直流锅炉的煤水控制与蒸汽参数调节

直流锅炉的煤水控制与蒸汽参数调节
直流锅炉的煤水控制与蒸汽参数调节

直流锅炉的煤水控制与蒸汽参数调节

600MW超临界机组的投产标志着我国火电机组的运行水平步入新境界,而直流锅炉也是大容量锅炉的发展方向之一。众所周知,蒸汽温度过高可能导致受热面超温爆管,而蒸汽温度过低将使机组的经济性降低,严重时可能使汽轮机产生水冲击。而这些现象在许多电厂均有发生,因此过热蒸汽温度与再热蒸汽温度直接影响到机组的安全性与经济性。超临界直流锅炉的运行调节特性有别于汽包炉,煤水控制与汽温、汽压调节的配合更为密切。下面针对襄樊电厂#5、#6机组所采用的SG1913/25.40-M957型号的锅炉,就机组启动至低负荷运行阶段,煤水控制与蒸汽参数调节浅谈一下自己的看法。机组启动阶段:根据锅炉的型号不同,不同容量的锅炉其转干态直流运行的最低负荷有所不同,一般在25%~35% BMCR 之间,我厂为210MW左右负荷开始转干态,在湿态情况下,其运行方式与强制循环汽包炉是基本相同的。汽水分离器及集水箱就相当于汽包,但是两者容积相差甚远,集水箱的水位变化速度也就更快。由锅炉启动疏水泵将集水箱的水打至凝汽器,与给水共同构成最小循环流量。其控制方式较之其它超临界直流锅炉有较大不同,控制更困难。给水主要用于控制启动分离器水位,锅炉启动及负荷低于35%BMCR时,且分离器水位在6.2~7.2m之间时,由给水泵出口旁路调门和给水泵的转速共同来控制省煤器入口流量保证锅炉的最小循环流量574t/h,保证锅炉安全运行。锅炉启动阶段汽温的调节主要依赖于燃烧主要控制,由旁路系统协助控制,通过投退油枪的数量及层次、调节炉前油压、减温水、高低旁的开度等手段来调节主再热蒸汽温度。此阶段启动分离器水位控制已可投自动,但是大多数锅炉的水位控制逻辑还不够完善,只是单纯的控制一点水位,还没有投三冲量控制,当扰动较大时水位会产生较大的波动,甚至根本无法平衡。此阶段要注意尽量避免太大的扰动,扰动过大及早解除自动,手动控制,以免造成顶棚过热器进入水。锅炉启动初期需要掌握好的几个关键点: 1 工质膨胀:工质膨胀产生于启动初期,水冷壁中的水开始受热初次达到饱和温度产生蒸汽阶段,此时蒸汽会携带大量的水进入分离器,造成贮水罐水位快速升高,锅炉有较大排放量,此过程较短一般在几十秒之内,具体数值及产生时间与锅炉点火前压力、温度、水温度、投入油枪的数量等有关。此时要及时排水,同时减少给水流量,在工质膨胀阶段附近,应保持燃料量的稳定,此时最好不要增投油枪。 2 虚假水位:虚假水位在整个第一阶段都有可能产生,汽压突然下降出现的情况较多,运行中应对虚假水位有思想准备,及时增加给水满足蒸发量的需要,加强燃烧恢复汽压。运行中造成汽压突然下降的原因主要有:汽机调门、高旁突然开大、安全阀动作、机组并网,切缸过中都有可能造成虚假水位,这一点和汽包炉是基本相同的。 3 投退油枪的时机及速度:投退油枪时要及时协调沟通,及时增减给水。保持一定的燃水比就基本上能维持汽温的稳定。为保持水位稳定,应避免在低水位时连续投入数枝油枪,或者水位很高调节困难时连续退出油枪。4 炉内稳燃在实行无油点火或节油点火的时候,一定要注意炉内的稳燃问题,如果发现气压偏低而气温居高不下,建议增加油枪数量,防止尾部积粉过多而造成尾部再燃烧,以及爆燃导致锅炉灭火。当增投油枪的同时,应当立即手动增加引风机静叶开度指令,提前防止瞬间爆燃使锅炉超压。 5 并网及初负荷:机组并网及负荷过程中负荷上升很快,此时应加强燃烧,及时增加给水。必要时手动关小高旁,稳住汽压避免汽压下降过大。 6 给水主旁路切换:此时应保持锅炉负荷稳定,切换过程中匀速稳定,保持省煤器入口足够流量及贮水罐水位的稳定,必要时排放多余给水。水位下降时及时提高电泵转速,开大调门。建议切换时就地手动开大给水主电动门,每开一点,就关小一点旁路门,可以在相当长的时间内保持给水主旁路都有一定的开度,这样调节起来裕度较大,安全性更高。

7 投入制粉系统:投入煤粉后负荷会升的很快,集水箱水位波动很大,很难控制。此时最重要的是要控制好给煤量和一次风量,避免进入炉膛的煤粉过多。同时控制好升负荷速度,及时控制给水,必要时退掉油枪(尤其是上层油枪)。起磨时提前打开主再热蒸汽减温水手动门,联系热工解除减温水负荷闭锁,必要时投入减温水控制汽温,防止超温及主机差胀增大。8 切换给水泵:切换给水泵时,保持锅炉负荷稳定,减少扰动。匀速提高待并泵的转速升高泵出口压力,在泵出口压力接近于母管压力时打开出口电动门开始供水,同时减少另一台泵的转速,降低出口流量,两台泵的增减速度要协调,保持稳定的一个给水流量,加减转速,不可太快、太猛,防止其出口压力激增造成另一台泵出口逆止门关闭给水流量剧减。切换过程

中注意监视泵的再循环阀(最小流量阀)自动动作正常,时刻注意给水流量的变化,发现异常及时手动调整。两台汽动给水泵并列运行时尽量保持两台小机转速相同,偏差不要太大。特别要注意的是并泵时最好解除给水泵的自动,防止给水平衡模块起作用造成给水流量剧减。锅炉点火后要密切监视过热器、再热器的金属壁温和出口汽温,具体应注意以下三点:出口汽温忽高忽低,说明还有积水,应加强疏水;出口汽温稳定上升,说明积水已经消除。各受热面的金属壁温在点火后会出现不均匀现象,如水冷壁一般中间温度高,两侧温度低。这时不应再增加燃料,当所有温度均超过该汽压下对应的饱和温度40℃,以及各管间最大温差在50℃以内时,才允许增加燃烧强度。从增加省煤器入口给水流量到贮水罐水位增加要经过比较长的时延,所以在手动控制给水时重在提前干预,根据水位变化速度,蒸汽流量(主汽流量及高旁流量)变化,燃烧情况等提前调节,否则很难调平衡。给水旁路调阀前后保持一定压差,但也不应太高,以免造成调门开度过小工作在非线性区域,使调门工作环境恶劣减少使用寿命。此过程中要始终保持省煤器入口流量在大于锅炉MFT 流量以上的一个数值,一般来说高出100t/h 就可以。随着负荷逐渐上升,启动疏水泵会随启动分离器水位,及集水箱水位的下降自动停止,一定时间后又会随水位的上升自动启动,如果不自动启动,必须马上采取手动启动,或开启放水门降低启动分离器液位。现阶段电泵转速还是手动控制,所以要及时调整电泵转速,尤其在大幅度调整给水流量时,同时要防止电泵过负荷,加强对电泵的监视,防止电机绕组温度、油温、瓦温过高、振动过大。低负荷运行阶段:在负荷大于25%~35%BMCR 以上时锅炉即转入直流运行方式。此后锅炉运行在亚临界压力以下。锅炉进入直流状态,给水控制与汽温调节和前一阶段控制方式有较大的不同,给水不再控制分离器水位而是和燃料一起控制汽温即控制燃水比

