变速箱关键零件反求分析 (18) 9.1齿轮零件的加工工艺 (18) 9.2 齿轮零件公差反求分析 (18) 9.3齿轮零件材料热处理反求分析 (19)

48m钢桥设计

48m钢桁架铁路桥设计 学院:土木工程学院 班级:土木0906 姓名:张宇 学号:1801090603 指导老师:方海 整理日期:2012年01月07日

——目录—— 第一章设计依据 (2) 第二章主桁架杆件内力计算 (4) 第三章主桁杆件设计 (10) 第四章弦杆拼接计算 (14) 第五章节点板设计 (16) 第六章节点板强度检算 (16)

48m钢桁架桥课程设计 一、设计目的: 跨度L=48米单线铁路下承载式简支栓焊钢桁梁桥部分设计 二、设计依据: 1. 设计《规范》 铁道部1986TB12-85《铁路桥涵设计规范》简称《桥规》。 2. 结构基本尺寸 计算跨度L=48m;桥跨全长L=48.10m;节间长度d=8.00m; 主桁节间数n=6;主桁中心距B=5.75m;平纵联宽B0=5.30m; 主桁高度H=12.00m;纵梁高度h=1.35m;纵梁中心距b=2.00m; 3. 钢材及其基本容许应力: 杆件及构件——16Mnq;高强螺栓——40B;精制螺栓——ML3;螺母及垫圈——45号碳素钢;铸件——ZG25;辊轴——锻钢35钢材的基本容许应力参照1986年颁布的《铁路桥涵设计规范》。 4. 结构的连接方式: 桁梁杆件及构件,采用工厂焊接,工地高强螺栓连接; 人行道托架采用精制螺栓连接; 焊缝的最小正边尺寸参照《桥规》; 高强螺栓和精制螺栓的杆径为Φ22,孔径d=23mm; 5. 设计活载等级——标准中活载 6. 设计恒载 主桁P3=16kN/m;联结系P4=2.76kN/m;桥面系P2=6.81kN/m; 高强螺栓P6=(P2+P3+P4)×3%; 检查设备P5=1.00kN/m; 桥面P1=10.00kN/m;焊缝P7=(P2+P3+P4)×1.5%。 计算主桁恒载时,按每线恒载P=P1+P2+P3+P4+P5+P6+P7。 三、设计内容: 1. 主桁杆件内力计算,并将计算结果汇整于2号图上; 2. 围绕E2节点主桁杆件截面选择及检算; 3. 主桁E2节点设计及检算; 4. 绘制主桁E2节点图(3号图)。 四、提交文件: 1.设计说明书; 2. 2、3号图各一张 要求:计算正确,书写条理清楚,语句通顺;结构图绘制正确,图纸采用的比例恰当,线条粗细均匀,尺寸标准清晰。

西南交通大学钢桥课程设计75.4m详解

西南交通大学钢桥课程设计 单线铁路下承式栓焊简支钢桁梁桥 课程设计 姓名: 学号: 班级: 电话: 电子邮件: 指导老师: 设计时间:2016.4.15——2016.6.5

目录 第一章设计资料 (1) 第一节基本资料 (1) 第二节设计内容 (2) 第三节设计要求 (2) 第二章主桁杆件内力计算 (3) 第一节主力作用下主桁杆件内力计算 (3) 第二节横向风力作用下的主桁杆件附加力计算 (7) 第三节制动力作用下的主桁杆件附加力计算 (8) 第四节疲劳内力计算 (10) 第五节主桁杆件内力组合 (11) 第三章主桁杆件截面设计 (14) 第一节下弦杆截面设计 (14) 第二节上弦杆截面设计 (16) 第三节端斜杆截面设计 (17) 第四节中间斜杆截面设计 (19) 第五节吊杆截面设计 (20) 第六节腹杆高强度螺栓计算 (22) 第四章弦杆拼接计算和下弦端节点设计 (23) 第一节 E2节点弦杆拼接计算 (23) 第二节 E0节点弦杆拼接计算 (24) 第三节下弦端节点设计 (25) 第五章挠度计算和预拱度设计 (27) 第一节挠度计算 (27) 第二节预拱度设计 (28) 第六章桁架桥梁空间模型计算 (29) 第一节建立空间详细模型 (29) 第二节恒载竖向变形计算 (30) 第三节活载内力和应力计算 (30) 第四节自振特性计算 (32) 第七章设计总结 (32)

第一章设计资料 第一节基本资料 1设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。 2结构轮廓尺寸:计算跨度L=70+0.2×27=75.4m,钢梁分10个节间,节间长度d=L/10=7.54m,主桁高度H=11d/8=11×7.46/8=10.3675m,主桁中心距B=5.75m,纵梁中心距b=2.0m,纵梁计算宽度B0=5.30m,采用明桥面、双侧人行道。 3材料:主桁杆件材料Q345q,板厚 40mm,高强度螺栓采用40B,精制螺栓采用BL3,支座铸件采用ZG35II、辊轴采用35号锻钢。 4 活载等级:中—活载。 5恒载 (1)主桁计算 桥面p1=10kN/m,桥面系p2=6.29kN/m,主桁架p3=14.51kN/m, 联结系p4=2.74kN/m,检查设备p5=1.02kN/m, 螺栓、螺母和垫圈p6=0.02(p2+ p3+ p4),焊缝p7=0.015(p2+ p3+ p4); (2)纵梁、横梁计算 纵梁(每线)p8=4.73kN/m(未包括桥面),横梁(每片)p9=2.10kN/m。 6风力强度W0=1.25kPa,K1K2K3=1.0。 7工厂采用焊接,工地采用高强度螺栓连接,人行道托架采用精制螺栓,栓径均为22mm、孔径均为23mm。高强度螺栓设计预拉力P=200kN,抗滑移系数μ0=0.45。

