模内压力曲线

模内压力曲线
模内压力曲线

模内压力曲线分析

1、注射初期

因模腔内排气装置和分型面的存在,注射初期的模腔并不是一个完全密闭的空间,它实际上是与大气有连通的,所以这时模腔内的压力,可分为两个部分组成,一个是腔内气体排出腔外的阻力,一个是熔体流动时的阻力,这时模腔内的实际压力比大气压力稍高,而实际注射压力(不管你设定的注射压力值是多少)也取决于上述两个阻力的大小和熔体的流动速度。这时的实际注射压力值远远小于设定的注射压力值。

2、充填期

充填期的模内压力情况和注射初期基本相同,区别是:随充填时间的延长,熔体的温度有所下降,熔体流动阻力增加,熔体流程加长,同样流动阻力增加,这时模腔内压力和实际注射压力同比例上升。

3、充填结束保压切换

这时熔体已充满模腔,在模壁的冷却下,熔体已形成一个薄的凝固外壳,这个外壳与浇口组成了一个密闭的空间,在保压力的做用下,腔内压力迅速上升,这时的充填注射压力就是设定的保压力。

4、保压期

这时的充填注射压力就是设定的保压压力,腔内压力随浇口的冷却,从峰值后逐步下降,直到浇口凝固,浇口凝固后,熔体无法再充入模腔内,也就没有充填压力,所以腔内压力迅速下降,直到降为大气压力。

保压切换点的确定、保压力大小、时间长短,对产品质量着重在影响。

水泵的性能曲线图分析

水泵的性能曲线图分析: 泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。 水泵的性能曲线图上水平座标标示流量,垂直座标标示压力(扬程),其中有根流量与压力曲线,一般情况下当压力升高时流量下降,你可以根据压力查到流量,也可从流量查到压力;还有根效率曲线,其这中间高,两边低,标明流量与压力在中间段是效率最高,因此我们选泵时要注意泵运行时的压力与流量,处于效率曲线最高附近;再有一个功率(轴功率)曲线,其一般随流量增加而增加。注意其轴功率不应超过电机功率。 1、曲线:Q-H,流量与扬程曲线趋势图,粗线是推荐工作范围。扬程--流量曲线 以离心式水泵为例,水泵性能曲线图包含有Q-H(流量-扬程)、Q-N(流量-功率)、Q-n(流量-效率)及Q-Hs(流量-允许吸上真空高度)。每一个流量Q都相应于一定的扬程H、轴功率N、效率n和允许吸上真空高度Hs 。扬程是随流量的增大而下降的。 Q-H(流量-扬程)是一条不规则的曲线。相应于效率最高值的(Qo,Ho)点的参数,即为水泵铭牌上所列的各数据。它将是该水泵最经济工作的一个点。在该点左右的一定范围内(一般不低于最高效率点的10%左右)都属于效率较高的区段,称为水泵的高效段。在选泵时,应使泵站设计所要求的流量和扬程能落在高效段范围内。 因无法上图,请自找一幅水泵性能曲线图对照着看。主要就这些了。 GPM :加仑/分钟,流量单位 3.=gallons per minute 加仑/分,每分钟加仑数(等于4.546升/分) 273L/h。 其中ft是英尺,表示扬程。 1英尺=12英寸, 1英寸=2.54厘米所以, 1英尺=12×2.54=30.48厘米=0.3048米. 比如说自来水管道压力为0.2Mpa,它能供到多高的高度呢转换公式是什么请大家告诉我一下!谢谢 转换公式:高度H=P/(ρg) 压力为P=0.2 Mpa=200000 Pa 高度H=P/(ρg)=200000/(1000*9.8)= 20.41 m 以上是静压转换为压力高度的计算公式,实际在使用时,水以某一流量沿管道流动,流动中有沿程水头损失和局部水头损失,水并不能供到上述高度,应是上述高度再减去水在管道流动的水头损失。 0.1个兆帕理论上能撑起10米水柱, 水泵扬程与压力有什么关系 扬程就是压力。 压力的单位是bar 巴扬程单位是m 米1巴=10米 2、功率曲线(泵轴功率与流量的关系N-Q) HP与功率的比例关系? 答:HP是英制功率的计量单位,即马力。而KW是公制功率计量单位,它们的关系:1HP=0.75KW。 首先你要明白水泵性能曲线是由管路性能曲线和扬程流量曲线构成的,其实很简单。他的交点就是工况点,两水泵并联时流量叠加,扬程基本不变。串联时扬程叠加流量不变。 cdlf2系列里面还有多级叶轮的,根据叶轮代号查看对应极数的扬程(纵坐标),X+Y 对应的那个点。压力就是扬程,1公斤=10米 汽蚀余量 Capcity m3/h H (m) N (﹪) P (kw) Speed (rymin) (NPSH)r