B/G。如果燃水比B/G 保持一定,则过热蒸汽温度基本能保持稳定;反之,燃水比B/G 的变化,则是造成过热汽温波动的基本原因。因此,在直流锅炉中汽温调节主要是通过给水量和燃料量的调整来进行。但在实际运行中,考虑到上述其它因素对过热汽温的影响,要保证B/G 比值的精确值是不现实的。特别是在燃煤锅炉中,由于不能很精确地测定送入炉膛的燃料量,所以仅仅依靠B/G 比值来调节过热汽温,则不能完全保证汽温的稳定。一般来说,在汽温调节中,将B/G 比值做为过热汽温的一个粗调,然后用过热器喷水减温做为汽温的细调手段。对于直流锅炉来说,在本生负荷以上时,汽水分离器出口汽温是微过热蒸汽,这个区域的汽温变化,可以直接反映出燃料量和给水蒸发量的匹配程度以及过热汽温的变化趋势。所以在直流锅炉的汽温调节中,通常选取汽水分离器出口汽温做为主汽温调节回路的前馈信号,此点的温度称为中间点温度。依据该点温度的变化对燃料量和给水量进行微调。大多数直流炉给水指令的控制逻辑是这样的:给水量按照燃水比跟踪燃料量,用中间点温度对给水量进行修正。直流锅炉一定要严格控制好水煤比和中间点过热度。一般来说在机组运行工况较稳定时只要监视好中间点过热度就可以了,不同的压力下中间点温度是不断变化的,但中间点过热度可维持恒定,一般在10℃左右(假设饱和温度最高不是374℃,过临界后仍然上升),中间点过热度是水煤比是否合适的反馈信号,中间点过热度变小,说明水煤比偏大,中间点过热度变大,说明水煤比偏小。在运行操作时要注意积累中间点过热度变化对主汽温影响大小的经验值,以便超前调节时有一个度的概念。但在机组出现异常情况时,如给煤机、磨煤机跳闸等应及时减小给水,保持水煤比基本恒定,防止水煤比严重失调造成主蒸汽温度急剧下降。总之,水煤比和中间点过热度是直流锅炉监视和调整的重要参数。从转入直流到锅炉满负荷,水燃比因煤质变化、燃烧状况不同、炉膛及受热面脏污程度等不同有较大变化,一般从7.0~9.0 不等。如果机组协调性能不好,可在锅炉转入直流状态后手动控制,通过手动增减小机转速来调节给水,控制中间点温度。负荷变动过程中,利用机组负荷与主蒸汽流量做为前馈粗调,主蒸汽流量是根据调节级压力计算出来的不是很准确,推荐使用机组负荷做为前馈粗调整用。一般用机组负荷(万kW)乘以30t,得出该负荷所对应的大致给水流量,然后根据分离器出口温度细调给水流量。调整分离器出口温度时,包括调节给水时都要兼顾到过热器减温水的用量,使之保持在一个合适的范围内,不可过多或过少,留有足够的调节余地。同时还要监视好再热汽温度、受热面壁温等,严防超温,汽温也不可过低。锅炉升降负荷过程中,燃料变化很快锅炉的负荷波动也较大。当使用中速直吹式制粉系统时,从启动给煤机加煤到磨制出煤粉需要5分钟左右的时间,停止给煤后磨煤机内仍有较多的存粉,因此给煤量并不等于实际进入炉膛的煤量,不易及时判断出此时的升降负荷速度。油枪在机组运行时是不会被算为燃料量的,因此在增减油枪的同时,要将其发热值考虑进去。推荐看分离

器压力及其变化速度来控制给水流量。分离器出口温度建议看到小数点后的位数,做曲线时区间尽量小一些。再热汽温主要靠燃烧器摆角来调整,时滞性较大,一定要提前调整,在投停高加时要加强对主再热汽

温的调整。

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

燃煤蒸汽锅炉安全操作规程

行业资料:________ 燃煤蒸汽锅炉安全操作规程 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共13 页

燃煤蒸汽锅炉安全操作规程 第一条严格执行《一般安全守则》。 (一)烘炉 第一条对新建或大修炉墙后的锅炉,必须进行烘炉。 第二条烘炉前: 1、水压试验合格。 2、备好烘炉燃料、工具、安全护具及照明设施。 3、做好炉膛出口温度测点及取样点的准备工作。 4、安装好烘炉用的临时设施。 5、具备点火条件。 6、各排水阀、取样器阀门全部关闭。 7、如须继续煮炉,要准备好连续煮炉的工作。 第三条烘炉时: 1、开始烘炉,严禁用烈火烘烤,。 2、烘炉初期要自然通风,必要时,可启动风机进行强力通风。 3、烘炉时间要根据锅炉型号、炉墙结构、炉膛温度、砌筑质量等因素决定,新安装锅炉按出厂技术要求决定。燃烧强度根据锅炉尾部烟气温度进行控制。 4、温度缓慢升高,火焰分布要均匀。禁止急剧变化、灭火或断火。 5、监视炉墙变化,发现裂、坏、不平等缺陷时,要及时报告并做好记录。 6、对锅筒及各联箱的膨胀情况要随时监视并做好记录,发现异常情况,要采取措施消除。 第 2 页共 13 页