钢桥课程设计

《钢桥》课程设计任务书《钢桥》课程设计指导书 青岛理工大学土木工程学院 道桥教研室 指导老师:赵建锋 2010年12月

《钢桥》课程设计任务书 一、设计题目 单线铁路下承式简支栓焊钢桁架桥上部结构设计 二、设计目的 1. 了解钢材性能及钢桥的疲劳、防腐等问题; 2. 熟悉钢桁架梁桥的构造特点及计算方法; 3. 通过单线铁路下承式简支栓焊钢桁架桥上部结构设计计算,掌握主桁杆件内力组合及计算方法;掌握主桁杆件截面设计及验算内容; 4. 熟悉主桁节点的构造特点,掌握主桁节点设计的基本要求及设计步骤; 5. 熟悉桥面系、联结系的构造特点,掌握其内力计算和强度验算方法; 6. 熟悉钢桥的制图规范,提高绘图能力; 7. 初步了解计算机有限元计算在桥梁设计中的应用。 三、设计资料 1. 设计依据:铁路桥涵设计基本规范(TB1000 2.1-2005) 铁路桥梁钢结构设计规范(TB10002.-2008) 钢桥构造与设计 2. 结构轮廓尺寸: 计算跨度L= m ,节间长度d= 8 m ,主桁高度H= 11m ,主桁中心距B= 5.75m ,纵梁中心距b= 2.0m 。 3. 材料:主桁杆件材料Q345qD ,板厚≤40mm ,高强度螺栓采用M22。 4. 活载等级:中-活载。 5. 恒载: (1)主桁计算 桥面m kN p =1,桥面系m kN p =2,每片主桁架m kN p = 3, 联结系m kN p =4; (2)纵梁、横梁计算 纵梁(每线) m kN p = 5 (未包括桥面),横梁(每片) m kN p = 6。 6. 风力强度0.1,25.13212 0==K K K m kN W 。

西华大学 二级减速器课程设计说明书

课程设计说明书 课程名称:机械设计课程设计课程代码: 题目:二级斜齿圆柱齿轮减速器学生姓名:张伟荣 学号: 3120130316205 年级/专业/班: 13级机电2班 学院(直属系) :机械工程学院 指导教师:杜强

机械设计课程设计任务书 学院名称:机械工程学院专业:机械电子工程年级:2013级 学生姓名: 张伟荣学号: 3120130106205 指导教师: 杜强 一、设计题目带式运输机的减速传动装置设计 二、主要内容 ⑴决定传动装置的总体设计方案; ⑵选择电动机,计算传动装置的运动和动力参数; ⑶传动零件以及轴的设计计算;轴承、联接件、润滑密封和联轴器的选择及校验计算; ⑷机体结构及其附件的设计; ⑸绘制装配图及零件图;编写计算说明书并进行设计答辩。 三、具体要求 ⑴原始数据:运输带线速度v = 1.76 (m/s) 运输带牵引力F = 2700 (N) 驱动滚筒直径D = 470 (mm) ⑵工作条件: ①使用期5年,双班制工作,单向传动; ②载荷有轻微振动; ③运送煤、盐、砂、矿石等松散物品。 四、完成后应上交的材料 ⑴机械设计课程设计计算说明书; ⑵减速器装配图一张; ⑶轴类零件图一张; ⑷齿轮零件图一张。

五、推荐参考资料 ⑴西华大学机械工程与自动化学院机械基础教学部编.机械设计课程设计指导 书,2006 ⑵秦小屿.机械设计基础(第二版).成都:西南交大出版社,2012 指导教师杜强签名日期 2015 年 6 月 25日 系主任审核日期 2015 年 6 月 25 日

目录 一.传动方案的拟定……………………………………………………………………… 二.电动机的选择及传动装置的运动和动力参数计算………………………………… 三.传动零件的设计计算…………………………………………………………… 四.轴的结构设计及强度计算…………………………………………………………… 五.滚动轴承的选择与寿命计算…………………………………………………………… 六.键的强度计算…………………………………………………………… 七.联轴器的选择…………………………………………………………… 八.减速器机体结构设计及附件设计……………………………………………………………总结………………………………………………………………………………………… 参考文献……………………………………………………………………………………

