精细有机缩合反应

精细有机缩合反应
精细有机缩合反应

第十二章缩合

12.1概述

缩合反应的涵义很广,凡是两个分子互相作用失去一个小分子,生成一个较大分子的反应,以及两个分子通过加成作用生成一个较大分子的反应都可称作“缩合反应”。本章只讨论脂链中亚甲基和甲基上的酸性活泼氢被取代而形成新的碳.碳键的缩合反应。它既有C-烃化反应,也有C-酰化反应,但是有其共同的特点,因此单列一章。通过这类缩合反应可制得一系列精细化工产品。

12.1.1脂链中亚甲基和甲基上的氢的酸性

脂链中亚甲基和甲基上有较强的吸电基时,这个亚甲基或甲基上的氢一般都表现出一定的酸性,其酸性可以用pKa值来表示,即酸性越强,pKa越小,如表14.1(p324)所示。

由表14.1可以看出,各种吸电基Y对α-甲基上氢的活化能力的次序如下:

在亚甲基上连有两个吸电基X和Y时,亚甲基上氢原子的酸性明显增加。

12.1.2一般反应历程

在上述吸电基的α碳原子上的氢具有一定酸性,在碱(B)的催化作用下,可以脱质子而形成碳负离子。例如:

这类碳负离子可以与醛、酮、羧酸酯、羧酸酐以及烯键和炔键发生亲核加成反应或者与卤烷发生亲核取代反应,形成新的碳.碳键而得到多种类型的产物。对于不同的缩合反应需要使用不同的碱催化剂,而很少采用酸催化剂,这将在以后分别叙述。

12.2醛醇缩合反应

含有活泼α氢的醛或酮在碱或酸的催化作用下生成β-羟基醛或β-羟基酮的反应统称为Aldol缩合反应,中文译名为醛醇缩合反应。它包括醛醛缩合、酮酮缩合和醛酮交叉缩合三种反应类型。

12.2.1催化剂

Aldo1缩合反应一般都采用碱催化法。最常用的碱催化剂是氢氧化钠水溶液,有时也用到氢氧化钾、碳酸钾、氢氧化钡、氢氧化钙以及醇钠和醇铝等。

12.2.2一般反应历程

以乙醛的自身缩合为例,它在碱的作用下先脱质子生成碳负离子,后者再与另一分子乙醛中的羰基碳原子发生亲核加成反应而生成3-羟基丁醛(英文名Acealdol,简称Aldol)。

决定反应速度的最慢步骤是亲核加成反应。

如果醛分子中有两个以上活泼α-氢,而且缩合时反应温度较高和催化剂的碱性较强,则β-羟基醛可以进一步发生消除反应,脱去一分子水而生成不饱和醛。例如:

为了保证各步反应的收率,消除脱水反应也可另外在酸性催化剂(例如稀硫酸,乙酸等)存在下完成。

上述生成α,β-不饱和醛和α,β-不饱和酮的反应也叫Aldol缩合。

12.2.3醛醛缩合

醛醛缩合可分为同分子醛的自身缩合和异分子醛之间的交叉缩合两大类。它们在工业生产上都有重要用途。

12.2.3.1同分子醛的自身缩合

12.2.3.2异分子醛的交叉缩合

异分子醛交叉缩合时可能生成4种羟基醛:

举例如下:

12.2.3.3芳醛与脂醛的交叉缩合

12.2.3.4甲醛与其他醛的交叉缩合

甲醛虽然没有α氢,但是甲醛的氢氧化钠水溶液在94℃连续地经过分子筛催化剂仍然可以自身缩合生成乙醇醛。但是,甲醛分子中的羰基更容易同含有活泼α氢的脂醛所生成的碳负离子发生交叉缩合反应,主要生成β-羟甲基醛。

利用甲醛向醛(或酮)分子中的羰基α碳原子上引入一个或多个羟甲基的反应叫作羟甲基化或Tollens缩合。利用这个反应还可以制备多羟基化合物。例如,过量的甲醛在碱的催化作用下,与含有三个活泼α氢的乙醛交叉缩合可制得三羟甲基乙醛,它再被过量的甲

醛还原而得到季戊四醇(四羟甲基甲烷)。

将甲醛:乙醛:氢氧化钠水溶液按5:1:1.1~1.5的摩尔比在40~70℃反应0.5~3h,按乙醛计,季戊四醇的收率87.7%。甲醛过量可抑制乙醛的自身缩合,但如果碱过量太多,pH 值偏高,将会促进甲醛的自身缩合。

12.2.3.5醛的歧化(Cannizzaro反应)

没有α氢的醛,例如甲醛、2,2-二甲基丙醛、苯甲醛和呋喃醛等,它们虽然不能或不易

发生自身缩合反应,但是在碱的催化作用下,可以发生歧化反应,生成等摩尔比的羧酸和

醇。其反应历程是一分子醛作为氢供给体,自身被氧化成羧酸,另一分子醛则作为氢接受

体,自身被还原成醇。

因此,Cannizzaro反应即涉及醛与OH-形成C—O键的亲核加成反应,又涉及醛与H-形成C—H键的亲核加成反应。

Cannizzaro反应也可以发生在两不同的没有α氢的醛分子之间,它叫作交叉Cannizzaro 反应。例如,在前述制备季戊四醇时,过量的甲醛是氢供给体,自身被氧化成甲酸,而三羟甲基甲醛则是氢接受体,它被还原成季戊四醇。

另外,前述甲醛与异丁醛的交叉缩合得羟基新戊醛,再催化加氢还原制新戊二醇时,也可以改用过量甲醛的交叉Cannizzaro还原法。但是产品中含甲醛,为了制得合格产品,按异丁醛计收率只有65%,低于催化加氢还原法。

12.2.4酮酮缩合

12.2.4.1对称酮的自身缩合

含有α-氢的对称酮自身缩合的产物比较单纯。

工业上所用的碱催化剂是固体氢氧化钠、氢氧化钙或阴离子交换树脂。

12.2.4.2不对称酮的交叉缩合

含有α氢的不对称酮,特别两个不同结构的不对称酮在碱催化剂存在下,可以发生交

叉缩合反应,它虽然可能生成四种产物,但是通过可逆平衡可以主要生成一种产物。例如,丙酮和甲乙酮交叉缩合时,主要生成2-甲基-2-羟基-4-已酮,它再经消除脱水、催化加氢还原可制得2-甲基-4-己酮(乙基异丁基酮)。

12.2.5醛酮交叉缩合

醛酮交叉缩合既可以生成β-羟基醛,又可以生成β-羟基酮,不易得到单一产物,因此主产物的收率都不太高。

12.3羧酸及其衍生物的缩合

由表14-1(p324)可以看出,一个酯基对α-氢的活化作用比酮基和

醛基对α-氢的活化作用低。但是,在亚甲基上除了连有一个酯基以外,还连有另一个吸电基时,则亚甲基上的氢的酸性明显增加,这个α-氢的活性比酮基、醛基的α-氢高得多,较易脱质子形成碳负离子,然后与酮、醛、羧酸酯、羧酰胺、腈或卤烷等发生缩合反应。