7、烘炉温度到第一次恒温时,每天定期排污一次,加强水循环,使各部受热均匀。 8、冬季烘炉,要采取防冻措施,保持锅炉房室温在5℃以上。 (二)煮炉 第一条煮炉前: 1、锅炉附机、燃料系统、软化水系统、给水系统均要试运行,能随时投入运行。 2、各系统配置的热工仪表、声响光色、信号、永久照明、通讯联络及消防设施等均安装完毕,并试运合格。 3、检查上、下锅筒、联箱的锈垢情况以确定煮炉时的加药量。 4、准备好煮炉的药品。 5、烘炉后,锅炉要在工作压力下进行一次水压试验,当烘炉与煮炉连续进行时,则水压试验可改在煮炉后检查完毕进行。 6、化验人员准备好化验所用器具和药品。第二条煮炉时: 1、要用合格的软化水,投入一只水位计,其余备用。锅炉水位必须保持接近最高水位,但不允许碱水进入蒸汽过热器内。 2、根据锅炉类型,按规定确定煮炉加药量: 加药量(kg/m水容积) ┃药品名称├─────┬─────┬─────┨ │第一类锅炉│第二类锅炉│第三类锅炉┃ ┃氢氧化钠(NaOH)│2-3│3-4│5- 6┃ ┃磷酸三钠(Na3PO4)│2-3│2-3│5- 第 3 页共 13 页

浅谈锅炉蒸汽品质

浅谈锅炉蒸汽品质 作者:陈坡一单位:乌鲁木齐石化公司化肥厂动力车间 【摘要】蒸汽品质对锅炉和机组的安全、经济运行影响很大,文章着重介绍了蒸汽品质的影响因素和改善蒸汽品质所应该采取的措施。 【关键词】蒸汽品质;影响因素;措施。 一、保证蒸汽品质的意义: 化肥厂动力车间的锅炉生产的S100过热蒸汽主要用于驱动一合成车间的4111K1T和4117K1T两大透平机组,蒸汽品质将直接影响锅炉和两大机组的安全、经济运行,提高蒸汽品质是保证炉机安全运行,确保化肥厂安、稳、长、满、优生产的先决条件。 目前,正常情况下,两台煤锅炉运行提供化肥厂生产所需要的蒸汽。2005年以来,由于两台煤锅炉老化,多次发生炉水品质低于标准从而影响蒸汽品质的情况。特别是2006年的7、8、9三个月,炉水中亚铁离子超标,严重影响到蒸汽品质,给锅炉和用汽工段的安全运行带来了重大隐患。为保证炉机的安全、经济运行,必须严格控制蒸汽品质。 蒸汽品质是通过质检科抽样化验蒸汽中二氧化硅的含量得出的,下面是对210次抽样结果做的一个数据统计: 对汽包锅炉而言,在高压下汽水腐蚀的问题日益突出,这就给锅炉的安全、经济运行带来困难。我将在这里简单分析蒸汽品质的恶化对机组安全、经济运行所带来的不利影响,蒸汽品质的影响因素,应该采取什么样的措施来保证蒸汽的品质合格。 二、蒸汽品质恶化的不利影响: 蒸汽品质是指蒸汽含杂质的多少,也就是指蒸汽的纯净程度。蒸汽含杂质过多就会引起过热器受热面、汽轮机流通部分和蒸汽管道沉积盐。⑴盐垢如沉积在过热器受热面管壁上,就会使传热能力降低,轻则使蒸汽吸热减少,过热蒸汽温度降低,排烟温度升高,锅炉效率降低;重则使管壁温度超过金属允许的极限温度,导致管子超温烧坏。⑵盐垢如沉积在汽轮机的流通部分,将使蒸汽的流通面积减小,造成叶片的粗糙度增加,甚至会改变叶片的形状,使汽轮机的阻力增大,出力和效率降低,此外还将引起叶片应力和轴向推力增加,甚至引起汽轮机振动增大,造成汽轮机事故。⑶盐垢如沉积在蒸汽管道的阀门处,可能引起阀门动作失灵和阀门漏汽。蒸汽品质恶化还会造成“汽水共腾”等很多负面的影响。 三、蒸汽品质的影响因素: 那么,蒸汽品质的影响因素有哪些呢?主要有以下两个大的方面:(1)蒸汽携带锅炉水:①锅炉压力对蒸汽带水的影响;锅炉压力越高,蒸汽越容易带水;②汽包内部结构对蒸汽带水的影响;汽包内径的大小,汽水引入、引出管的布置情况要影响蒸汽带水的多少,汽包内汽水分离装置不同,汽水分离效果就不一样;③锅水含盐量对蒸汽带水的影响;当锅

蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式 版

蒸汽过热器(锅炉)爆管剖析——调节 蒸汽温度正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 为了进一步从根源上找出爆管原因,全面分析了调节蒸汽温度的各种因素,以便彻底消除减温器事故隐患,见图2: 图2 面式减温器与省煤器进水示意图注:1——给水电动调节阀;2——给水旁通阀;3——逆止阀;4——给水直通阀;5——省煤器;6——汽包;7——减温水电动调节阀;8——减温水旋转调节阀;9——逆止阀;10——面式减温阀;11——减温器出水阀 过热蒸汽温度的调节在近1年时间内,由于8减温水旋转调节阀内漏,司炉

工不得已采用手动调节11减温器出水阀,控制水量的大小,从而达到调节汽温的目的。经过减温器以后的冷却水,接至省煤器之前与给水混合,通过4给水直通阀全部进入省煤器,因而保证了省煤器供水的稳定、可靠性。 (1)当过热蒸汽温度下降时:关小或关闭11减温器出水阀,由于冷却水量出口的减小或中断,使10面式减温器内水压增大,蒸汽将热量传播给低温冷却水,随着时间的延长,减温装置内冷却水温逐渐升高,体积不断增大,蒸汽放热与冷却水吸热之间的温差越来越小,则蒸汽传热的速度越来越慢,传播给冷却水的热量也就越少,蒸汽温度也就升高。

燃煤锅炉型号和参数的代表符号

锅炉型号和参数符号意义 工业锅炉产品共分三大类:蒸汽锅炉、热水锅炉、有机热载体炉 1、蒸汽锅炉产品型号由三部分组成,各部分之间用短横线相连,即: △△△××-××/×××-××123456 1——锅炉形式2——燃烧方式 3——额定蒸发量(t/h)4——额定蒸汽压力 5——过热蒸汽温度(饱和蒸汽不标)6——燃料种类 2、热水锅炉产品型号由三部分组成,各部分之间用短横线相连,即: △△△××-××/×××-×× 123456 1——锅炉形式2——燃烧方式 3——额定热功率(MW)4——允许工作压力(热水)Mpa 5——出水温度/进水温度℃6——燃料种类 锅炉形式代号 锅壳锅炉水管锅炉 锅炉型式代号锅炉型式代号 立式水管LS 单锅筒立式DL 卧式外燃WW 单锅筒纵置式DZ 立式火管LH 单锅筒横置式DH 卧式内燃WN 双锅筒纵置式SZ 双锅筒横置式SH 强制循环式QX