水泵的性能曲线图分析

水泵的性能曲线图分析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

水泵的性能曲线图分析: 泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。 水泵的性能曲线图上水平座标标示流量,垂直座标标示压力(扬程),其中有根流量与压力曲线,一般情况下当压力升高时流量下降,你可以根据压力查到流量,也可从流量查到压力;还有根效率曲线,其这中间高,两边低,标明流量与压力在中间段是效率最高,因此我们选泵时要注意泵运行时的压力与流量,处于效率曲线最高附近;再有一个功率(轴功率)曲线,其一般随流量增加而增加。注意其轴功率不应超过电机功率。 1、曲线:Q-H,流量与扬程曲线趋势图,粗线是推荐工作范围。扬程-- 流量曲线 以离心式水泵为例,水泵性能曲线图包含有Q-H(流量-扬程)、Q-N(流量-功率)、Q-n(流量-效率)及Q-Hs(流量-允许吸上真空高度)。每一个流量Q都相应于一定的扬程H、轴功率N、效率n和允许吸上真空高度Hs 。扬程是随流量的增大而下降的。 Q-H(流量-扬程)是一条不规则的曲线。相应于效率最高值的(Qo,Ho)点的参数,即为水泵铭牌上所列的各数据。它将是该水泵最经济工作的一个点。在该点左右的一定范围内(一般不低于最高效率点的10%左右)都属于效率较高的区段,称为水泵的高效段。在选泵时,应使泵站设计所要求的流量和扬程能落在高效段范围内。 因无法上图,请自找一幅水泵性能曲线图对照着看。主要就这些了。

GPM :加仑/分钟,流量单位 3.=gallons per minute 加仑/分,每分钟加仑数(等于4.546升/分) 273L/h。 其中ft是英尺,表示扬程。 1英尺=12英寸, 1英寸=2.54厘米所以, 1英尺=12×2.54=30.48厘米=0.3048米. 比如说自来水管道压力为0.2Mpa,它能供到多高的高度呢转换公式是什么请大家告诉我一下!谢谢 转换公式:高度H=P/(ρg) 压力为 P=0.2 Mpa=200000 Pa 高度 H=P/(ρg)=200000/(1000*9.8)= 20.41 m 以上是静压转换为压力高度的计算公式,实际在使用时,水以某一流量沿管道流动,流动中有沿程水头损失和局部水头损失,水并不能供到上述高度,应是上述高度再减去水在管道流动的水头损失。 0.1个兆帕理论上能撑起10米水柱, 水泵扬程与压力有什么关系 扬程就是压力。 压力的单位是bar 巴扬程单位是m 米 1巴=10米 2、功率曲线(泵轴功率与流量的关系N-Q) 答:HP是英制功率的计量单位,即马力。而KW是公制功率计量单位,它们的关系:1HP=0.75KW。

注塑周期的压力变化曲线-PVT曲线解读

inside, value up your molding 溫度壓力增加 常壓12345678體積收縮 射壓保壓–針對圖作一說明 ?1:塑料開始填入模具塑料開始填入模具,,壓力逐漸升高壓力逐漸升高。。 ?1-2:模穴充填階段模穴充填階段,,模穴壓力逐漸增加至設定之射壓模穴壓力逐漸增加至設定之射壓。。 ?2:模穴充填結束模穴充填結束,,壓力切換至保壓壓力壓力切換至保壓壓力。。 ?2-3:模穴保壓模穴保壓//壓縮壓縮(compression)(compression)(compression)階段階段階段,,模穴壓力上升至設定保壓壓力值力值。。 ?3:模穴壓力達到最高值模穴壓力達到最高值(30(30(30--100MPa 100MPa左右左右左右))。 ?3-4:保壓階段由壓縮切換至靜置段保壓階段由壓縮切換至靜置段(holding stage)(holding stage)(holding stage)。。由於塑料部份回流(backflow)(backflow),,造成模穴背壓稍微下降造成模穴背壓稍微下降。。 ?4:保壓保壓//靜置階段開始靜置階段開始。。 ?4-5:靜置階段靜置階段,,由於冷卻造成壓力下降由於冷卻造成壓力下降。。固化層厚度逐漸增加厚度逐漸增加,,塑料繼續補償收縮造成比容降低塑料繼續補償收縮造成比容降低。。 ?5:澆口封口澆口封口(gate freeze (gate freeze (gate freeze--off)off),,保壓保壓//靜置階段結束置階段結束。。