简单的羧酸酯和酸酐在较强条件下也能脱质子形成碳负离子,然后发生缩合反应。

没有α-氢的酯不能形成碳负离子,但是它们可以同由其他亚甲基化合物形成的碳负离子发生缩合反应。

12.3.1Perkin反应

Perkin反应指的是脂肪族的酸酐在相应的脂肪酸碱金属盐的催化作用下与芳醛(或不含α-氢的脂醛)进行缩合生成β-芳基丙烯酸类化合物的反应。它也是一个亲核加成反应,其反应历程可简单表示如下:(R表示烃基或氢)

羧酸酐是活性较弱的亚甲基化合物,而羧酸盐催化剂又是弱碱,所以要求较高的反应温度(150~200℃)。催化剂一般用无水羧酸钠,但有时钾盐的效果比钠盐好,反应速度快,收率也较高。

例如

Perkin反应的收率与芳醛的环上取代基的性质有关,环上带有吸电基(例如硝基和卤基)时,亲核加成反应较易进行,收率较高。反之,芳环上有供电基时,亲核加成反应较难进行,副反应多,收率低。这时就需要改用下面所述的Knoevenagel-Doebner反应来制备芳环上有强供电基的肉桂酸衍生物。

12.3.2Knoevenagel反应

这个反应指的是含有强活泼亚甲基的化合物X—CH2—Y在碱的催化作用下,脱质子以碳负离子亲核试剂的形式与醛或酮的羰基碳原子发生Aldol型亲核加成-消除脱水反应,生成α,β-不饱和化合物的反应。其详细反应历程尚未取得肯定意见,这里只写出总的反应式。

式中R’代表烷基或芳基,R2代表烷基、芳基或氢;X和Y代表吸电基。

常用的活泼亚甲基化合物有:氰乙酸酯、乙酰乙酸酯、丙二酸酯、氰乙酰胺、丙二酸单酯单酰胺和丙二氰等。

常用的催化剂有吡啶、哌啶、乙酸.哌啶、乙二胺等有机碱,以及氨和乙酸铵等。这类弱碱性催化剂的特点是它们只能使含有强活泼亚甲基的化合物脱质子转变为碳负离子,而对于亚甲基不够活泼的醛或酮,则不易使它们脱质子转变为碳负离子,因此可以避免Aldol 缩合副反应。

为了除去反应生成的水,可以用苯、甲苯、环己烷等溶剂共沸蒸水。但有时可以不蒸出水,甚至可以不用碱催化剂,还有些实例可以在低温下用浓硫酸催化脱水缩合。

例如2,3-二氯苯甲醛与等摩尔比的乙酰乙酸甲酯在苯中在少量乙酸.哌啶催化剂的存在下,回流5h、分离、精制得2,3-二氯苯亚甲基乙酰乙酸甲酯,收率72.7%。

丙二酸在吡啶介质中在哌啶催化剂的存在下与醛脱水缩合时,还同时发生脱羧反应而生成β-取代丙烯酸。例如,3,4-二甲氧基苯甲醛和丙二酸按1:2的摩尔比在吡啶中在少量哌啶的存在下回流2h,冷却、倒人含盐酸的冰水中,即析出3,4-二甲氧基肉桂酸,精制后收率91.6%。

这个反应称作Knoevenagel-Doebner反应。用这个反应制备,β-取代丙烯酸衍生物的优点是:可适用于与有各种取代基的芳醛或脂醛的缩合,反应条件温和、时间短、收率高、产

品质量好。但是丙二酸的价格比乙酐贵得多,在制备只含稳定基团的β-芳基丙烯酸时,不如前述Perkin反应经济。

12.3.3酯酯Claisen缩合

这个反应指的是酯的亚甲基活泼α-氢在强碱性催化剂的作用下,脱质子形成碳负离子,然后与另一分子酯的羰基碳原子发生亲核加成、并进一步脱烷氧基而生成β-酮酸酯的反应。’

最简单的典型实例是两分子乙酸乙酯在无水乙醇钠的催化作用下缩合,生成乙酰乙酸乙酯。

异酯交叉缩合时,如果两种酯都有活泼α-氢,则可能生成四种不同的β-酮酸酯,难以分离精制,没有实用价值。如果其中一种酯没有活泼α-氢,那么在缩合时有可能生成单一的产物。常用的没有活泼α-氢的酯主要有:甲酸酯、苯甲酸酯、乙二酸酯和碳酸二酯等。12.3.4酮酯Claisen缩合

如果酯没有α-氢,或者酯的α-氢比酮的α-氢的酸性低,则强碱性催化剂优先使酮脱质子形成碳负离子,然后与酯的羰基碳原子发生亲核加成反应和脱烷氧基负离子反应而生成β-二羰基化合物。例如,丙酮、草酸二乙酯和甲醇钠的甲醇溶液按l:1:l的摩尔比在甲苯中在40%搅拌2h,酸化后得2,4-二酮戊酸乙酯反应液,可直接用于下一步反应。

在上述反应中,酯的羰基碳原子是亲电试剂,如果它的亲电活性太低,则可能发生酮酮自身缩合的副反应。另外,如果酯α-氢的酸性比酮α-氢高,则可能发生酯酯自身缩合和Knoevenagel副反应。如果酯没有活泼α-氢,则容易得到单一产物,如上例所示。

酮酯Claisen缩合的反应条件和酯酯Claisen缩合基本上相似。

12.3.5Stobbe缩合

Stobbe缩合指的是醛或酮与丁二酸二酯在强碱性催化剂存在下缩合生成α-亚烃基丁二酸单酯的反应,其总的反应式可简单表示如下:

式中R1,R2代表烷基、芳基或氢;R3代表烷基。

在Stobbe缩合反应中,首先是丁二酸二酯在强碱的催化作用下脱质子,形成碳负离子,

然后向醛或酮分子中的羰基碳原子作亲核进攻,其反应历程见文献。

Stobbe缩合所用的碱性催化剂和反应条件与Claisen缩合基本上相似。

Stobbe缩合主要用于酮化合物,如果对称酮分子中不含活泼α-氢则只得到一种产物,收率很好,如果是不对称酮,则得到顺反异构体的混合。例如,3,4-二氯二苯甲酮、丁二酸二乙酯和叔丁醇钾按1:1.6:0.95的摩尔比在叔丁醇中在氮气保护下,回流16h,经酸化,后处理得α-(3,4-二氯二苯基)亚甲基丁二酸单乙酯粗品,收率80%,作为医药中间体可直接用于下一步反应。

12.3.6Darzens缩合

Darzens缩合反应指的是α-卤代羧酸酯在强碱的作用下,活泼α-氢脱质子生成碳负离子,然后与醛或酮的羰基碳原子进行亲核加成、再脱卤素负离子而生成α,β-环氧羧酸酯的反应。其反应通式可简单表示如下。