燃烧方式代号 燃烧方式代号燃烧方式代号固定炉排G 振动炉排Z 固定双层炉排 C 下饲炉排 A 活动手摇炉排H 沸腾炉排 F 链条炉排L 半沸腾炉排 B 往复炉排W 室燃炉S 抛煤机P 旋风炉X 倒转炉排加抛煤机 D 燃料种类代号 燃料种类代号燃料种类代号Ⅰ类劣质煤LⅠ木柴M Ⅱ类劣质煤LⅡ稻糠 D Ⅰ类无烟煤WⅠ甘蔗渣G Ⅱ类无烟煤WⅡ柴油YC Ⅲ类无烟煤WⅢ重油YY Ⅰ类烟煤AⅠ天然气QT Ⅱ类烟煤AⅡ焦炉煤气QJ Ⅲ类烟煤AⅢ液化石油气QY 褐煤H 油母页岩YM

贫煤P 其他燃料T 型煤X 3、有机热载体炉分液相炉和气相炉两类,有机热载体炉产品型号由二部分组成,二部分之间用短横线相连,即: △△△-△△ 12345 1——炉类型代号2——燃烧设备代号 3——炉体安置型式代号4——额定热功率:KW 5——燃料代号 炉类型代号按表1的规定表1 炉类型代号 有机热载体炉类型代号 液相炉Y 气相炉Q 燃烧设备代号按表2的规定表2 燃烧设备代号 燃烧设备代号 链条炉排L 抛煤机炉排P 其他炉排G 油燃烧器Y 气燃烧器Q 炉体安置型式代号按表3的规定表3 炉体型式代号 在机热戴本炉体安置型式代号 立式L

51单片机的热水锅炉温度控制系统设计

0 基于单片机热 水锅炉炉温控制系统设计

东北大学秦皇岛分校基于单片机的热水锅炉温度控制系统设计dennis 基于单片机热水锅炉炉温控制系统设计 作者:陈明 单位:东北大学秦皇岛 【摘要】本系统是基于单片机的锅炉温度控制,在设计中主要有温度检测、按键控制、水温控制、循环控制、显示部分、故障报警等几部分组成来实现温度控制。主要用数字温度传感器DS18B20来检测水温,用五个控制按键来实现按健控制,用液晶显示屏LCD1602来完成显示部分。并且通过模数转换把这些信号送入单片机中。把这些信号与单片机中内部设定的值相比,以判断单片机是否需要进行相应的操作,即是否需要打开或者关闭温度加热的操作,从而实现单片机自动控制的目的。本设计用单片机控制易于实现锅炉供暖、而且有造价低、程序易于调试、一部分出现故障不会影响其他部分的工作、维修方便。 【关键词】单片机(AT89C51),传感器DS18B20,扬声器,继电器 引言 自从20世纪90年代以来,单片机已经进入了一个高速发展的阶段,世界上著名的半导体厂商都注重新型单片机的研制、生产和推广。单片机的应用已经深入到来各个国家的国民经济当中。例如国内外目前知名的企业:atmel公司的avr单片机,motorola单片机,MICROCHIP单片机,东芝单片机,intel的8051单片机,宏晶STC单片机等等。 温度自动控制系统主要是有温度采集系统、液晶显示系统、扬声器报警系统和继电器控制系统四部分组成。本次设计主要是以温度采集到的温度为参考。如果温度在设定值内部,则系统正常工作,本系统的温度正常范围为0-50摄氏度,如果超出温度范围,则系统发出警报并控制系统负载停止工作。温度控制系统的编程软件为keil,仿真软件为proteus。 1. 热水锅炉温度控制系统设计 1.1方案极其论证 方案一: 用PLC做主要的设计技术,通过用其中的相关部件的开关控制达到锅炉水温的控制目的。但是由于对PLC相关配套的设备和仿真软件的限制,因此放弃了PLC方案。

锅炉主蒸汽温度低原因及处理

我厂三期机组主蒸汽温度低原因及处理 近期,我厂#6、7机组机组负荷在50%及以上时经常出现主蒸汽温度低现象,现总结其原因及其处理方向。 一、主蒸汽温度过低的危害 当主蒸汽压力和凝结真空不变,主蒸汽温度降低时,主蒸汽在汽轮机内的总焓降减少,若要维持额定 负荷,必须开大调速汽阀的开度,增加主蒸汽的进汽量。一般机组主蒸汽温度每降低10C,汽耗量要 增加 1.3%~1.5%。 主蒸汽温度降低时,不但影响机组的经济性,也威胁着机组的运行安全。其主要危害是: (1)末级叶片可能过负荷。因为主蒸汽温度降低后,为维持额定负荷不变,则主蒸汽流量要增加,末级焓降增大,末级叶片可能过负荷状态。 (2)末几级叶片的蒸汽湿度增大。主蒸汽压力不变,温度降低时,末几级叶片的蒸汽湿度将要增加,这样除了会增大末几级动叶的湿汽损失外,同时还将加剧开几级动叶的水滴冲蚀,缩短叶片的使用寿命。 (3 )各级反动度增加。由于主蒸汽温度降低,则各级反动度增加,转子的轴向推力明显增大,推力瓦块温度升高,机组运行的安全可靠性降低。 (4)高温部件将产生很大的热应力和热变形。若主蒸汽温度快速下降较多时,自动主汽阀外壳、调节级、汽缸等高温部件的内壁温度会急剧下降而产生很大的热应力和热变形,严重时可能使金属部件产生裂纹或使汽轮机内动、静部分造成磨损事故;当主蒸汽温度降至极限值时,应打闸停机。 (5)有水击的可能。当主蒸汽温度急剧下降50C以上时,往往是发生水冲击事故的先兆,汽轮机值班员必须密切注意,当主蒸汽温度还继续下降时,为确保机组安全,应立即打闸停机。 二、引起主蒸汽温度低的因素: 1)水煤比。 在直流锅炉动态分析中,汽轮机调节汽阀的扰动,对直流锅炉是一种典型的负荷扰动。当调节汽阀阶 跃开大时,蒸汽流量D和机组输出功率N E立即增加,随即逐渐减少,并恢复初始值,汽轮机阀前压力 P T一开始立即下降,然后逐渐下降至新的平衡压力。由于直流锅炉的蓄热系数比汽包锅炉小,所以直流锅炉的汽压变化比汽包锅炉大得多。当负荷扰动时,过热汽温T2近似不变,这是由于给水流量和燃 烧率保持不变,过热汽温就基本保持不变。 燃烧率扰动是燃料量、送风量和引风量同时协调变化的一种扰动。当燃烧率B阶跃增加时,经过一段 较短的迟延时间,蒸汽流量D会暂时向增加方向变化;过热汽温T2则经过一段较长的迟延时间后单调上升,最后稳定在较高的温度上;汽压P T和功率N E的变化也因汽温的上升而最后稳定在较高的数值。 当燃烧率不变而给水流量增加时,一开始由于加热段和蒸发段的伸长而推出一部分蒸汽,因此蒸汽流 量D、汽压P T、功率Nk几乎没有迟延的开始增加,但由于汽温T2的下降,最后虽然蒸汽流量D增加,而输出功率N E却有所减少;汽压Pr也降至略高于扰动前的汽压,过热汽温T2则经过一段较长的迟延时间后,最后稳定在较低的温度。 给水和燃料复合扰动时的动态特性是两者单独扰动时的动态特性之和,由图2可知,当给水和燃料按 比例变化时,蒸发量D立即变化,然后稳定在新的数值上,过热汽温则保持在原来的数值上(额定汽温)。这就是说明严格控制水煤比是直流炉主蒸汽调节的关键。