inside, value up your molding –針對圖作一說明 ?5-6:塑料繼續冷卻收縮塑料繼續冷卻收縮,,造成壓力下降造成壓力下降。。 ?6:模穴壓力降至常壓模穴壓力降至常壓((一大氣壓一大氣壓))。此時塑件體積與模穴體積相同此時塑件體積與模穴體積相同。。塑件開始模內收縮塑件開始模內收縮(mold shrinkage)(mold shrinkage)(mold shrinkage)。。 ?6-7:定壓冷卻階段定壓冷卻階段(isobaric cooling)(isobaric cooling)(isobaric cooling),,塑件持續收縮塑件持續收縮。。 ?7:開模及塑件脫模開模及塑件脫模((demolding demolding))。 ?7-8:脫模後定壓冷卻脫模後定壓冷卻(post mold isobaric cooling)(post mold isobaric cooling)(post mold isobaric cooling)。。 ?8:最後達熱平衡最後達熱平衡(thermal equilibrium)(thermal equilibrium)(thermal equilibrium)之塑件之塑件之塑件。。

进排气压力曲线分析

排气系统的测试 发动机冷试中排气压力测试的方法是,移去排气管,在每个气缸对应的排气口安装独立的压力传感器进行排气端口的压力测量。排气压力测试与进气真空度测试相结合,可以用来检测进排气系统的缺陷,如检测气门安装是否到位,气缸是否存在泄漏点,活塞环是否完全张开,正时系统及可变正时系统是否正确装配,以及凸轮轴及液压挺柱等的装配缺陷。 发动机排气压力测试图形 1. 排气压力曲线 发动机进行冷试时,一般不会装发动机排气管,测试设备在每一个气缸的排气口处,都对应连接一个压力传感器,该传感器可以实时监测由排气口传出的气体压力。 图1 排气压力曲线 图1为某4缸发动机冷试的排气压力曲线,我们单取1缸曲线进行分析。该4缸发动机应用可变气门正时技术,在不进行可变正时调节时,排气门存在一定的提前开启角。 从1缸压缩做功冲程的下止点开始,到1缸排气门打开之前的时刻,进、排气门处于关闭状态,1缸缸内气体无输出,相应的对应该传感器检测不到1缸的气体压力,此时传感器检测采集到的气体压力曲线,为2缸排气冲程所产生的。 到达图1所示a点之后,1缸排气门开启,此时1缸排气压力开始作用于1缸压力传感器。由于在a点之前(1缸排气门开启之前),1缸相邻的气缸刚刚产生较大的排气压力,这一压力同时作用到1缸压力传感器上,如此,a点开始,1缸排气门开启的瞬间,其气体压力便有一个突降;另外,在a点的时候,1缸活塞还处于下行趋势,这个也引起了一定的压力突降。 在a点之后,活塞继续向下止点移动,直到接近下止点时,1缸此时的排气与相邻气缸的排气共同作用,产生排气压力的震荡;到达BDC后,随着1缸活塞由下行转为上行,1缸气体开始受压缩并通过排气门传导到其对应的压力传感器,在气压的震荡过程中,1缸排气产生的气体压力逐渐占据主导地位,气压逐渐上升,直到相邻气缸的排气气门再次打开的时刻,气体压力再次突降。 在测试排气压力过程中,压力传感器并非完全封闭状态,而是与消音器相连通,允许排气以一定的速率通过消音器排出。 通过测试曲线图还可以看到,对应1缸排气的压力传感器在720°的一个工作循环中,测试到了4次波峰值,但每一个气缸在一个工作循环中只有一次排气过程,那么,这其余的3个波峰是如何得到的呢?其实,这里涉及到了该发动机的二次空气喷射技术。 该发动机的二次空气喷射,采用了新鲜空气通过气缸盖上的专设管道喷入排气门后的方式。而在冷测试过程中,未测试二次空气喷射系统的时候,该条用于二次空气喷射系统的专设管道,便起到了1个联通4个气缸排气压力的作用。也就是说,某一冲程某气缸的排气压力,

相关主题
相关文档
最新文档