钢桥课程设计48米单线铁路下承式栓焊简支梁主桁设计

48米单线铁路下承式栓焊简支梁主桁设计

目录 第一部分设计说明书 一、设计资料----------------------------4 二、钢梁上部总体布置及尺寸拟定--------------------------4 1、钢桁架梁桥的优缺点--------------------------4 2、设计假定和计算方法---------------------------4 3、主桁杆件截面选择---------------------------5 4、节点设计原则---------------------------5 5、设计思路和步骤----------------------------5 6、参考文献 ----------------------------6 第二部分设计计算书 一、打开软件-----------------------------------7 二、创建模型-----------------------------------7 1.设定造作环境-----------------------------------7 2.定义材料和截面-----------------------------------7 3.建立节点和单元-----------------------------------8 4.输入边界条件-----------------------------------8 5.输入荷载(1)——加载自重--------------------------------9 6.运行结构分析(1)-----------------------------------10 7.查看结果-----------------------------------10 8.输入荷载(2)——活载添加-------------------------------12 9.运行结构分析(2)----------------------------------13 10.查看结果-----------------------------------13 三、主力求解-----------------------------------14 1.冲击系数-----------------------------------14 2.活载发展均衡系数-----------------------------------14

西南交大钢桥课程设计讲解学习

第二章 主桁杆件内力计算 第一节 主力作用下主桁杆件内力计算 1恒载 桥面 p 1=10kN/m ,桥面系p 2=6.29kN/m,主桁架 p 3=14.51,联结系p 4=2.74kN/m , 检查设备 p 5=1.02kN/m , 螺栓、螺母和垫圈 p 6=0.02(p 2+p 3+p 4),焊缝 p 7=0.015(p 2+p 3+p 4) 每片主桁所受恒载强度 P=[10+6.29+14.51+2.74+1.02+0.02(6.29+14.51+2.74)+0.015(6.29+14.51+2.74)]/2 =17.69 kN/m , 近似采用 p =18 kN/m 。 2 影响线面积计算 (1)弦杆 影响线最大纵距12 l l y lH ?= 影响线面积12 l y Ω=? A1A3: 1218.4273.68 18.42,73.68,0.2, 1.16492.112.664 l l y α-?==== =-? ()1 92.1 1.16453.582 Ω=??-=-m E2E4:1227.6364.47 27.63,64.47,0.3, 1.52792.112.664 l l y α?==== =? 1 92.1 1.52770.332 Ω=??=m 其余弦杆计算方法同上,计算结果列于表中。 (2) 斜杆 ' '22 11,,sin sin l l y y l l θθ=?=?

1 1.236 sinθ === ()() ''' 1212 11 , 22 l l y l l y Ω=+?Ω=+? 式中' 111 1 ''' 1 88 , l l l y l y y y y y - === + E0A1: 12 82.89 9.21,82.89,0.1, 1.236 1.11 92.1 l l y α ====?= 1 92.1 1.1151.23 2 Ω=??=m A3E4:' 22 55,26 55.26,29.43, 1.2360.742 92.1 l l y ===?=, ' 11 29.439.210.742 1.2360.371, 6.14 92.10.7420.371 y l ? =-?=-== + , 6.14 0.1 55.26 6.14 α== + , '' 1 3.07 9.21 6.14 3.07,0.1 27.63 3.07 lα =-=== + , () 1 6.1455.260.74222.78 2 Ω=+?=m, ()() ' 1 3.0727.630.371 5.70 2 Ω=+?-=-m, 22.78 5.7017.08 Ω=-= ∑m 其余斜杆按上述计方法计算,并将结果列于表中。 (3)吊杆 1.0 y=, 1 118.429.21 2 Ω=??=m 3恒载内力 p N p =Ω ∑,例如 02 E E:18.030.14542.54 p N kN =?= 45 E A:() 18.0 5.4497.92 p N kN =?-=- 55 A E:18.09.21165.78 p N kN =?= 4活载内力 (1)换算均布活载k

西华大学课程设计说明书样本

课程设计说明书 课程名称:建筑电气 课程代码: 106008819 题目:德阳市文物中心库房照明系统设 计 学生姓名:何杰峰 学号: 3320120491119 年级/专业/班:2012级建环4班 学院(直属系) :建筑与土木工程学院 指导教师:李茜 建筑电气课程设计任务书 学院名称:建筑与土木工程学院专业:建筑设备与能源应用工程(智能)年级:2012级