组态王课程设计--锅炉温度控制系统

锅炉温度控制系统上位机设计 1. 设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对温度进行控制,使得温度在要求范围内。这样,就实现了锅炉温度的控制。在该界面加入菜单项,可以查看历史系统报警。加入实时曲线、历史曲线和帮助界面按钮,可以使操作者更加快捷、准确的实现对系统的控制。如图1所示:

20吨,40吨燃煤生物质两用蒸汽锅炉热水锅炉生产厂家

20吨,40吨全自动燃煤燃煤生物质锅炉采用自动上料,自动出渣,运行自动化,出力足,运行稳定,使用寿命长。燃煤生物质锅炉用于工业生产时,需要根据用户生产需求选择锅炉的压力和蒸汽温度,有饱和蒸汽锅炉和过热蒸汽锅炉两种。燃煤生物质锅炉采用双锅筒偏置炉膛结构,炉膛内设计了旋风燃烬室结构,高温烟气通过高速旋转、混合燃烧、灰尘分离,从而达到炉内一级除尘、节能、环保 的效果;炉膛容积大,可适用各种生物质燃料。独立的风室结构,使 高效率,低成本,全球畅销炉型 SZL7-85/60-T 10吨燃煤生物质锅炉,价格区间20-70万,可致电咨询价格 纵向风室间风量调节灵敏可靠,横向布风均匀,克服了风塞、窜风、偏烧现象;受热面积大,升压快,出力足,能耗低。该系列产品获得国家科技进步二等奖,新加坡新产品博览会金狮奖,是国家节能工程重点推广产品。 锅炉之所以被列为燃煤生物质锅炉十大品牌之一,不仅是因为优质的锅炉质量,还有完善的服务体系和技术支持体系。 一、燃煤生物质锅炉优势

环保:配置专业除尘装置,环保效果好,拥有专业的脱硫脱硝经验; 节能:卧式三回程大炉膛设计,内设旋风燃烬室,燃尽率、热效率高; 已达成合作项目超100000例,可实地考察 二、燃煤生物质锅炉选型 燃煤生物质锅炉的型号非常多,用户生产用锅炉时,需要的蒸汽量也各有不同,对蒸汽温度要求各不一样,用户采购燃煤生物质锅炉,最重要的是要选型。 燃煤生物质锅炉选型需要了解如下的参数: 1、需要的蒸汽温度 2、单位时间内需要的蒸汽量 3、辅机配置要求 4、属于锅炉更换,还是新上项目 三、燃煤生物质锅炉应用领域 1、食品行业,化工行业,包装行业,制药行业,生物设备行业,洗涤熨烫,混凝土养护,清洗等。 2、不同行业需要的蒸汽压力和温度不同,常见锅炉压力有1.0兆帕,1.25兆帕,1.6兆帕,相应的蒸汽温度是184度,194度,204度。锅炉实际使用压力可在额定压力以下随意调整,满足生产需求。 3、我司针对各行业的生产工艺都颇有研究,可根据用户所处行业,定制锅炉选型及配置方案。 四、燃煤生物质锅炉图片

锅炉内胆温度控制系统设计

锅炉内胆温度控制系统设计 一.引言 过程控制是自动化的重要分支,其应用范围覆盖石油、化工、制药、生物、医疗、水利、电力、冶金、轻工、建材、核能、环境等许多领域,在国民经济中占有极其重要的地位。无论是在现代复杂工业生产过程中还是在传统生产过程的技术改造中,过程控制技术对于提高劳动生产率、保证产品质量、改善劳动条件以及保护生态环境、优化技术经济指标等方面都起着非常重要的作用。 过程控制的主要任务是对生产过程中的有关参数(温度、压力、流量、物位、成分、湿度、PH值和物性等)进行控制,使其保持恒定或按一定规律变化,在保证产品质量和生产安全的前提下,是连续型生产过程自动的进行下去。实际的生产过程千变万化,要解决生产过程的各种控制问题必须采用有针对性的特殊方法与途径。这就是过程控制要研究和解决的问题。二.任务和要求 任务:设计锅炉内胆温度控制系统,选择合适的传感器、控制器和执行器,使其满足一定的控制要求。 要求:本系统的控制对象为锅炉内胆的水温,要求锅炉内胆的温度的稳定值等于给定值,误差保持在 5%的误差带以内。 三.总体方案 系统组成:本实验装置由被控对象和控制仪表两部分组成。系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由日本三菱变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。1.原理框图 图1

2.简要原理 单闭环锅炉水温定值控制系统的结构示意如课程设计指导书所示,图1为其结构框图。其中锅炉内胆为动态循环水,磁力泵、电动调节阀、锅炉内胆组成循环供水系统。而控制参数为锅炉内胆的水温,即要求锅炉内胆的水温等于设定值。先通过变频器-磁力泵动力支路给锅炉内胆打满水,然后关闭锅炉内胆的进水阀。待系统投入运行后,再打开锅炉内胆的进水阀,允许变频器-磁力泵以固定的小流量使锅炉内胆的水处于循环状态。在锅炉内胆水温的控制过程中,由于锅炉内胆由循环水,因此锅炉内胆循环水水温控制相比于内胆静态水温控制时更充分,因而控制速度有较大的改善。 在结构原理框图中可以清楚的看出,我们给定温度的设定值,将温度传感器的值与设定值相比较,把偏差值送入PID调节器,PID调节器的输出信号送入可控硅调压装置,经调压装置输出的电压信号来控制加热装置的阻值,从而控制锅炉内胆的水温。此控制系统为单闭环反馈系统,只要PID参数设置的合理,就能够使系统达到稳定。 3.优缺点分析 优点:单闭环系统结构简单,稳定性好、可靠性高,在工业控制中得到广泛的应用。 缺点:对动态特性复杂、存在多种扰动或扰动幅度很大,控制质量要求高的生产过程,简单控制系统难以满足要求 四.元器件的选择与参数整定 1.元器件的选择: (1)被控对象 由不诱钢储水箱、4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒构成)、冷热水交换盘管和敷朔不锈钢管道组成。 模拟锅炉:本装置采用模拟锅炉进行温度实验,此锅炉采用不锈钢精制而成,设计巧妙。 管道:整个系统管道采用不诱钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。有效提高了实验装置的使用年限。其中储水箱底有一个出水阀,当水箱需要更换水时,将球阀步打开直接将水排出。 (2)检测装置 变送器:采用工业用的扩散硅压力变送器,含不诱钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。 温度传感器:本装置采用六个Pt100传感器,分别用来检测上水箱出口、锅炉内胆、锅炉夹套以及盘管的水温。经过调节器的温度变送器,可将温度信号转换成4~20mA DC电流信

