重金属在水体中迁移转化过程分析

重金属在水体中迁移转化过程分析
重金属在水体中迁移转化过程分析

溶解性有机质及对重金属迁移转化的影响综述

溶解性有机质及对重金属迁移转化的影响 摘要:溶解性有机质(Dissolved organic matter, DOM )由于含有羧基、羟基、羰基等活性功能团,是生态系统中极为活跃的一种有机组分,具有很强的反应活性和迁移特性。DOM 可以作为有机和无机污染物的载体,通过与水体、土壤和沉积物中的金属离子之间的离子交换吸附、络合、螯合、氧化还原等一系列反应,影响金属离子的吸附解吸,从而影响重金属的最终归宿。因此,具体介绍了DOM的来源、提取方法和种类组成以及不同来源DOM的性质的表征,同时综述了溶解性有机质对重金属的影响迁移转化的影响尤其是对土壤中重金属吸附的影响及其影响机理的研究进展。 关键词:溶解性有机质;重金属;迁移转化;影响 引言 重金属是指密度高于4.5g·cm-3(也有文章指出为5g·cm-3)的常见金属。重金属污染则是指因人类活动导致环境中的重金属或其化合物含量增加,超出正常范围并导致环境质量恶化。重金属污染主要来源于工业生产,如金属采矿和冶炼产生的废渣、废水、废气排入

环境;其次来源于交通和生活活动产生的污染,如汽车尾气和家庭燃煤产生的金属污染等。重金属污染与其他有机化合物的污染不同,大多数有机化合物可以通过自然净化作用降解消除危害。生物体内的各种酶和蛋白质能和重金属在发生强烈的相互作用失去活性。重金属也可能在人体的某些器官中富集会造成人体急性中毒、亚急性中毒、慢性中毒等,如果超过人体所能耐受的临界限度,对人体会造成很大的危害。 溶解性有机质((Dissolved organic matter, DOM)能结合对环境和生物有重要影响的Hg、Cu、Pb、Cd、Ni 等重金属,从而改变这些物质的迁移、生物可利用性[1,2]。从而越来越多的研究开始关注DOM 与重金属作用对金属迁移转化及其生物利用性的影响。在DOM 与金属离子的络合反应中,普遍认为低分子量DOM 易与重金属络合,高分子量DOM 则与重金属反应多形成难溶络合物[3]。研究同时表示DOM 主要通过氢键、范德华力、疏水作用等作用与金属离子以及其它污染物发生,形成溶解度不同的络合物,通过改变金属自由离子浓度来改变其迁移性[3-5]。从而可能影响重金属的迁移转化和生物利用性。 1. 溶解性有机质(DOM)的概念、来源和提取 1.1 DOM的概念 DOM 指能通过0.45 um的滤膜,具有不同结构及分子量大小的有机物(如低分子量的游离氨基酸、碳水化合物、有机酸等和大分子量的酶、多糖、酚和腐殖质等)的连续体或混合体。它是陆生生态系统和水生生态系统中极为活跃的一种有机组分,具有很强的反应活性和迁移特性[6]。其主要成分可以分为腐殖质类和非腐殖质类,腐殖质分为富里酸、胡敏酸和胡敏素等;非腐殖质主要包括为碳水化合物、碳氢化合物、脂肪族、醇类、醛类和含氮化合物等[9]。 DOM作为环境中许多有机、无机污染物的迁移载体或配位体,其自身在环境中的行为和性质直接影响这些污染物在环境中的毒性。通常认为,DOM中移动性强的组分能够提高污染物在介质中的运移能力;反之,如果DOM在迁移过程中易被介质吸附固定,则可为污染物提供吸附位点,从而降低了与其相结合的污染物的迁移性或活性[10]。 因此,溶解性有机质DOM对于重金属的迁移转化(尤其土壤和沉积物中的重金属)有很大的影响作用。 1.2 DOM的来源 在自然生态系统中,DOM主要来自植物凋落物、根系分泌物和微生物体的分解、渗滤、腐殖化等。在农业生态系统中,DOM除上述来源外,施用的外源有机物料(如:还田秸秆、