一、设计题目:德阳市文物中心库房照明系统设计 说明:根据自己的建筑图纸,独立完成设计。 二、主要内容 根据所给的建筑图纸,完成部分或全部建筑区域的照明系统设计。主要内容包括: 1.熟悉建筑平面图、了解设计范围,分析使用要求,收集有关技术资料和技术标准; 2.确定照度标准、照明方式和照明种类 3.选择光源和照明器类型; 4.进行照度计算,确定光源的容量、选择照明灯具; 5.插座、开关的选择及布置 6.确定各设备供电方式及配电箱位置,确定配电方案; 7.确定导线/电缆的敷设方式,选择导线/电缆型号和布线方式; 8.选择配电装置、照明开关和其他电气设备; 9.根据需要确定应急照明系统的设备及位置,考虑应急照明设备的供电方式; 10.绘制相关的设计图纸。如:照明平面布置图、配电系统图等。 说明:更加建筑平面图大小及复杂程度,照明系统必做,应急照明可以只是方案设计,还可以根据工作量大小增设防雷接地系统设计或弱电系统设计任务。 三、具体要求: 在教师的指导下,按课程设计任务书的规定,独立地、认真地、有计划地按时完成设计任务。在课程设计工作中,能综合应用所学的理论知识与技能,去分析和解决工程实际问题;学会依据设计任务进行资料收集、加工和整理,掌握建筑电气设计的流程、方法和标准,提高设计、理论分析、技术文件编写的能力。通过课程设计,培养严肃认真的科学态度和严谨的工作作风、遵守纪律以及一丝不苟的敬业精神。 要求:根据建筑图纸,确定本工程拟设置的电气系统,完成课程设计。文中的语言简练通顺,图表规范正确;文中的图形和符号尽量采用IEE标准;课程设计论文内容完整、字迹工整、图表整齐规范、数据详实。课程设计论文应按学院的统一要求格式撰写及装订。 四、主要技术路线提示 按建筑类别、性质确定照度标准;考虑照度、使用环境、灯具安装及控制方式的基础上选择适当的灯具种类,进行照度计算、选择实际灯具;考虑一般照明、局部照明、应急照明、插座及空调负荷需要,设计适当的配电方案。根据所设计的配电方案,考虑配电箱的位置,并进行导线和开关的选择计算,选择所需导线和开关,选择相应的配电箱。

48米下承式简支栓焊钢桁梁桥课程设计讲解

现代钢桥课程设计 学院:土木工程学院 班级:1210 姓名:罗勇平 学号:1208121326 指导教师:周智辉 时间:2015年9月19日

目录 第一章设计说明 .............................................. 错误!未定义书签。第二章主桁杆件内力计算 . (5) 第三章主桁杆件截面设计与检算 (14) 第四章节点设计与检算 (23)

第一章 设计说明 一、设计题目 单线铁路下承式简支栓焊钢桁梁设计 二、设计依据 1. 设计规范 铁道部《铁路桥涵设计基本规范》(TB10002.1-2005) 铁道部《铁路桥梁钢结构设计规范》(TB10002.2-2005) 2. 结构基本尺寸 计算跨度L=48m ;桥跨全长L=49.10m ;节间长度d=8.00m ;主桁 节间数n=6;主桁中心距B=5.75m ;平纵联宽度B 0=5.30m ;主桁高度H=11.00m ;纵梁高度h=1.45m ;纵梁中心距b=2.00m ;主桁斜角倾角?=973.53θ,809.0sin =θ,588.0cos =θ。 3. 钢材及基本容许应力 杆件及构件用Q370qD ;高强度螺栓用20MnTiB 钢;精制螺栓用 BL3;螺母及垫圈用45号优质碳素钢;铸件用ZG25Ⅱ;辊轴用锻钢35。钢材的基本容许应力参照《铁路桥梁钢结构设计规范》。 4. 结构的连接方式及连接尺寸 连接方式:桁梁杆件及构件采用工厂焊接,工地高强度螺栓连接; 人行道托架采用精制螺栓连接。 连接尺寸:焊缝的最小焊脚尺寸参照《桥规》;高强度螺栓和精 制螺栓的杆径为22φ,孔径为mm d 23=。 5. 设计活载等级 标准中—活载。 6. 设计恒载 主桁m kN p /70.123=;联结系m kN p /80.24=;桥面系m kN p /50.62=; 高强度螺栓%3)(4326?++=p p p p ;检查设备m kN p /00.15=;桥面m kN p /00.101=;焊缝%5.1)(4327?++=p p p p 。 计算主桁恒载时,按桥面全宽恒载7654321p p p p p p p p ++++++=。 三、设计内容 1. 确定主桁型式及主要参数; 2. 主桁杆件内力计算(全部),并将结果汇制于2号图上; 3. 交汇于E 2、A 3节点(要求是两个大节点)的所有杆件截面设计与 检算;

钢桥课程设计报告

钢桥课程设计报告 都匀市大十字人行天桥 学院:土木工程学院 班级:桥隧122 姓名:龙运泉 学号:1208070361 指导老师:赵金钢老师 2015 年11 月10 日

目录 1.概况.............................................. - 1 - 1.1.尺寸如下图: ................................. - 1 - 1.2.设计依据及规范................................ - 3 - 1.3.设计标准 ..................................... - 3 - 2.迈达斯设计内容 .................................... - 4 - 2.1. 结构有限元计算模型........................... - 4 - 2.2.荷载工况及模型受力图.......................... - 8 - 2.2.1. 结构自重................................ - 8 - 2.2.2. 楼梯作用............................... - 10 - 2.2. 3. 人群荷载............................... - 11 - 2.2.4. 温度荷载............................... - 12 - 2.2.5. 围栏荷载............................... - 13 - 2.2.6. 荷载组合............................... - 14 - 3.总结............................................. - 17 -

西华大学建设项目环境影响评价课程设计

西华大学建设项目环境影 响评价课程设计 Last updated at 10:00 am on 25th December 2020

课程设计说明书题目:西华大学建设项目 (营运期)环境影响评价 学院(直属系) :能源与环境学院 年级/专业/班:xx级环境工程(1)班 学生姓名: x x 学号: xxxxx xxxxxx 指导教师:梅自良 开题时间: 2013 年 12 月 10 日 完成时间: 2013 年 12 月 24 日 目录 课程设计成绩评定表 总成绩评定: 指导教师签名:年月日