锅炉过热蒸汽温度控制系统设计

锅炉过热蒸汽温度控制系统设计 一、摘要 这次课程设计任务是对锅炉过热蒸汽温度控制系统进行设计与分析。在控制系统的设计与分析中,分别对串级控制系统和单回路控制系统进行了分析与阐述,通过分析比较发现,采用串级控制系统控制效果更好,可以使系统更能适应不通环境,从而达到更好的控制效果。通过使用该控制系统,可以使锅炉过热器出口蒸汽温度在允许的范围内变化,并保证过热器壁温度不超过工作允许的温度,使其能够正常工作。 二、锅炉设备的介绍及设计任务的分析 1、锅炉设备介绍 锅炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 锅炉设备根据用途、燃料性质、压力高低等有多种类型和名称,工艺流程多种多样,常用的锅炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 燃料与空气按照一定比例送入锅炉燃烧室燃烧,生成的热量传递给蒸汽发生系统,产生饱和蒸汽,形成一点观其文的过热蒸汽,在汇集到蒸汽母管。过热蒸汽经负荷设备控制,供给负荷设备用,于此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风送往烟囱,排入大气。

过热蒸汽送负荷设备 热空气汽包 炉膛 烟气排出 冷空气送入 水送入 热空气送往炉膛过热器 减温器 空气预热器 图1锅炉设备主要工艺流程图 锅炉设备的控制任务是根据生产负荷的需要,供应一定压力或温度的蒸汽,同时要使锅炉在安全、经济的条件下运行。为达到这些控制要求,锅炉设备将有多个不同的控制系统,如下: 锅炉汽包水位控制系统,要求保证汽包水位平稳; 锅炉过热蒸汽温度控制系统,要求保证过热蒸汽温度稳定; 锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现逻辑提量和逻辑减量; 锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现燃烧过程的经济运行; 锅炉炉膛负压控制系统,要求保证炉膛负压在一定范围内,以保证锅炉的安全运行。 锅炉安全连锁控制系统,以防止回火和脱火。 本设计根据任务要求主要对锅炉过热蒸汽温度控制系统进行设计与分析。 2、任务分析与设计思路 锅炉过热蒸汽温度控制系统则是锅炉系统安全正常运行,确保蒸汽质量的重要部分。这个设计我们的任务是锅炉过热蒸汽温度控制系统的设计与分析。 蒸汽过热系统包括一级过热器、减温器、二级过热器。控制任务是使过热器

燃煤锅炉改燃气锅炉分析

燃煤锅炉改燃气锅炉分析 燃煤锅炉在实际使用运行中,热效率低,能源浪费大,排尘浓度大,煤的含硫量高,对大气污染严重。尤其是近年来,能源供需和环境污染的矛盾日益突出。天然气是目前世界上一种最清洁的燃料,它燃烧充分,热效率高,对大气污染又低,有很好的环保性能。同时,气体燃料通过管道输送,可极大的减小劳动强度,改善劳动条件,降低运行成本。根据新的环保法,推荐使用清洁燃料或天然气,对产生大气污染的设备要实行监管,严格限定污染物的排放量,实施“碧水蓝天工程” ,各级政府会采取相应措施,制定了相应的强制性法规,限制燃煤锅炉的使用,例如北京、上海、西安等地不再批准建设新的燃煤锅炉房,原有的锅炉房一律改造为燃气锅炉。国家“西气东输” 、“川气东送”等工程的实施,为锅炉的煤改气提供了优质、充足、廉价的气源。 以下以某厂为例,对燃煤锅炉与燃天然气锅炉的改造、运行进行分析。 一、基本情况 某厂原有10t/h燃煤蒸汽锅炉一台,该锅炉为上海四方锅炉厂生产,型号SHL-1.25-A II 型,2000年生产,2003年投入使用。锅炉炉体受压元件基本完好,有继续使用价值;锅炉的给水系统和送、引风系统基本完好,非常适宜改造为燃气锅炉。 1、锅炉参数 ①额定出力10t/h ②额定工作压力1.25Mpa ③给水温度105 C ④设计效率>90% ⑤使用燃料:燃煤 ⑥燃料消耗量:5t 标准煤/吨蒸汽 ⑦燃烧方式室燃 ⑧电能消耗(风系统)96.4Kw 2、改造要求 用户要求将现有的一台10t/h燃煤蒸汽锅炉改造为天然气锅炉。并达到如下目标: 1)保持原锅炉的额定参数(如汽温、汽压、给水温度等不变) 2)保持或提高原锅炉的出力和效率 3)通过改造达到消除烟尘,满足环保要求