所用的卤代羧酸酯一般都是氯代羧酸酯。另外,这个反应也可用于α-卤代酮的缩合。

这个反应除用于脂醛收率不高外,用于芳醛、脂芳酮、脂环酮以及α,β-不饱和酮时,都可得到良好结果。

当用氯乙酸酯时,由Darzens缩合制得的α,β-环氧羧酸酯用碱性溶液使酯基水解,再酸化得游离羧酸,再加热脱羧和开环,可制得比原料酮(或醛)多一个碳原子的酮(或醛)。例如,苯乙酮、氯乙酸乙酯和氨基钠按1:1:1.2的摩尔比在无水苯中在室温反应2h,经后处理得3-苯基-2,3-环氧丁酸乙酯,收率62%~64%。将上述酯和乙醇钠按l:1.05的摩尔比在无水乙醇中成盐,然后向其中慢慢加入水,进行水解。即析出3-苯基-2,3-环氧丁酸钠盐,收率80%~85%。最后,将上述钠盐放人稀盐酸中加热1.5h,即脱羧而得到2-苯基丙醛,收率65%~70%。

12.3.7含亚甲基活泼氢化合物与卤烷的C-烷化反应

亚甲基上的活泼氢在强碱作用下脱质子形成的碳负离子可以与卤烷发生亲核取代反应而使亚甲基氢被一个或两个烷基所取代。

例如,将丙二酸二乙酯、乙醇钠的乙醇溶液,加热至回流,慢慢滴加氯丁烷,回流2h,然后常压回收乙醇,经后处理得丁基丙二酸二乙酯。当三者的摩尔比为l:1.46:1.58时,按丙二酸二乙酯计,收率接近100%。

当亚甲基上有两个活泼氢时,可以在亚甲基上依次引入一个或两个烷基。在引入两个不同的烷基时,应该先引入高碳的伯烷基,再引入低碳的伯烷基。因为高碳烷基卤的反应活性比低碳烷基卤弱。或先引入伯烷基,后引入仲烷基,因为仲烷基的空间位阻比伯烷基大,而仲烷基丙二酸二乙酯的酸性又比伯烷基丙二酸二乙酯低,如果先引入仲烷基,就不

易再引入第二个烷基。如果要引入两个仲烷基,可使用活性较高的氰乙酸乙酯,C-烷化后再将—CN基转化为—COOC2H5基。

有机化学人名反应大全

一、Arbuzov 反应 亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷: 卤代烷反应时,其活性次序为:R′I >R′Br >R′Cl。除了卤代烷外,烯 丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以 进行反应。当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最 少的基团。 本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三 氯化磷反应制得: 如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO) 3 P 的烷基相同 (即 R' = R),则Arbuzov 反应如下: 这是制备烷基膦酸酯的常用方法。 除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR') 2和次亚膦酸酯 R 2 POR' 也能发 生该类反应,例如:

反应机理 2 进行的分子内重排反应: 一般认为是按 S N 反应实例 二、Arndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 反应实例 三、Baeyer----Villiger反应 反应机理 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应

具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保 持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。 反应实例 酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧 乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸 是最好的氧化剂。这类氧化剂的特点是反应速率快,反应温度一般在10~

基础有机化学反应总结

基础有机化学反应总结 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH CH 3R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 【机理】 CH 2 C H 3+ CH 3 C H 3X + CH 3 C H 3 +H + CH 2 +C 3X + C H 3X 主 次 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间体。 【例】 CH 2 C H 3Br CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH -

【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。 【机理】 2 C H 33H 32 3H 32 CH CH 2C H 3 2 CH CH=CH (CH 3CH 2CH 2)3 - H 3CH 2CH 2C 22CH 3 CH 2O CH 2CH 2CH 3 3CH 2CH 2C 2CH 2CH 3 + O H - O H B - OCH 2CH 2CH 3CH 2CH 2CH 3 H 3CH 2CH 2B OCH 2CH 2CH 3 CH 2CH 2CH 32CH 2CH 3 HOO -B(OCH 2CH 2CH 3)3 B(OCH 2CH 2CH 3)3 + 3NaOH3NaOH 3HOCH 2CH 2CH 33 + Na 3BO 3 2 【例】 CH 3 1)BH 32)H 2O 2/OH -CH 3 H H OH 3、X 2加成 C C Br /CCl C C Br Br 【机理】

有机人名反应

有机人名反应 有机人名反应 1.Baeyer-Villiger氧化:酮过酸氧化成酯迁移规则:叔>仲>环己基>苄>伯>甲基>氢 2.Corey-Kim 氧化:醇在NCS/DMF作用后,碱处理氧化成醛酮 3.Criegee邻二醇裂解:邻二醇由Pb(OAc)4氧化成羰基化合物 4.Criegee臭氧化:烯烃臭氧化后水解成醛酮 5.Dakin反应:对羟基苯甲醛由碱性H2O2氧化成对二酚 6.Dess-Martin过碘酸酯氧化:仲醇由过碘酸酯氧化成酮 7.Fleming氧化:硅烷经过酸化,过酸盐氧化,水解以后形成醇 8.Hooker氧化:2-羟基-3烷基-1,4-醌被KMnO4氧化导致侧链烷基失去一个亚甲基,同时羟基和烷基位置互变 9.Moffatt氧化(Pfitzner-Moffatt)氧化:用DCC和DMSO氧化醇,形成醛酮 10.Oppenauer氧化:烷氧基催化的仲醇氧化成醛酮 11.Riley氧化:活泼亚甲基(羰基α位等)被SeO2氧化成酮 12.Rubottom氧化:烯醇硅烷经过m-CPBA和K2CO3处理后α-羟基化 13.Sarett氧化:CrO3?Py络合物氧化醇成醛酮 14.Swern氧化:用(COCl)2,DMSO为试剂合Et3N淬灭的方法将醇氧化成羰基化合物 15.Tamao-Kumada氧化:烷基氟硅烷被KF,H2O2,KHCO3氧化成醇 16.Wacker氧化:Pd催化剂下,烯烃氧化成酮 1..Barton-McCombie去氧反应:从相关的硫羰基体中间用n-Bu3SnH,AIBN试剂经过自 由基开裂发生醇的去氧作用 2.Birch 还原:苯环由Na单质合液胺条件下形成环内二烯烃(带供电子基团的苯环:双键 连接取代基;带吸电子基团的苯环,取代基在烯丙位。) 3.Brown硼氢化:烯烃和硼烷加成产生的有机硼烷经过碱性H2O2氧化得到醇