摘要 本课程设计以“西华大学建设项目”为对象,分析评价西华大学在施工期、营运期对环境的影响,并提出相关的污染防治措施。结合给定的基础设计资料完成工程分析部分的内容,核算出项目主要污染物产生、排放量及审核污染防治措施;项目的环境影响,利用相关的知识对影响做出定性或者定量识别结合现有生产线和技改工程,确定主要污染源和污染物的种类、源强、排放方式等。根据本项目的环境特征和污染特征,分析预测项目建成后对周围环境可能造成的不良影响及其影响的范围和程度。提出废气达标排放、污染物排放控制在总量指标内、避免对周围大气环境污染的对策与措施;提出减少本项目建设及生产中对附近敏感点大气环境影响和声环境质量影响的对策与措施。提出避免和减少污染、保护环境的对策和措施。 关键词:西华大学建设项目;营运期;环境影响 1总则 任务由来 西华大学是2003年4月16日经教育部批准,由原四川工业学院和原成都师范高等专科学校合并组建的省属重点综合性大学。2008年9月25日四川经济管理(干部)学院并入西华大学。四川工业学院的前身四川农业机械学院建于1960年,是国家为实现农业机械化在当时的全国7个大区分别布点所建立的综合性农业机械学院之一,1978年被四川省政府列为省属重点大学,1983年更名为四川工业学院。 学校现有校本部、彭州校区、成都市人南校区、安德校区。校园面积近3000亩。校本部坐落于中国历史文化名城成都,毗邻国家高新技术开发区西区,西依望丛帝乡、扬雄故里,岷江水自都江堰而下从校园蜿蜒流过。

西华大学课程设计

课程设计说明书 课程名称:产品结构原理课程设计 课程代码: 题目:变速箱反求设计 学院(直属系) :机械工程与自动化学院 年级/专业/班: 学生姓名: 学号: 目录 摘要 (2) 引言 (2) 一、任务分析 (3) 二、微型汽车变速箱功能分析 (3) 2.1 微型汽车变速器的功能 (3)

2.2 微型汽车变速器的位置 (3) 2.3 功率的传递 (3) 2.4 变速和保证变速的顺利进行的实现 (3) 2.5 各个档位的换档 (3) 2.6 功能结构图 (4) 三、微型汽车变速箱运动分析 (5) 3.1 测量微型汽车车轮直径 (5) 3.2 最高车速为120KM时变速箱的传动比 (5) 3.3 四档的传动比的分配 (5) 3.4 变速箱的最大和最小载状态 (5) 3.5 行驶速度分别为10、20、40、60km/h时应该使用档位的分析 (6) 四、微型汽车变速箱的外观功能分析 (6) 五、变速箱的拆装 (8) 六、微型汽车变速箱结构受力分析 (10) 6.1 受力最大的时候各轴的扭矩 (10) 6.2 各轴的最小直径 (11) 6.3 各个档位齿轮强度 (11) 七、微型汽车变速箱结构原理方案反求分析 (13) 7.1 微型汽车变速箱整体结构及布置方案 (13) 7.2 微型汽车变速箱具体结构及布置方案反求 (13) 7.2.2 减速器操纵机构的设计 (13) 7.2.3锁止装置 (14) 7.3 变速器操纵机构装配工艺流程反求分析 (15) 八 .微型汽车变速箱关键零部件反求分析 (16) 8.1 零件公差反求 (16) 8.2 零件材料、热处理反求分析 (16) 8.3 变速器主要零部件的结构、功能原理的反求分析 (17) 8.4 典型零件中间长轴的加工 (17) 结论 (18) 参考文献 (18) 摘要 本课程是通过对微型汽车变速器的分析,了解它的变速原理、各轴的布局、自锁与互锁原理、装配工艺过程、润滑方式、同步器的作用和工作原理以及组成、主要零件的热处理要求、形位公差、表面粗糙度等。通过分析、利用反求的方法创造出新的微型汽车变速器,具体内容有:其轴的布置,同步器的位置,差速器的位置;同步器的作用,组成,工作原理和变速器操纵机构的组成及变位档的自锁和互锁机构的结构原理和结构;通过拆装

西南交通大学土木工程专业2013级培养方案(课程设置)