重金属污染物的迁移和分布规律

垃圾焚烧中重金属污染物的迁移和分布规律 摘要:城市生活垃圾成分复杂,并且焚烧过程中会产生重金属的二次污染,是城市垃圾处理中最难解决的问题。对此,从垃圾重金属的来源,重金属在垃圾焚烧过程中的迁移和转变特性,以及重金属在焚烧过程中迁移分布的影响因素等方面进行研究。研究认为,重金属在焚烧炉中的最终分布除了受本身特性(蒸发压力和沸点)影响外,还与原生垃圾组成以及焚烧环境有关。 关键词:垃圾焚烧;重金属;污染物迁移;污染物分布规律 随着经济发展和城市化进程的加快,城市生活垃圾对环境造成的污染已经成为全球瞩目的问题。与填埋、堆肥等其它垃圾处理方法相比较,焚烧法垃圾处理技术具有如下优点:(1)大幅减少垃圾体积和重量;(2)处理速度快、储存期短;(3)回收能量用于供热、发电;(4)就地燃烧无需长距离运输;(5)通过合理组织燃烧及尾气处理实现清洁燃烧等[1]。焚烧法垃圾处理技术已成为我国部分城市处理生活垃圾的首选技术。由于原生垃圾中含有不等量的各类金属废弃物如各种金属制品、电池等,其中所含的重金属(如汞、铅、镉、铬、铜、锌、锰等)在焚烧过程中将发生迁移和转化,富集于直径小于1μm的飞灰颗粒中。由于常规的颗粒捕集设备对小颗粒飞灰捕集效率很低,这些富集了有毒重金属的细小颗粒将被排放到大气中,最终被人类呼吸。焚烧炉底灰、除尘设备飞灰、炉壁残留灰以及洗涤塔所产生的污水中也都可能含有重金属,由于重金属的渗滤特性,其中的重金属也会进入环境而造成二次污染。 随着人民生活水平的提高,人们越来越重视生态环境的改善,从垃圾焚烧工业兴起至今,许多国家相继对焚烧炉烟气中重金属等的排放作了严格的限制,且要求越来越严格。表1为现今国内外垃圾焚烧烟气排放重金属控制标准。 表1各国生活垃圾焚烧重金属污染物排放标准[3~5]mg/m3(标准状态) Floyd Hasselriis[6,7]等人在对典型垃圾组分中重金属含量测定后指出,即便是去除了明显易生成重金属污染的垃圾源,焚烧后仍将有大量有毒重金属存在;另一方面,

土壤重金属Cd迁移规律概述

土壤重金属Cd迁移规律概述 引言 近年来,随着经济和生产的飞速发展,现代工农业的迅速成长,人口急剧增长,人们的生活水平不断提高,环境污染物的排放与日俱增,环境污染和生态破坏给土壤带来了严重的污染,土壤中重金属积累不断的加剧,而且重金属相对稳定并难降解。其次工矿企业的发展导致对矿产资源的过度开采使得重金属土壤污染日趋严重,一些地方生产的粮食,蔬菜,水果等食物中的重金属含量超标或接近临界值。这些农产品的重金属能够通过食物链在人或动物体富集,成为人类生命健康的潜在威胁,清除土壤中的重金属污染,已经是社会一个十分关注的问题。2014年4月18日,环保部、国土部两部门联合发布土壤污染状况调查公报。公报显示,全国土壤总的超标率为16.1%,污染类型以无机型为主,其中排名前三的无机污染物依次为镉、汞、砷。其中镉的毒性较大,1817年,德国的F.Stromeyer 从不纯的氧化锌中分离出褐色粉,使它与木炭共热,制得镉。由于发现的新金属存在于锌中,就以含锌的矿石菱锌矿的名称Calamine命名它为Cadmium,元素符号定为Cd【我国农田土壤镉污染现状及防治对策】。镉(Cd)是生物毒性最强的重金属元素,在环境中的化学活性强,移动性大,毒性持久,容易对人和周围环境造成极大的危害,会对呼吸道产生刺激,长期暴露会造成嗅觉丧失症、牙龈黄斑或渐成黄圈,对人体具有三致(致病、致癌、致突变)作用【1-2】,能诱发肾衰变、关节炎、癌症等病。长期食用遭到镉污染的食品,可能导致“痛痛病”。世界卫生组织(2003)和美国环保局(1994)规定人体Cd的最大允许摄人量(ADI值)均为1 μg·kg-1·d-1【3】。20世纪初发现镉以来,镉的产量逐年增加。镉广泛应用于电镀工业、化工业、电子业和核工业等领域。镉是炼锌业的副产品,主要用在电池、