高中有机化学重要的反应整理

重要的反应 1.能使溴水(Br 2/H 2O )褪色的物质 (1)有机物① 通过加成反应使之褪色:含有 、—C ≡C —的不饱和化合物 ② 通过取代反应使之褪色:酚类 注意:苯酚溶液遇浓溴水时,除褪色现象之外还产生白色沉淀。 ③ 通过氧化反应使之褪色:含有—CHO (醛基)的有机物(有水参加反应)注意:纯净的只含有—CHO (醛基)的有机物不能使溴的四氯化碳溶液褪色 ④ 通过萃取使之褪色:液态烷烃、环烷烃、苯及其同系物、饱和卤代烃、饱和酯 (2)无机物① 通过与碱发生歧化反应 3Br 2 + 6OH - == 5Br - + BrO 3- + 3H 2O 或Br 2 + 2OH - == Br - + BrO - + H 2O ② 与还原性物质发生氧化还原反应,如H 2S 、S 2-、SO 2、SO 32-、I -、Fe 2+ 2.能使酸性高锰酸钾溶液KMnO4/H+褪色的物质 1)有机物:含有、—C≡C —、—OH (较慢)、—CHO 的物质 苯环相连的侧链碳上有氢原子的苯的同系物 (但苯不反应) 2)无机物:与还原性物质发生氧化还原反应,如H 2S 、S 2-、SO 2、SO 32-、Br -、I -、Fe 2+ 3.与Na 反应的有机物:含有—OH 、—COOH 的有机物 与NaOH 反应的有机物:常温下,易与含有酚羟基... 、—COOH 的有机物反应 加热时,能与卤代烃、酯反应(取代反应) 与Na 2CO 3反应的有机物:含有酚. 羟基的有机物反应生成酚钠和NaHCO 3; 含有—COOH 的有机物反应生成羧酸钠,并放出CO 2气体; 含有—SO 3H 的有机物反应生成磺酸钠并放出CO 2气体。 与NaHCO 3反应的有机物:含有—COOH 、—SO 3H 的有机物反应生成羧酸钠、磺酸钠并放出等物质的量的CO 2气体。 4.既能与强酸,又能与强碱反应的物质 (1)2Al + 6H + == 2 Al 3+ + 3H 2↑ 2Al + 2OH - + 2H 2O == 2 AlO 2- + 3H 2↑ (2)Al 2O 3 + 6H + == 2 Al 3+ + 3H 2O Al 2O 3 + 2OH - == 2 AlO 2- + H 2O (3)Al(OH)3 + 3H + == Al 3+ + 3H 2O Al(OH)3 + OH - == AlO 2- + 2H 2O (4)弱酸的酸式盐,如NaHCO 3、NaHS 等等 NaHCO 3 + HCl == NaCl + CO 2↑ + H 2O NaHCO 3 + NaOH == Na 2CO 3 + H 2O NaHS + HCl == NaCl + H 2S ↑ NaHS + NaOH == Na 2S + H 2O (5)弱酸弱碱盐,如CH 3COONH 4、(NH 4)2S 等等 2CH 3COONH 4 + H 2SO 4 == (NH 4)2SO 4 + 2CH 3COOH CH 3COONH 4 + NaOH == CH 3COONa + NH 3↑+ H 2O (NH 4)2S + H 2SO 4 == (NH 4)2SO 4 + H 2S ↑ (NH 4)2S +2NaOH == Na 2S + 2NH 3↑+ 2H 2O (6)氨基酸,如甘氨酸等 H 2NCH 2COOH + HCl → HOOCCH 2NH 3Cl H 2NCH 2COOH + NaOH → H 2NCH 2COONa + H 2O (7)蛋白质分子中的肽链的链端或支链上仍有呈酸性的—COOH 和呈碱性的—NH 2,故蛋白质仍能与碱和酸反应。 5.银镜反应的有机物 (1)发生银镜反应的有机物:含有—CHO 的物质:醛、甲酸、甲酸盐、甲酸酯、还原性糖(葡萄糖、麦芽糖等) (2)银氨溶液[Ag(NH 3)2OH](多伦试剂)的配制: 向一定量2%的AgNO 3溶液中逐滴加入2%的稀氨水至刚刚产生的沉淀恰好完全溶解消失。 (3)反应条件:碱性、水浴加热....... 酸性条件下,则有Ag(NH 3)2+ + OH - + 3H + == Ag + + 2NH 4+ + H 2O 而被破坏。 (4)实验现象:①反应液由澄清变成灰黑色浑浊;②试管内壁有银白色金属析出 (5)有关反应方程式:AgNO 3 + NH 3·H 2O == AgOH↓ + NH 4NO 3 AgOH + 2NH 3·H 2O == Ag(NH 3)2OH + 2H 2O 银镜反应的一般通式: RCHO + 2Ag(NH 3)2OH 2 A g ↓+ RCOONH 4 + 3NH 3 + H 2O

有机化学人名反应机理

1.Arbuzov 反应 卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。 本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得: 一般认为是按 S N2 进行的分子内重排反应: 2.Arndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 3.Baeyer----Villiger 反应

过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应 具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 4.Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

有机人名反应大全

索引: Arbuzov反应 Arndt-Eister反应Baeyer-Villiger 氧化Beckmann 重排 Birch 还原 Bischler-Napieralski 合成法 Bouveault-Blanc还原Bucherer 反应Cannizzaro 反应Chichibabin 反应Claisen 酯缩合反应Claisen-Schmidt 反应Clemmensen 还原Combes 合成法 Cope 重排 Cope 消除反应 Curtius 反应 Dakin 反应 Darzens 反应Demjanov 重排Dieckmann 缩合反应Elbs 反应 Eschweiler-Clarke 反应 Favorskii 反应Favorskii 重排 Friedel-Crafts烷基化反应 Friedel-Crafts酰基化反应 Fries 重排Gabriel 合成法 Gattermann 反应 Gattermann-Koch 反应 Gomberg-Bachmann 反 应 Hantzsch 合成法 Haworth 反应 Hell-Volhard-Zelinsk i 反应 Hinsberg 反应 Hofmann 烷基化 Hofmann 消除反应 Hofmann 重排(降解) Houben-Hoesch 反应 Hunsdiecker 反应 Kiliani 氰化增碳法 Knoevenagel 反应 Knorr 反应 Koble 反应 Koble-Schmitt 反应 Leuckart 反应 Lossen反应 Mannich 反应 Meerwein-Ponndorf 反 应 Meerwein-Ponndorf 反 应 Michael 加成反应 Norrish I和II 型裂解 反应 Oppenauer 氧化 Paal-Knorr 反应 Pictet-Spengler 合成 法 Pschorr 反应 Reformatsky 反应 Reimer-Tiemann 反应 Reppe 合成法 Robinson 缩环反应 Rosenmund 还原 Ruff 递降反应 Sandmeyer 反应 Schiemann 反应 Schmidt反应 Skraup 合成法 Sommelet-Hauser 反应 Stephen 还原 Stevens 重排 Strecker 氨基酸合成 法 Tiffeneau-Demjanov 重排 Ullmann反应 Vilsmeier 反应 Wagner-Meerwein 重排 Wacker 反应 Williamson 合成法 Wittig 反应 Wittig-Horner 反应 Wohl 递降反应 Wolff-Kishner-黄鸣龙 反应 Yurév 反应 Zeisel 甲氧基测定法 Arbuzov(加成)反应 亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷: 卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。除了卤代烷外,烯丙型或炔丙型卤化物、卤代醚、或卤代酸酯、对甲苯磺酸酯等也可以进行