土木工程专业2013级培养方案 一、培养目标 培养适应社会主义现代化建设需要的,德智体美全面发展的,知识、能力、素质相协调的,掌握土木工程学科基础理论和基本知识,具有宽厚的基础理论、广泛的专业知识、较强的实践能力、一定的创新精神和研发能力的高级专门人才。毕业生能在房屋建筑、铁道、道路、桥梁、隧道与地下建筑、岩土和市政工程等领域从事土木建筑工程的规划、勘测、设计、施工、管理、科研教育、投资和科技开发等工作。 二、基本要求 1、热爱社会主义祖国,有为国家富强与民族振兴而奋斗的理想和责任感,具有良好的思想道德、敬业精神、健康的人生态度,具有科学严谨、求真务实的工作作风。 2、具备扎实的自然科学基础和较好的人文艺术和社会科学基础,较强的分析、思维和想象能力,自觉的批判意识和创新意识,良好的人际交往能力和团结协作精神。能够正确运用本国语言文字阐述自己的思想和研究成果。能够比较熟练地阅读与专业有关的外文资料。 3、系统地掌握本专业所必需的基础理论、较宽厚扎实的技术基础理论以及必要的专业知识;具有一定的社会主义市场经济、管理、法律法规知识及相关的环保、机械、电工电子工程技术知识。 4、系统地掌握本专业所必需的测量、制图、计算、实验、测试等基本技能。 5、具有较强的自学能力,有一定的分析解决工程实际问题及工程设计的能力,具有初步的科学研究、科技开发能力和管理能力,有较强的计算机应用能力。 6、具有一定的体育和军事基本知识,具有良好的心理素质和健康的体魄。 三、学制、学位与学分要求 学制:四年 学位:工学学士 四、专业特色 毕业生具有扎实的数学、力学和土木工程结构方面的基础知识;有较强的外语及计算机应用能力,有宽广的专业技术基础知识。毕业生基本功扎实,业务能力强,素质高,尤其在大型交通土建工程和建筑工程方面有较坚实的基础和专业知识。 土木工程专业创新班(包括茅以升班与詹天佑班)是为探索个性化创新型人才培养模式而开办的,是培养研究型、创新型人才的摇篮。在教学内容上强调“数学——力学——结构”知识主线,突出外语、计算机应用能力和测量、绘图等基本技能训练,构筑科研创新平台,设计创新实践学分,开设科技前沿专题讲座,参与国际工程实践。在教学方式上采用研讨式、启发式的教学模式,基础课程采用双语教学形式授课,配备高水平教师担任导师进行专业学习和科研实践指导,三年级后可跟导师进入科研训练环节。在教学管理方面,突出个性化管理,在专业方向选择上更具灵活性。在教学组织上,单独开小班上课,同时提供优质教学资源,选派高水平师资授课,提供个性化实验室,开展创新性试验活动。 五、主干学科与专业主干课程 主干学科:力学、土木工程。 主干课程:土木工程制图、工程测量、土木工程地质、建筑材料、理论力学、材料力学、结构力学、土力学、工程流体力学、结构设计原理、基础工程、土木工程试验与量测技术、地震工程学导论、结构分析计算机程序与应用、各专业课群组课程等。 六、主要实践教学及基本要求

西华大学汽车设计课程设计

交通与汽车工程学院 课程设计说明书 课程名称: 汽车设计课程设计 课程代码: 8203381 题目:中型载重车膜片弹簧离合器设计 (后备功率小) 年级/专业/班: 学生姓名: 学号: 开始时间:2010 年12 月 27 日 完成时间: 2011 年1月14 日 课程设计成绩: 学习态度及平时成绩(30)技术水平与实 际能力(20) 创新(5) 说明书(计算书、图纸、分 析报告)撰写质量(45) 总分 (100)

指导教师签名: 年月日 目录 摘要 (2) 引言 (3) 1离合器基本参数及尺寸的确定 (4) 1.1摩擦片的外径D及其他尺寸的确定………………………………………4 1.2离合器后备系数β的确定 (4) 1.3单位压力P 的确定 (5) 0 2离合器基本参数的约束条件 (7) 3 离合器主要零部件的设计计算 (7) 3.1膜片弹簧设计 (8) 3.2压盘设计………………………………………………………………………14 3.3离合器盖设计 (15) 3.4从动盘设计 (15) 4操纵机构设计计算 (16) 4.1选择操纵机构的型式…………………………………………………………17 4.2确定操纵机构尺寸参数 (17) 4.3校核踏板行程 (18) 4.4校核踏板力……………………………………………………………………18 5参考文献…………………………………………………………………………20 6致谢 (21)

摘要 本次设计的是中型载重车膜片弹簧离合器,根据所给汽车发动机的最大转矩、最大转速、最大功率等基本参数确定离合器基本参数。在本次设计中主要对膜片弹簧、压盘、离合器盖、从动盘及操纵机构进行设计,同时也对膜片弹簧及操纵机构等的结构和性能进行了校核。在设计过程中注重对膜片弹簧及操纵机构进行设计。同时应用计算机语言编程对相关参数进行校核及调整。 关键词:膜片弹簧、膜片弹簧离合器、操纵机构、强度