谈重金属铅在水体中的迁移与转化特征

谈重金属铅在水体中的迁移与转化特征 (武汉大学) 一,前言 铅是一种重金属,由铅组成的盐类大部分是不溶于水的,当水体中铅的浓度达到一定范围时就会对人体、渔业、农业灌溉等等都会产生极大的危害,铅在人体内富集可以使铅中毒。伴随着社会上出现的一系列铅污染问题,例如儿童铅中毒、孕妇铅中毒等,科学家对铅的了解和研究进一步的加深。水圈与大气圈和岩石圈共同组成了生物圈,可见水环境的重要,铅在水体中的迁移与转化也必然随之成为社会的焦点问题。 二,铅在水体中的存在形态 关于铅元素在水体中的存在形态,一般按其总量分为“可溶态”和“颗粒态”,一些+2价铅和+4价铅离子都是可溶态的,可溶态的铅毒性较大,可以为人、生物直接吸收,储积性强。悬浮物和沉积物中的铅是颗粒态的。 三,铅在水体中迁移转化的类型和规律 和其他重金属一样,铅在水体中不能为生物所降解,只能产生各种形态之间的相互转化、分散和富集,这就是铅的迁移与转化,按照其运动的形式可以分为机械迁移转化、物理化学迁移转化、生物迁移转化。⑴对于铅的机械迁移转化,主要是铅在水体中被包含于矿物质或是有机胶体中,或是被吸附在悬浮物上,以溶解态或是颗粒态的形态随水流迁移转化。⑵铅在水体中的物理化学迁移转化主要分为沉淀作用、吸附作用和氧化还原作用。在此笔者详细的讨论一下其转化过程。从高中的知识我们知道铅盐的溶解度都非常小,在偏酸性的水体中Pb 的浓度被PbSO 和PbS等限制着,水体中氢离子浓度大于氢氧根离子浓度,Pb +SO ─PbSO (沉淀),Pb +S ─PbS(沉淀),生成的PbSO ,PbS不溶于酸;在偏碱性的水体中铅的浓度受Pb(OH) 的限制,Pb(OH)─Pb + 2OH ,此反应是可逆的,水中OH 较多,使得平衡向逆向移动,又水解反应Pb +2H O─Pb(OH)+H ,OH 中和H 使得平衡向正向移动。另外铅离子在水体中会发生络合反应生成一些络合物,所以铅通过沉淀作用可以使铅在水体中的扩散速度和范围得到限制。铅离子带正电被水中带负电的胶体吸附,发生聚沉现象,这也如沉淀作用有着相同之处,最后大量的铅沉积在排污口的底泥中,实现了铅从水体转化到表层沉积物中,在一些