高中有机化学各物质特征反应总结

高中有机化学各物质特点总结 有机物的物理性质 1、状态: 固态:饱和高级脂肪酸、脂肪、葡萄糖、果糖、蔗糖、麦芽糖、淀粉、维生素、醋酸(16.6℃以下); 气态:C 4 以下的烷、烯、炔烃、甲醛、一氯甲烷、新戊烷; 液态: 油状:乙酸乙酯、油酸; 粘稠状:石油、乙二醇、丙三醇。 2、气味: 无味:甲烷、乙炔(常因混有PH 3、H 2 S和AsH 3 而带有臭味); 稍有气味:乙烯; 特殊气味:甲醛、乙醛、甲酸和乙酸; 香味:乙醇、低级酯; 3、颜色: 白色:葡萄糖、多糖 黑色或深棕色:石油 4、密度: 比水轻:苯、液态烃、一氯代烃、乙醇、乙醛、低级酯、汽油; 比水重:溴苯、乙二醇、丙三醇、CCl 4 。 5、挥发性: 乙醇、乙醛、乙酸。 6、水溶性: 不溶:高级脂肪酸、酯、溴苯、甲烷、乙烯、苯及同系物、石油、CCl 4 ; 易溶:甲醛、乙酸、乙二醇; 能与溴水发生化学反应而使溴水褪色或变色的物质 1、有机物: ⑴不饱和烃(烯烃、炔烃、二烯烃等) ⑵不饱和烃的衍生物(烯醇、烯醛、烯酸、烯酯、油酸、油酸酯等) ⑶石油产品(裂化气、裂解气、裂化汽油等) ⑷含醛基的化合物(醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖等) ⑸天然橡胶(聚异戊二烯) 2、无机物: ⑴-2价的S(硫化氢及硫化物) ⑵ + 4价的S(二氧化硫、亚硫酸及亚硫酸盐)

⑶ + 2价的Fe 6FeSO 4 + 3Br 2 = 2Fe 2 (SO 4 ) 3 + 2FeBr 3 6FeCl 2 + 3Br 2 = 4FeCl 3 + 2FeBr 3 2FeI 2 + 3Br 2 = 2FeBr 3 + 2I 2 ⑷ Zn、Mg等单质如 ⑸-1价的I(氢碘酸及碘化物)变色 ⑹ NaOH等强碱、Na 2CO 3 和AgNO 3 等盐 Br 2 + H 2 O = HBr + HBrO 2HBr + Na 2CO 3 = 2NaBr + CO 2 ↑+ H 2 O HBrO + Na 2CO 3 = NaBrO + NaHCO 3 水混溶:乙醇、乙醛、甲酸、丙三醇。能萃取溴而使溴水褪色的物质 上层变无色的(ρ>1):卤代烃(CCl 4、氯仿、溴苯等)、CS 2 等; 下层变无色的(ρ<1):直馏汽油、煤焦油、苯及苯的同系物、低级酯、液 态环烷烃、液态饱和烃(如己烷等)等 能使酸性高锰酸钾溶液褪色的物质 1、有机物: ⑴不饱和烃(烯烃、炔烃、二烯烃等) ⑵不饱和烃的衍生物(烯醇、烯醛、烯酸、烯酯、油酸、油酸酯等) ⑶石油产品(裂化气、裂解气、裂化汽油等) ⑷醇类物质(乙醇等) ⑸含醛基的化合物(醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖等) ⑹天然橡胶(聚异戊二烯) ⑺苯的同系物 2、无机物: ⑴氢卤酸及卤化物(氢溴酸、氢碘酸、浓盐酸、溴化物、碘化物) ⑵ + 2价的Fe(亚铁盐及氢氧化亚铁) ⑶-2价的S(硫化氢及硫化物) ⑷ + 4价的S(二氧化硫、亚硫酸及亚硫酸盐) ⑸双氧水(H 2O 2 ) 变色 Mg + Br2 === MgBr2(其中亦有Mg与H+、Mg与HBrO的反应)△

基础有机化学人名反应

基础有机化学人名反应 第四章 狄尔斯–阿尔德反应(Diels–Alder reaction)(140) 1921年,狄尔斯和其研究生巴克(Back)研究偶氮二羧酸二乙酯(半个世纪后因光延反应而在有机合成中大放光芒的试剂)与胺发生的酯变胺的反应,当他们用2-萘胺做反应的时候,根据元素分析,得到的产物是一个加成物而不是期待的取代物。狄尔斯敏锐地意识到这个反应与十几年前阿尔布莱希特做过的古怪反应的共同之处。这使他开始以为产物是类似阿尔布莱希特提出的双键加成产物。狄尔斯很自然地仿造阿尔布莱希特用环戊二烯替代萘胺与偶氮二羧酸乙酯作用,结果又得到第三种加成物。通过计量加氢实验,狄尔斯发现加成物中只含有一个双键。如果产物的结构是如阿尔布莱希特提出的,那么势必要有两个双键才对。这个现象深深地吸引了狄尔斯,他与另一个研究生阿尔德一起提出了正确的双烯加成物的结构。1928年他们将结果发表。这标志着狄尔斯-阿德尔反应的正式发现。他们也因此获得1950年的诺贝尔化学奖。 含有一个活泼的双键或叁键的化合物(亲双烯体)与共轭二烯类化合物(双烯体)发生1,4-加成,生成六员环状化合物: 这个反应极易进行并且反应速度快,应用范围极广泛,是合成环状化合物的一个非常重要的方法。

带有吸电子取代基的亲双烯体和带有给电子取代基的双烯体对反应有利。常用的亲双烯体有: 下列基团也能作为亲双烯体发生反应: 常用的双烯体有: a.反应机理 这是一个协同反应,反应时,双烯体和亲双烯体彼此靠近,互相作用,形成一个环状过渡态,然后逐渐转化为产物分子:

反应是按顺式加成方式进行的,反应物原来的构型关系仍保留在环加成产物中。例如: 正常的Diels-Alder反应主要是由双烯体的HOMO(最高已占轨道)与亲双烯体的LUMO(最低未占轨道)发生作用。反应过程中,电子从双烯体的 HOMO“流入”亲双烯体的LUMO。也有由双烯体的LUMO与亲双烯体的HOMO作用发生反应的。 b.反应实例

有机化学反应总结

有机化学反应总结

有机化学 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH 3 R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多 的碳上。 【机理】 CH 2 C H 3CH + CH 3 C H 3X + CH 3 C H 3+H + CH 2 +C 3X + C H 3X 主 次 快 慢 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间体。 【例】