中南大学_课程设计_钢桥

中南大学_课程设计_钢桥

中南大学土木建筑学院桥梁方向 钢桥课程设计说明书 姓名: 班级: 学号: 指导老师: 年月

钢桥课程设计任务书 一、设计目的: 跨度L=42米单线铁路下承载式简支栓焊钢桁梁桥部分设计。 二、设计依据: 1. 设计《规范》 现行桥规,也可采用铁道部1986TB12-85《铁路桥涵设计规范》简称《老桥规》。 2. 结构基本尺寸 计算跨度L=42m;桥跨全长L=42.10m;节间长度d=7.00m; 主桁节间数n=6;主桁中心距B=5.75m;平纵联宽B0=5.30m; 主桁高度H=12.00m;纵梁高度h=1.45m;纵梁中心距b=2.00m; 3. 钢材及其基本容许应力: 杆件及构件——16Mna;高强螺栓——40B;精制螺栓——ML3;螺母及垫圈——45号碳素钢;铸件——ZG25;辊轴——锻钢35钢材的基本容许应力参照1986年颁布的《铁路桥涵设计规范》。 4. 结构的连接方式: 桁梁杆件及构件,采用工厂焊接,工地高强螺栓连接; 人行道托架采用精制螺栓连接; 焊缝的最小正边尺寸参照《桥规》; 高强螺栓和精制螺栓的杆径为Φ22,孔径d=23mm; 5. 设计活载等级——标准中活载 6. 设计恒载 主桁P3=16.8kN/m;联结系P4=2.85kN/m;桥面系P2=7.39kN/m; 高强螺栓P6=(P2+P3+P4)×3%;检查设备P5=1.00kN/m; 桥面P1=10.00kN/m;焊缝P7=(P2+P3+P4)×1.5%; 计算主桁恒载时,按每线恒载P=P1+P2+P3+P4+P5+P6+P7。 三、设计内容: 1. 主桁杆件内力计算,并将计算结果汇整于2号图上; 2. 围绕E2节点主桁杆件截面选择及检算; 3. 主桁E2节点设计及检算;

(项目管理)西华大学建设项目环境影响评价课程设计

(项目管理)西华大学建设项目环境影响评价课程 设计

课程设计说明书题目:西华大学建设项目 (营运期)环境影响评价 学院(直属系):能源与环境学院年级/专业/班:xx级环境工程(1)班学生姓名:x x 学号:xxxxx xxxxxx 指导教师:梅自良 开题时间: 2013 年12 月10 日完成时间: 2013 年12 月24 日 目录 摘要-1- 1总则-1- 1.1任务由来-1-

1.2编制依据-2- 1.2.1法律法规-2- 1.2.2其他相关资料-2- 1.2.3技术评价范围-3- 1.3编制目的-3- 1.4评价工作原则-4- 1.5选址合理性-4- 1.6评价标准-4- 1.6.1环境质量标准-4- 1.6.2污染物排放标准-5- 1.7评价因子确定-7- 1.8环境控制及环境保护目标-8- 1.9评价重点及评价工作等级-8- 1.9.1评价工作重点-8- 1.9.2评价工作等级-9- 1.9.3评价范围-9- 2建设项目概况-10- 2.1项目名称、性质、建设地点、建设单位-10- 2.2建设规模及内容-10- 2.3项目总平面布置-10- 2.4公用工程及辅助设施-11-

2.4.1给水-11- 2.4.2排水-11- 2.4.3消防-12- 2.4.4供电-12- 2.4.5供气-12- 3工程分析-12- 3.1工艺流程及污染工序流程简述-12- 3.1.1工艺流程简述-12- 3.1.2产污位置及产污种类分析-13- 3.2主要原辅材料用量-13- 3.3水量平衡-14- 3.4施工期污染影响因素分析-15- 3.5营运期污染影响因素分析-18- 3.5.1主要环境污染问题-18- 3.5.2主要污染物排放-18- 3.5.3营运期污染物排放汇总-20- 3.6项目清洁生产分析-21- 4环境影响预测和评价-21- 4.1空气环境质量现状监测与评价-21- 4.1.1空气环境质量现状监测-21- 4.1.2现状评价-23-

下承式栓焊简支钢桁梁桥设计计算书分解

仁爱学院下承式栓焊简支钢桁梁桥 课程设计 姓名: 学号: 班级: 设计时间:

目录 第一章设计资料……………………………………………………………… 第一节基本资料………………………………………………………… 第二节设计内容………………………………………………………… 第三节设计要求…………………………………………………………第二章杆件内力计算………………………………………………………… 第一节主力作用下主桁杆件内力计算………………………………… 第二节横向风力作用下的主桁杆件附加内力计算…………………… 第三节制动力作用下的主桁杆件附加内力计算……………………… 第四节疲劳内力计算…………………………………………………… 第五节主桁杆件内力组合………………………………………………第三章主桁杆件截面设计…………………………………………………… 第一节下弦杆截面设计………………………………………………… 第二节上弦杆截面设计………………………………………………… 第三节端斜杆截面设计………………………………………………… 第四节中间斜杆截面设计……………………………………………… 第五节吊杆截面设计…………………………………………………… 第六节腹杆高强度螺栓计算……………………………………………第四章弦杆拼接计算和下弦端节点设计…………………………………… 第一节E2节点弦杆拼接计算…………………………………………… 第二节E0节点弦杆拼接计算…………………………………………… 第三节下弦端节点设计………………………………………………….. 下弦端节点设计图………………………………………………………………