锅炉水质处理及水分析

Q/QH 锅炉水质处理及水分析 青海油田分公司供水供电公司发布 I

锅炉水质处理及水分析 1 范围 本规程适用于中国石油天然气股份有限公司青海油田分公司供水供电公司发电车间 2 规范性引用文件 锅炉水质处理及水分析(1988年)。 3 天然水和水的预处理 3.1 概述 3.1.1 天然水中的杂质 气体:O2、CO2 分类悬浮物:泥沙、腐殖酸、微生物等 溶解固形物 溶解固形物最常见的有八种离子:CLˉ、SO42-、HCO3ˉ、CO32-四种阴离子和Na+、Mg2+、Ca2+、K+四种阳离子。 使用地下水时,原水中本来几乎不含,腐殖酸,微生物等,而在长管线运送过程中水中增加大量的管路腐蚀产物,以及中转过程中增加和微量有机物。 被如上杂质污染的水直接用来作为锅炉给水时,对锅炉和蒸汽品质都会直接或间接地造成危害,其危害有: 1、产生水垢与沉渣,堵塞和影响传热效果; 2、对锅炉产生腐蚀,减少锅炉使用寿命; 3、恶化蒸汽品质,造成用汽设备的结盐和腐蚀。 我们把污染天然水的杂质也可简单归纳为如下几种: 1、浊度: 浊度就是水的浑浊程度,用度表示,1度也叫1mg/L,即表示1水中所含悬浮物杂质的毫克数。但是,用散射光性能测定浊度时单位应采用福马单位。 2、硬度: 硬度表示结垢物质的含量多少,Ca2+、Mg2+含量的总和称为总硬度,硬度有碳酸盐硬度和非碳酸硬度之分。碳酸盐硬度,是指水中硬度由钙、镁的碳酸盐沉淀。因此碳酸盐硬度又叫暂时硬度。非碳酸盐硬度,是指水中硬度由钙、镁的非碳酸盐组成。其特点是:当水温升高到一定高度时也就是暂时硬度和永久硬度之和。 硬度的单位是毫摩尔/升(mM或mmol/L) 3、碱度 水中能够消耗的物质的量称为碱度。碱度可分为重碳酸根碱度、碳酸根碱度和氢氧根碱度,总碱度为它们之和,但事实上重碳酸根碱度和氢氧根碱度不能同时存在。 用甲基橙为指示剂测出的碱度为总碱度,又称全碱度。用酚酞为指示剂测出的碱度只包含了全部的氢氧根碱度各碳酸根碱度。其单位也是mmol/L。 原水为地下水时,该原水的碱度基本上是由HCO3ˉ造成。因此当碱度小于硬度时,测出的碱度就是水中的暂时硬度,当碱度大于硬度时水中就有了负硬。 2

20吨燃煤蒸汽锅炉技术方案

20吨燃煤蒸汽锅炉技术方案 燃煤蒸汽锅炉控制方案 燃煤蒸汽锅炉控制器技术方案一、设计依据和原则 依据锅炉监控系统的设计要求,按照自控装置系统必须科学、合理、成熟、安全可靠、稳定、可扩展以及性价比高的原则进行设计,并符合《自动化控制工程规范国家标准》和《计算机软件工程规范国家标准》的要求以及国标《压力容器安全规范》。 二、模拟量采集说明: 主要记录参数:汽包水位检测、蒸汽压力、炉膛压力、给水流量、蒸汽流量、省煤器前后温度、炉膛温度、烟道温度; 三、硬件说明 1.鼓、引风机,给水泵采用ABB变频器; 2.显示控制仪表采用香港昌辉仪表; 3. 电器元器件采用正泰产品; 4. 给水系统采用三冲量控制; 5(引风机采用PID自动控制; 6(鼓风机控制采用人工给定。 四、控制对象属性 控制对象:燃煤蒸汽锅炉SZL20-1.25-AII 控制方式:锅炉蒸汽压力控制 压控范围:0-1.25MPa 五、燃煤蒸汽锅炉控制 1(手动控制

在硬件手动状态下,可以直接对各负载设备进行操作,当发生一般故 燃煤蒸汽锅炉控制方案障,仪表作相应指示,发生汽包超压、汽包水位极低等严重故障时,仪表显示故障部位,同时自动切断电源,音响报警提示操作者,保证系统安全运行。 2.自动控制 ?鼓引风机连锁,先启动引风机再启动鼓风机、炉排;停止时先停止鼓风机再停止引风机、炉排。 ?引风机PID控制:引风机根据炉膛负压变频控制,炉膛压力增大引风机频率增加,炉膛压力减小引风频率减小. ?锅炉给水三冲量控制:根据汽包液位、给水流量、蒸汽流量调节给水变频器。 3(系统分测试和运行功能。 六、故障报警及保护 1)(汽包压力超高保护 锅炉汽包压力大于设定的汽包压力时,进入连锁鼓引风机及炉排,声光报警。故障指示“汽包压力超高故障”,同时显示“蒸汽压力值”,故障排除后,经复位才能重新正常工作。 2)( 锅炉缺水保护 锅内水位低于警戒水位时,进入连锁鼓引风机及炉排,并声光报警。故障显示“锅炉水位超低限”。故障消除后,经复位才能重新正常工作。 3)( 烟道温度超温保护 当烟道温度超过设定值时,进入连锁鼓引风机及炉排,故障显示“锅炉排烟温度超高限”,同时显示“排烟温度值”故障排除后自动复位。 4)炉膛压力超高报警

蒸汽冷凝水酸性原因

1蒸汽冷凝水受污染的原因 冷凝水受铁离子污染的主要原因是,蒸汽冷凝水系统和冷凝水回收金属管道发生了腐蚀,而腐蚀的主要原因是蒸汽中所含有的Ο2和СΟ2 (1)氧腐蚀 由于锅炉给水不除氧或出氧不合格(除氧未达到104℃),给水中的溶解氧进入锅炉,在高温锅水中部分随着蒸汽一起蒸发出来(部分与锅炉金属发生了反映)进入蒸汽中,又伴随着蒸汽冷凝,溶解到蒸汽冷凝水中,如果蒸汽冷凝水回收系统不密闭(开式回收或被加热介质进入),空气中的溶解氧也会溶解到冷凝水中,因此,蒸汽冷凝水中含有一定量的溶解氧会对管道和回收系统的金属表面进行腐蚀。 Ο2+Fе+Н2Ο→Fе(ΟН)2 Ο2+ Fе(ΟН)2+Н2Ο→Fе(ΟН)3 Fе(ΟН)2 +Fе(ΟН)3→Fе3Ο4+Н2Ο (2)游离二氧化碳造成的腐蚀 冷凝水中的二氧化碳主要来源于锅炉的补给水或碳酸盐阻垢剂。这是由于天然水中含有大量碳酸氢盐,多数工业锅炉为了防止结垢常常加入过量的碳酸钠,在高温的锅水中碳酸氢盐和碳酸盐受热分解,释放出游离的二氧化碳,并随着蒸汽进入冷凝水中。 НСΟ3-→СΟ2↑+Н2Ο+СΟ32- СΟ32-+Н2Ο→СΟ2↑+ΟН- СΟ2气体被蒸汽携带,会使蒸汽冷凝水或湿蒸汽显弱酸性,水中СΟ2虽然只显弱酸性,但由于蒸汽一般都比较纯净,冷凝成水后缓冲性很小,少量溶有1mgСΟ2时,水的ΡН值便可由7.0降至5.5左右。水中的СΟ2可使水产生Н+,而Н+与溶解氧同是腐蚀电池中阴极去极化剂,大大加速了阳极金属的腐蚀。 СΟ2使金属发生酸腐蚀,又使其发生电化学腐蚀。因此,冷凝水中的СΟ2具有较强的腐蚀性,特别是在有氧的存在下。 СΟ2+Н2Ο→НСΟ3-+ΟН- 在冷凝水系统中,同时含有Ο2和СΟ2,将会明显地加速管道和泵的金属腐蚀,促使冷凝水中的含铁量迅速增高,直接将受污染的蒸汽冷凝水作为锅炉补水,(冷凝水中若不含有Ο2和СΟ2冷凝水不会污染),会造成锅炉给水系统及锅炉本体腐蚀,冷凝水中携带的Fе3+及腐蚀产物同样会引起锅炉腐蚀和在锅炉内积聚堆积,因此不经过处理的受污染的蒸汽冷凝水是不能直接作为锅炉补给水的。 2蒸汽冷凝水作为锅炉补给水的水质防范措施 为了防止冷凝水中铁含量增高而引起锅炉结垢和腐蚀,可以采用下列几种处理措施。(1)从提高锅炉补水品质入手,减少蒸汽中Ο2和СΟ2的含量,从而防止冷凝水对回收管道和回收系统的腐蚀来保证冷凝水中的铁含量,达到锅炉给水标准。 要减少锅炉给水中的溶解氧含量必须搞好锅炉给水的除氧处理。目前对≥6t/h的锅炉,一般有除氧器,应该尽可能投入运行,同时补充投加化学除氧剂处理。对小型直流式,贯流式燃油燃汽锅炉,可以直接投加化学除氧剂处理;对≤4t/h的锅炉可以不进行除氧处理。 要减少蒸汽中的二氧化碳,必须降低锅炉给水中碳酸盐碱度。对于原水碱度较高的应采取降低碱度处理,对于原水碱度较低的,在采取软化处理时,不宜加碳酸钠而应加适量的磷酸三钠来消除给水残余硬度和提高锅水碱度,必要时还可以设脱碳器除二氧化碳。(要增加补水分析项目) (2)、冷凝水采用闭式回收,彻底消除外界空气中的氧和二氧化碳进入回收系统。(3)、杜绝用热设备泄漏,防止被加热介质进入回收系统。 3蒸汽冷凝水作为锅炉补给水的水质补救措施