水环境中重金属的存在形态和迁移转化规律综述_王霞

?监测与分析? 水环境中重金属的存在形态和迁移转化规律综述 Discussion on the existing form s and m igration and transform ation laws of h eavy m etals in the water environm ent 王 霞 仇启善(包头市环境监测站 包头,010430) 摘要 本文综述水环境中重金属的存在形态和污染特征以及迁移转化规律的研究概况。水体中重金属颗粒态的存在形态分为离子交换态、碳酸盐结合态、铁氧结合态、有机质和硫化物结合态和残渣态。重金属形态和生物效应有关。对重金属在水体中迁移和转化规律及其过程的动力学水质模型的建立进行了论述。 关键词:重金属 存在形态 迁移转化 水质模型 Abstract T he paper summurized the studys on t he ex isting for ms and migr ation and transfor mation law of heav y meta ls in the w ater env ir onment,a nd discussed the establishment of dynamic w ater quality model. Key words:heavy metal existing form migration and transform ation water quali ty model 1 序言 重金属污染物在环境中的含量、分布、存在形态、迁移转化、生物效应以及防治对策都引起人们关注。随着工农业的发展,大量污染物(包括重金属)排入江、河、湖、海,使水体遭受到不同程度的重金属污染。为控制和防治河流污染,保护人类生存环境,国外早已开展了大量研究工作;我国从八十年代开始,普遍开展了这方面的研究。本文主要对国内水环境中重金属污染研究状况进行综述〔1〕〔2〕。 2 重金属在水环境中的存在形态 水体中重金属的存在形态直接影响它的迁移转化规律〔2〕,因此,在研究其含量同时,除研究价态变化外,还要研究其赋存形态。水体中重金属存在形态首先分为溶解态和颗粒态(包括悬浮于水相的悬浮颗粒态和底泥的沉积颗粒态)。溶解态是指水样以0.45mm滤膜过滤、酸化后测得的重金属总量(水相)。溶解态包括不经酸化而直接测得的游离态、络合态和有机态。采用Tessier等人提出的逐级化学提取法可将颗粒态重金属分为离子交换态、碳酸盐结合态、铁锰水合氧化物结合态、有机一硫化物结合态和残渣态。各种存在形态结合强度不同,其稳定性亦不同,生物效应绝然不同,对环境变化最繁感、最易被生物吸收的是离子交换态(可代换态);其次是在PH变化时较易重新释放进入水体的碳酸盐结合态;铁锰水合氧化物结合态(简称铁锰氧化态),在环境变化时会部分释放,对生物有潜在有效性;有机一硫化物结合态不易被生物吸收利用;残渣态主要来源于天然矿物,稳定存在于矿物晶格里,对生物无效应,所以也称惰性态。 考虑到重金属的生物效应,可将沉积物中重金属各种形态分为易可给态(离子交换态)、中等可给态(碳酸盐结合态、铁锰氧化态)和惰性态(有机质和硫化物结合态、残渣态)。 笔者对包头市昆河下游沉积物中重金属形态 — 22 — 内蒙古环境保护 第10卷 第2期 1998年6月