电力系统分析课程设计

1前言 (2) 1.1短路的原因 (2) 1.2短路的类型 (2) 1.3短路计算的目的 (2) 1.4短路的后果 (3) 2电力系统三相短路电流计算 (4) 2.1电力系统网络的原始参数 (4) 2.2制定等值网络及参数计算 (5) 2.2.1标幺制的概念 (5) 2.2.2有三级电压的的网络中各元件参数标幺值的计算 (6) 2.2.3计算各元件的电抗标幺值 (8) 2.2.4系统的等值网络图 (9) 2.3短路电流计算曲线的应用 (9) 2.4故障点短路电流计算 (10) 2.4.1f1点三相短路 (10) 2.4.2f3点短路 (12) 3电力系统不对称短路电流计算 (15) 3.1对称分量法的应用 (15) 3.2各序网络的制定 (16) 3.2.1同步发电机的各序电抗 (16) 3.2.2变压器的各序电抗 (16) 3.3不对称短路的分析 (17) 3.3.1不对称短路三种情况的分析 (17) 3.3.2正序等效定则 (20) 3.3.3不对称短路时短路点电流的计算 (21) 4结论 (27) 5总结与体会 (28) 6谢辞 (29) 7参考文献 (30)

1前言 在电力系统的设计和运行中,都必须考虑到可能发生的故障和不正常运行的情况,因为它们会破坏对用户的供电和电气设备的正常工作,而且还可能对人生命财产产生威胁。从电力系统的实际运行情况看,这些故障绝大多数多数是由短路引起的,因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。 短路是电力系统的严重故障。所谓短路,是指一切不正常的相与相之间或相与地(对于中性点接地的系统)发生通路的情况。 1.1 短路的原因 产生短路的原因很多,主要有如下几个方面:(1)元件损坏,例如绝缘材料的自然老化、设计、安装及维护不良所带来的设备缺陷发展成短路等;(2)气象条件恶劣,例如雷击造成的网络放电或避雷器动作,架空线路由于大风或导线覆冰引起电杆倒塌等;(3)违规操作,例如运行人员带负荷拉闸,线路或设备检修后未拆除接地线就加上电压等;(4)其他,如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等。 1.2 短路的类型 在三相系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相接地短路。三相短路也称为对称短路,系统各项与正常运行时一样仍处于对称状态。其他类型的短路都是不对称短路。 电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路的机会最少。三相短路虽然很少发生,但情况较严重,应给予足够的重视。况且,从短路计算方法来看,一切不对称短路的计算,在采用对称分量法后,都归结为对称短路的计算。因此,对三相短路的的研究是具有重要意义的。 1.3 短路计算的目的 在电力系统的设计和电气设备的运行中,短路计算是解决一系列问题的不可缺少的基本计算,这些问题主要是: (1)选择有足够机械稳定度和热稳定度的电气设备,例如断路器、互感器、瓷瓶、母线、电缆等,必须以短路计算作为依据。这里包括计算冲击电流以校验设备的电动力稳定度;计算若干时刻的短路电流周期分量以校验设备的热稳定度;计算指定时刻的短路电流有效值以校验断路器的断流能力等。 (2)为了合理地配置各种继电保护和自动装置并确定其参数,必须对电力网中发生的各种短路进行计算和分析。在这些计算中不但要知道故障支路中的电流值,还必须知道电流在网络中的分布情况。有时还要知道系统中某些节点的电压值。

西华大学二级减速器课程设计说明书

. . .. .. 课程设计说明书 课程名称:机械设计课程设计课程代码: 题目:二级斜齿圆柱齿轮减速器学生姓名:张伟荣 学号: 3120130316205 年级/专业/班: 13级机电2班 学院(直属系) :机械工程学院 指导教师:杜强

机械设计课程设计任务书 学院名称:机械工程学院专业:机械电子工程年级:2013级 学生姓名: 张伟荣学号: 3120130106205 指导教师: 杜强 一、设计题目带式运输机的减速传动装置设计 二、主要内容 ⑴决定传动装置的总体设计方案; ⑵选择电动机,计算传动装置的运动和动力参数; ⑶传动零件以及轴的设计计算;轴承、联接件、润滑密封和联轴器的选择及校验计算; ⑷机体结构及其附件的设计; ⑸绘制装配图及零件图;编写计算说明书并进行设计答辩。 三、具体要求 ⑴原始数据:运输带线速度v = 1.76 (m/s) 运输带牵引力F = 2700 (N) 驱动滚筒直径D = 470 (mm) ⑵工作条件: ①使用期5年,双班制工作,单向传动; ②载荷有轻微振动; ③运送煤、盐、砂、矿石等松散物品。 四、完成后应上交的材料 ⑴机械设计课程设计计算说明书; ⑵减速器装配图一张; ⑶轴类零件图一张; ⑷齿轮零件图一张。

五、推荐参考资料 ⑴西华大学机械工程与自动化学院机械基础教学部编.机械设计课程设计指导 书,2006 ⑵秦小屿.机械设计基础(第二版).:西南交大出版社,2012 指导教师杜强签名日期 2015 年 6 月 25日 系主任审核日期 2015 年 6 月 25 日

目录 一.传动方案的拟定……………………………………………………………………… 二.电动机的选择及传动装置的运动和动力参数计算………………………………… 三.传动零件的设计计算…………………………………………………………… 四.轴的结构设计及强度计算…………………………………………………………… 五.滚动轴承的选择与寿命计算…………………………………………………………… 六.键的强度计算…………………………………………………………… 七.联轴器的选择…………………………………………………………… 八.减速器机体结构设计及附件设计……………………………………………………………总结………………………………………………………………………………………… 参考文献……………………………………………………………………………………

相关文档
最新文档