锅炉过热蒸汽温度控制系统

锅炉过热蒸汽温度控制系统 在燃煤锅炉运行中,过热蒸汽温度是一个很重要的控制参数。过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度较高,可能造成过热器蒸汽管道损坏;过热蒸汽温度过低,会降低内功率。所以在锅炉运行中,必须保持过热蒸汽温度稳定在规定值附近。 本文介绍模糊控制在中小型燃煤锅炉过热蒸汽温度中的应用,采用模糊控制系统的思路,并用此方法控制燃煤锅炉的过热蒸汽温度,使得锅炉过热蒸汽温度即使在扰动幅度较大的情况下仍能保持平稳。模糊控制的控制算法不依赖于对象的数学模型,算法简单,易于实现,且对干扰和对象模型时变具有较强的适应性,它能根据输出偏差的大小进行自动调节,使输出达到给定值。能提高国内锅炉的燃烧效率、燃料适应性、负荷调节性能、污染、灰渣等众多独特优点而受到越来越广泛的重视,在电力、供热、工厂蒸汽生产中得到越来越广泛的应用。 以某600MW汽轮发电机组的汽包锅炉为例,其过热蒸汽生产流程简图和流程图如下图所示: 过热蒸汽流程图

1. 1 过热蒸汽温度控制的任务 过热蒸汽温度控制的主要任务是维持过热器出口温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全;过热蒸汽温度偏低,则会降低发电机组能量转换效率。据分析,气温每降低5℃,热经济性将下降 1 %;且汽温偏低会使汽轮机尾部蒸汽湿度增大,甚至使之带水,严重影响汽轮机的安全运行。该机组要求控制过热蒸汽温在5 3 8~ 5 4 8℃的范围内。 2 .2 影响过热蒸汽温度的主要因素 2 .2. 1 燃料、给水比(煤水比) 只要燃料、给水比的值不变,过热汽温就不变。只要保持适当的煤水比,在任何负荷和工况下,直流锅炉都能维持一定的过热汽温。 2.2. 2 给水温度 正常情况下,给水温度一般不会有大的变动;但当高压加热器因故障退出运行时,给水温度就会降低。对于直流锅炉,若燃料不变,由于给水温度降低时,加热段会加长、过热段缩短,因而过热汽温会随之降低,负荷也会降低。 2.2. 3 过剩空气系数 过剩空气系数的变化直接影响锅炉的排烟损失。影响对流受热面与辐射受热面的吸热比例。当过剩空气系数增大时,除排烟损失增加、锅炉效率降低外炉膛水冷壁吸热减少,造成过热器进口温度降低、屏式过热器出口温度降低;虽然对流过热器吸热量有所增加,但在煤水比不变的情况下,末级过热器出口汽温会有所下降。过剩空气系数减小时的结果与增加时的相反。若要保持过热汽温不变,则需重新调整煤水比。 2.2. 4 火焰中心高度 火焰中心高度变化造成的影响与过剩空气系数变化的影响相似。在煤水比不变的情况下,火焰中心上移类似于过剩空气系数增加,过热汽温略有下降;反之,过热汽温略有上升。若要保持过热温不变,亦需重新调整煤水比。 2.2. 5 受热面结渣 煤水比不变的调节下,炉膛水冷壁结渣时,过热汽温会有所降低;过热器结渣或积灰时,过热汽温下降较明显。前者情况发生时,调整煤水比就可;后者情况发生时,不可随便调整煤水比,必须在保证水冷壁温度不超限的前提下调整煤水比。对于直流锅炉,在水冷壁温度不超限的条件下,后四种影响过热汽温因素都可以通过调整煤水比来消除;所以,只要控制、调节好煤水比,在相当大的负荷范围内,直流锅炉的过热汽温可保持在额定值。此优点是汽包锅炉无法比拟的;但煤水比的调整,只有自动控制才能可靠完成。

锅炉蒸汽温度控制系统

引言 随着科学技术的发展,自动控制在现代工业中起着主要的作用,目前已广泛应用于工农业生产及其他建设方面。生产过程自动化是保持生产稳定、降低成本、改善劳动成本、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是20世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。电力工业中电厂热工生产过程自动化技术相对于其他民用工业部门有较长的历史和较高的自动化水平,电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。 本次毕业设计的主要是针对单元机组汽温控制系统的设计。锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃。 如果过热蒸汽温度偏低,则会降低电厂的工作效率,据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。一般规定过热汽温下限不低于其额定值10℃。通常,高参数电厂都要求保持过热汽温在540℃的范围内。 由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下几个方面: (1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。 (2)汽温对象具有大延迟、大惯性的特点,尤其随着机组容量和参数的增加,蒸汽的过热受热面的比例加大,使其延迟和惯性更大,从而进一步加大了汽温控制的难度。 (3)汽温对象在各种扰动作用下(如负荷、工况变化等)反映出非线性、时变等特性,使其控制的难度加大。

相关文档
最新文档