CH 2 C H 3HBr Br H + CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH - 【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。 【机理】 CH 2C H 3CH CH 3C H 3BH 2 H CH CH 3C H 3BH 2 H CH CH 2C H 32 CH CH=CH (CH 3CH 2CH 2)3O OH B - H 3CH 2CH 2C 22CH 3 CH 223 B O CH 2CH 2CH 3 H 3CH 2CH 2C 2CH 2CH 3 + O H - O H - B - OC H 2CH 2CH 3CH 2CH 2CH 3 H 3CH 2CH 2C OH B OC H 2CH 2CH 3 CH 2CH 2CH 3H 2CH 2CH 3 HOO -B(OCH 2CH 2CH 3)3 B(OCH 2CH 2CH 3)3 + 3NaOH 3NaOH 3HOC H 2CH 2CH 33 + Na 3BO 3 2 【例】

有机反应类型及有机物化学性质总结

一、有机反应归类 有机反应官能团及类别反应条件重点反应方程式举例 取代反应 卤 代 反 应 烷烃(通式)光照 苯(通式) 及同系物 光照 催化剂 苯酚(-OH) 醇(-OH)加热 硝 化 反 应 苯及同系物浓硫酸、 加热 酯化 反应 酸(-COOH) 醇(-OH): 浓硫酸、加 热 水解 反应 卤代烃(-X)NaOH、水加 热 酯稀硫酸,加 热 碱、加热 CH3COOC2H5+H2O CH3COOH + C2H5OH 无机酸 △ CH3COOH+ CH3CH2OH CH3COOCH2CH3+H2O 浓硫酸 △ CH4+Cl2CH3Cl+HCl 光 CH2Cl2+Cl2CHCl3+HCl(CHCl3又叫氯仿) 光 C2H5—Br + H2O C2H5—OH + HBr△ CH3 | +Cl2 CH2Cl △

糖类 稀酸 C 12H 22O 11+H 2O 2 C 6H 12O 6 分子间脱水 醇 浓硫酸,140℃ 加成 反应 与H 2 (还原 反应) 烯烃、炔烃: 苯及同系物: 醛: 加热、 Ni 作催化剂 与X 2、HX 与 H 2O 烯烃: 炔烃: 加热 消去反应 卤代烃 NaOH 、醇加 热 醇 浓硫酸,加热170℃ 氧化反应 有机物大多都能燃烧,碳碳双键、碳碳三键、苯的同系物、醛基都能被酸性高锰酸钾溶液氧化,乙醇能使重铬酸钾溶液变色。 醇 催化氧化 醛 催化氧化 CH 3—C —H +H 2 CH 3C H 2OH O 催化剂 △ CH 3CH 2OH H 2C=CH 2↑+H 2O 浓硫酸 170℃ CH 2=CH 2+Br 2 CH 2Br —CH 2Br CH 2=CH 2+ H 2 CH 3CH 3 催化剂 △ CH 2=CH 2+Br 2 CH 2Br —CH 2Br 2CH 3—C —H+O 2 2CH 3COOH O 催化剂 CH 2=CH 2+ H 2O CH 3CH 2OH 高温高压 催化剂 催化剂

大学有机化学人名反应总结

有机化学 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH CH 3R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 【机理】 CH 2 C H 3+ CH 3 C H 3X + CH 3 C H 3 +H + CH 2 +C 3X + C H 3X 主 次 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间体。 【例】 CH 2 C H 3Br CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH - 【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。 【机理】

2 C H3 3 H3 2 3 H3 2 CH CH2 C H3 2 CH CH=CH (CH3CH2CH2)3 - H3CH2CH2C 22 CH3 CH2 B O CH2CH2CH3 3 CH2CH2C 2 CH2CH3 +O H- O H B-OCH2CH2CH3 CH2CH2CH3 H3CH2CH2 B OCH2CH2CH3 CH2CH2CH3 2 CH2CH3 HOO- B(OCH2CH2CH3)3 B(OCH2CH2CH3)3+3NaOH3NaOH3HOCH2CH2CH33+Na3BO3 2 【例】 CH3 1)BH 3 2)H 2 O 2 /OH- CH3 H H OH 3、X2加成 C C Br 2 /CCl 4 C C Br Br 【机理】 C C C C Br Br C Br +C C Br O H2+ -H+ C C Br O H

有机化学推导总结

高中化学有机推断题突破口总结对于有机推断题首先要熟悉各种官能团的性质,其次对各类有机反应的条件要记牢。解答有机推断题的常用方法有: 1.根据物质的性质推断官能团,如:能使溴水反应而褪色的物质含碳碳双双键、三键“-CHO”和酚羟基;能发生银镜反应的物质含有“-CHO”;能与钠发生置换反应的物质含有“-OH”;能分别与碳酸氢钠镕液和碳酸钠溶液反应的物质含有“-COOH”;能水解产生醇和羧酸的物质是酯等。 2.根据性质和有关数据推知官能团个数,如:-CHO→2Ag→Cu20;2-0H→H2;2-COOH(CO32-)→CO2 3.根据某些反应的产物推知官能团的位置,如: (1)由醇氧化得醛或羧酸,-OH一定连接在有2个氢原子的碳原子上;由醇氧化得酮,-OH接在只有一个氢原子的碳原子上。 (2)由消去反应产物可确定“-OH”或“-X”的位置。 (3)由取代产物的种数可确定碳链结构。 (4)由加氢后碳的骨架,可确定“C=C”或“C≡C”的位置。 能力点击:以一些典型的烃类衍生物(溴乙烷、乙醇、乙酸、乙醛、乙酸乙酯、脂肪酸、甘油酯、多羟基醛酮、氨基酸等)为例,了解官能团在有机物中的作用.掌握各主要官能团的性质和主要化学反应,并能结合同系列原理加以应用. 注意:烃的衍生物是中学有机化学的核心内容,在各类烃的衍生物中,以含氧衍生物为重点.教材在介绍每一种代表物时,一般先介绍物质的分子结构,然后联系分子结构讨论其性质、用途和制法等.在学习这一章时首先掌握同类衍生物的组成、结构特点(官能团)和它们的化学性质,在此基础上要注意各类官能团之间的衍变关系,熟悉官能团的引入和转化的方法,能选择适宜的反应条件和反应途径合成有机物. 有机化学知识点总结 1.需水浴加热的反应有: (1)、银镜反应(2)、乙酸乙酯的水解(3)苯的硝化(4)糖的水解 (5)、酚醛树脂的制取(6)固体溶解度的测定 凡是在不高于100℃的条件下反应,均可用水浴加热,其优点:温度变化平稳,不会大起大落,有利于反应的进行。 2.需用温度计的实验有: (1)、实验室制乙烯(170℃)(2)、蒸馏(3)、固体溶解度的测定 (4)、乙酸乙酯的水解(70-80℃)(5)、中和热的测定 (6)制硝基苯(50-60℃)

有机人名反应及其机理(整理缩小版)

本文整理出常见的有机人名反应80多个,共计约100页,大部分内容在竞赛考察范围之内。全国初赛有机难度虽然有所降低,但有能力冲刺决赛的选手对于有机反应必须熟练掌握,熟记反应实例与机理。熟记有机人名反应不仅是化学竞赛的要求,也是考研的重要内容,更是对化学先驱们的尊重与缅怀。 索引: Arbuzov反应 Arndt-Eister反应 Baeyer-Villiger 氧化 Beckmann 重排 Birch 还原 Bischler-Napieralski 合成法 Bouveault-Blanc还原 Bucherer 反应 Cannizzaro 反应 Chichibabin 反应 Claisen 酯缩合反应 Claisen-Schmidt 反应 Clemmensen 还原 Combes 合成法 Cope 重排 Cope 消除反应 Curtius 反应 Dakin 反应 Darzens 反应 Demjanov 重排 Dieckmann 缩合反应 Elbs 反应 Eschweiler-Clarke 反应 Favorskii 反应 Favorskii 重排 Friedel-Crafts烷基化反应 Friedel-Crafts酰基化反应 Fries 重排 Gabriel 合成法 Gattermann 反应 Gattermann-Koch 反应 Gomberg-Bachmann 反应 Hantzsch 合成法 Haworth 反应 Hell-V olhard-Zelinski 反应 Hinsberg 反应 Hofmann 烷基化 Hofmann 消除反应 Hofmann 重排(降解)

Houben-Hoesch 反应Hunsdiecker 反应 Kiliani 氰化增碳法Knoevenagel 反应 Knorr 反应 Koble 反应 Koble-Schmitt 反应Leuckart 反应 Lossen反应 Mannich 反应 Meerwein-Ponndorf 反应Meerwein-Ponndorf 反应Michael 加成反应Norrish I和II 型裂解反应Oppenauer 氧化 Paal-Knorr 反应 Pictet-Spengler 合成法Pschorr 反应Reformatsky 反应 Reimer-Tiemann 反应Reppe 合成法 Robinson 缩环反应Rosenmund 还原 Ruff 递降反应Sandmeyer 反应Schiemann 反应 Schmidt反应 Skraup 合成法Sommelet-Hauser 反应Stephen 还原 Stevens 重排 Strecker 氨基酸合成法Tiffeneau-Demjanov 重排Ullmann反应 Vilsmeier 反应 Wagner-Meerwein 重排Wacker 反应 Williamson 合成法 Wittig 反应 Wittig-Horner 反应 Wohl 递降反应 Wolff-Kishner-黄鸣龙反应Yurév 反应 Zeisel 甲氧基测定法

有机物知识点总结-非常全的

一、必记重要的物理性质 难溶于水的有:各类烃、卤代烃、硝基化合物、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的,下同)醇、醛、羧酸等。 苯酚在冷水中溶解度小(浑浊),热水中溶解度大(澄清);某些淀粉、蛋白质溶于水形成胶体溶液。 1、含碳不是有机物的为: CO、CO2、CO32-、HCO3-、H2CO3、CN-、HCN、SCN-、HSCN、SiC、C单质、金属碳化物等。 2.有机物的密度 (1)小于水的密度,且与水(溶液)分层的有:各类烃、一氯代烃、酯(包括油脂) (2)大于水的密度,且与水(溶液)分层的有:多氯代烃、溴代烃(溴苯等)、碘代烃、硝基苯3.有机物的状态[常温常压(1个大气压、20℃左右)] 常见气态: ①烃类:一般N(C)≤4的各类烃注意:新戊烷[C(CH3)4]亦为气态 ②衍生物类:一氯甲烷、氟里昂(CCl2F2)、氯乙烯、甲醛、氯乙烷、一溴甲烷、四氟乙烯、甲醚、甲乙醚、环氧乙烷。 4.有机物的颜色 ☆绝大多数有机物为无色气体或无色液体或无色晶体,少数有特殊颜色,常见的如下所示: ☆三硝基甲苯(俗称梯恩梯TNT)为淡黄色晶体; ☆部分被空气中氧气所氧化变质的苯酚为粉红色; ☆2,4,6—三溴苯酚为白色、难溶于水的固体(但易溶于苯等有机溶剂); ☆苯酚溶液与Fe3+(aq)作用形成紫色[H3Fe(OC6H5)6]溶液; ☆淀粉溶液(胶)遇碘(I2)变蓝色溶液; ☆含有苯环的蛋白质溶胶遇浓硝酸会有白色沉淀产生,加热或较长时间后,沉淀变黄色。 5.有机物的气味 许多有机物具有特殊的气味,但在中学阶段只需要了解下列有机物的气味: ☆甲烷:无味;乙烯:稍有甜味(植物生长的调节剂) ☆液态烯烃:汽油的气味;乙炔:无味 ☆苯及其同系物:特殊气味,有一定的毒性,尽量少吸入。 ☆C4以下的一元醇:有酒味的流动液体;乙醇:特殊香味 ☆乙二醇、丙三醇(甘油):甜味(无色黏稠液体) ☆苯酚:特殊气味;乙醛:刺激性气味;乙酸:强烈刺激性气味(酸味) ☆低级酯:芳香气味;丙酮:令人愉快的气味 6、研究有机物的方法

基础有机化学人名反应

第四章 狄尔斯–阿尔德反应(Diels–Alder reaction)(140) 1921年,狄尔斯和其研究生巴克(Back)研究偶氮二羧酸二乙酯(半个世纪后因光延反应而在有机合成中大放光芒的试剂)与胺发生的酯变胺的反应,当他们用2-萘胺做反应的时候,根据元素分析,得到的产物是一个加成物而不是期待的取代物。狄尔斯敏锐地意识到这个反应与十几年前阿尔布莱希特做过的古怪反应的共同之处。这使他开始以为产物是类似阿尔布莱希特提出的双键加成产物。狄尔斯很自然地仿造阿尔布莱希特用环戊二烯替代萘胺与偶氮二羧酸乙酯作用,结果又得到第三种加成物。通过计量加氢实验,狄尔斯发现加成物中只含有一个双键。如果产物的结构是如阿尔布莱希特提出的,那么势必要有两个双键才对。这个现象深深地吸引了狄尔斯,他与另一个研究生阿尔德一起提出了正确的双烯加成物的结构。1928年他们将结果发表。这标志着狄尔斯-阿德尔反应的正式发现。他们也因此获得1950年的诺贝尔化学奖。 含有一个活泼的双键或叁键的化合物(亲双烯体)与共轭二烯类化合物(双烯体)发生1,4-加成,生成六员环状化合物: 这个反应极易进行并且反应速度快,应用范围极广泛,是合成环状化合物的一个非常重要的方法。 带有吸电子取代基的亲双烯体和带有给电子取代基的双烯体对反应有利。常用的亲双烯体有: 下列基团也能作为亲双烯体发生反应: 常用的双烯体有:

a.反应机理 这是一个协同反应,反应时,双烯体和亲双烯体彼此靠近,互相作用,形成一个环状过渡态,然后逐渐转化为产物分子: 反应是按顺式加成方式进行的,反应物原来的构型关系仍保留在环加成产物中。例如: 正常的Diels-Alder反应主要是由双烯体的HOMO(最高已占轨道)与亲双烯体的LUMO(最低未占轨道)发生作用。反应过程中,电子从双烯体的HOMO“流入”亲双烯体的LUMO。也有由双烯体的LUMO与亲双烯体的HOMO作用发生反应的。 b.反应实例 本反应具有很强的区域选择性,当双烯体与亲双烯体上均有取代基时,主要生成两个取代基处于邻位或对位的产物: 当双烯体上有给电子取代基、亲双烯体上有不饱和基团如:

大学有机化学反应方程式总结较全

大学有机化学反应方程 式总结较全 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

有机化学 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH 3R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 【机理】 CH 2 C H 3+ CH 3 C H 3X + CH 3 C H 3 X +H + CH 2 +C 3X + C H 3X 主 次 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间体。 【例】

CH 2 C H 3Br CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH - 【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。 【机理】 2 C H 33H 32 3H 32 CH CH 2C H 3 2 CH CH=CH (CH 3CH 2CH 2)3 - H 3CH 2CH 2C 22CH 3 CH 2B O CH 2CH 2CH 3 H 3CH 2CH 2C 2CH 2CH 3 + O H - O H B - OCH 2CH 2CH 3CH 2CH 2CH 3 H 3CH 2CH 2C B OCH 2CH 2CH 3 CH 2CH 2CH 32CH 2CH 3 HOO -B(OCH 2CH 2CH 3)3 B(OCH 2CH 2CH 3)3 + 3NaOH 3NaOH 3HOCH 2CH 2CH 33 + Na 3BO 3 2 【例】

有机反应和反应机理

十、反应和反应机理 有机反应:在一定的条件下,有机化合物分子中的成键电子发生重新分布,原有的键断裂,新的键形成,从而使原分子中原子间的组合发生了变化,新的分子产生。这种变化过程称为有机反应(organic reaction)。 一级反应:在动力学上,将反应速率只取决于一种化合物浓度的反应称为一级反应。 二级反应:在动力学上,将反应速率取决于两种化合物浓度的反应称为二级反应。 按化学键的断裂和生成分类 协同反应:在反应过程中,旧键的断裂和新键的形成都相互协调地在同一步骤中完成的反应称为协同反应。协同反应往往有一个环状过渡态。它是一种基元反应。 自由基型反应:由于分子经过均裂产生自由基而引发的反应称为自由基型反应。自由基型反应分链引发、链转移和链终止三个阶段:链引发阶段是产生自由基的阶段。由于键的均裂需要能量,所以链引发阶段需要加热或光照。链转移阶段是由一个自由基转变成另一个自由基的阶段,犹如接力赛一样,自由基不断地传递下去,像一环接一环的链,所以称之为链反应。链终止阶段是消失自由基的阶段,自由基两两结合成键,所有的自由基都消失了,自由基反应也就终止了。 离子型反应:由分子经过异裂生成离子而引发的反应称为离子型反应。离子型反应有亲核反应和亲电反应,由亲核试剂进攻而发生的反应称为亲核反应,亲核试剂是对原子核有显著亲和力而起反应的试剂。由亲电试剂进攻而发生的反应称为亲电反应。亲电试剂是对电子有显著亲合力而起反应的试剂。 按反应物和产物的结构关系分类 加成反应:两个或多个分子相互作用,生成一个加成产物的反应称为加成反应。 取代反应:有机化合物分子中的某个原子或基团被其它原子或基团所置换的反应称为取代反应。 重排反应:当化学键的断裂和形成发生在同一分子中时,会引起组成分子的原子的配置方式发生改变,从而形成组成相同,结构不同的新分子,这种反应称为重排反应。 消除反应:在一个有机分子中消去两个原子或基团的反应称为消除反应。可以根据两个消去基团的相对位置将其分类。若两个消去基团连在同一个碳原子上,称为1,1-消除或α-消除;两个消去基团连在两个相邻的碳原子上,则称为1,2-消除或β-消除;两个消去基团连在1,3位碳原子上,则称为1,3-消除或γ-消除。其余类推。 氧化还原反应:有机化学中的氧化和还原是指有机化合物分子中碳原子和其它原子的氧化和还原,可根据氧化数的变化来确定。氧化数升高为氧化,氧化数降低为还原。氧化和还原总是同时发生的,由于有机反应的属性是根据底物的变化来确定的,因此常常将有机分子中碳原子氧化数升高的反应为氧化反应,碳原子氧化数降低的反应为还原反应。有机反应中,多数氧化反应表现为分子中氧的增加或氢的减少,多数还原反应表现为分子中氧的减少或氢的增加。

常见有机反应的十大类型

常见有机反应的十大类型 李勇 1. 取代反应 有机物分子里的某些原子或原子团被其他原子或原子团所代替的反应。(1)卤代: s (2)硝化: s (3)磺化: (4)卤代烃水解: (5)酯水解:

(6)羟基( OH)取代: (7)分子间脱水: 2. 加成反应 有机物分子中双键(或三键)两端的碳原子与其他原子或原子团直接结合生成新的化合物的反应。 (1)碳碳双键的加成: (2)碳碳三键的加成: (3)醛基的加成: (4)苯环的加成: 3. 加成聚合(加聚)反应 相对分子质量小的不饱和化合物聚合成相对分子质量大的高分子化合物的反应。

(1)丙烯加聚: (2)二烯烃加聚: 4. 缩合聚合(缩聚)反应 单体间相互反应而生成高分子化合物,同时还生成小分子(如水、氨、氯化氢等)的反应(又叫逐步聚合反应)。 (1)制酚醛树脂: (2)缩聚制酯: (3)氨基酸缩聚: 5. 消去反应 有机化合物在一定条件下,从一个分子中脱去一个小分子(如水、卤化氢等)而生成不饱和(含双键或三键)化合物的反应。

6. 氧化还原反应 在有机化学中,通常把有机物得氧或去氢的反应称为氧化反应;反之,加氢或去氧的反应称为还原反应。 (1)氧化反应: (2)还原反应: 7. 酯化反应(亦是取代反应) 酸和醇起作用,生成酯和水的反应 s 8. 水解反应(亦是取代反应,其中卤代烃、酯的水解见取代反应部分)

化合物和水反应生成两种或多种物质的反应(有卤代烃、酯、酰胺、糖等)。 麦芽糖葡萄糖 9. 脱水反应(又叫碳化) 有机物分子脱去相当于水的组成的反应。 10. 裂化反应 在一定条件下,把相对分子质量大、沸点高的长链烃,断裂为相对分子质量小、沸点低的短链烃的反应。

相关文档
最新文档