重金属迁移问题

天然水体中的主要阴离子有HCO3-、Cl-、SO42-及少量NO-离子,在厌氧条件下还可能有H2S、HS-、S2-存在。重金属的氯化物和硫酸盐(AgCl、Hg2Cl2、PbSO4等除外)基本上是可溶的,重金属的碳酸盐、硫化物、氢氧化物却是难溶的。重金属化合物在水中的溶解度可直观地表示它在水环境中的迁移能力。溶解度大者迁移能力大,溶解度小者迁移能力小。而重金属化合物的溶解度与体系中阴离子的种类、浓度及pH有关。下面简要讨论重金属的氢氧化物、硫化物及碳酸盐的沉淀-溶解平衡对重金属迁移的影响。 水温升高后,水的电离程度加大,水中氢离子,氢氧根离子浓度都升高,但是总的PH值是不变的,因为氢氧根和氢离子的浓度是相等的,所以PH还是等于7. c(H+)·c(OH-)=K(W), 其中K(W)称作水的离子积常数,简称水的离子积。 c(H+)和c(OH-)是分别是指整个溶液中氢离子和氢氧根离子的总物质的量浓度.K(W)只随温度变化而变化,是温度常数. 例如25℃,c(H+)=c(OH-)=1×10^(-7)mol/L,K(W)=1×10^(-14); 100℃时,c(H+)=c(OH-)=1×10^(-6)mol/L,K(W)=1×10^(-12)。 可以作出金属离子水温升高后,水的离子积变大根据上式及氢氧化物的K sp 浓度的对数值与pH值的关系图,称为对数浓度图或简称pM-pH图(图3-15)。所得结果为一条直线,斜率n即为金属离子的价数,故同价金属离子的直线斜率相同,彼此平行;在给定pH下,斜线与等pH线相交,交点在上方的斜线所代表的Me(OH)n的溶解度大于交点在下方的,即图中靠右侧斜线代表的Me(OH)n的溶解度大于靠左侧。根据此图可以大致查出各种金属离子在不同pH下所能存在的最大浓度,也即它的溶解度。了。因为水的电离程度加大的缘故。同价金属离子的各线均有相同的斜率,靠图右边斜线代表的金属氢氧化物的溶解度大于靠左边的溶解度。可见众多金属随着溶液pH的降低,pC增加,即溶解度增加,这说明酸性条件下,有利于金属氢氧化合。在实际应用中,人们常常控制水体的pH,使其中的重金属离子生成氢氧化物沉淀,以除去废水中的重金属。若要除去废水中两性金属离子,则必须严格控制其pH值。如在pH<5时,Cr3+以水合络离子形式存在;pH>9时,则生成羟基络离子;只有在pH为8时,Cr3+最大限度地生成Cr(OH) ,水中Cr3+量最小。即去除污水中的Cr3+,应控制pH为8。一般说来,如3 果水体中没有其他配位体,大部分金属离子氢氧化物在pH较高时,其溶解度较小,迁移能力较弱;若水体pH较小,金属氢氧化物的溶解度升高,金属离子的迁移能力也就增大。 在25℃固相与溶质化合态之间所有可能的反应如下: PbO(s) + 2H+→Pb2++H2O 1g*K s0 =12.7 PbO(s) + H+→PbOH+lg*K s1=5.0 PbO(s) + H2O→Pb(OH)20lgK s2 = –4.4 PbO(s) + 2H2O→Pb(OH)3-+ H+1g*K s3 = –15.4 根据上式,Pb2+、PbOH+、Pb(OH)20和Pb(OH)3-作为pH值函数的特征线分别有斜率–2、–1、0和+1,把所有化合态都结合起来,可以得到图3—12中包围着阴影区域的线。因此,[Pb(Ⅱ)T]在数值上可由下式得出: [Pb(Ⅱ)T] = *K s0[H+]2 + *K s1[H+] + K s2 + *K s3[H+]-1

土壤重金属Cd迁移规律概述

土壤重金属C d迁移规 律概述 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

土壤重金属Cd迁移规律概述 引言 近年来,随着经济和生产的飞速发展,现代工农业的迅速成长,人口急剧增长,人们的生活水平不断提高,环境污染物的排放与日俱增,环境污染和生态破坏给土壤带来了严重的污染,土壤中重金属积累不断的加剧,而且重金属相对稳定并难降解。其次工矿企业的发展导致对矿产资源的过度开采使得重金属土壤污染日趋严重,一些地方生产的粮食,蔬菜,水果等食物中的重金属含量超标或接近临界值。这些农产品的重金属能够通过食物链在人或动物体内富集,成为人类生命健康的潜在威胁,清除土壤中的重金属污染,已经是社会一个十分关注的问题。2014年4月18日,环保部、国土部两部门联合发布土壤污染状况调查公报。公报显示,全国土壤总的超标率为16.1%,污染类型以无机型为主,其中排名前三的无机污染物依次为镉、汞、砷。其中镉的毒性较大,1817年,德国的F.Stromeyer从不纯的中分离出褐色粉,使它与共热,制得镉。由于发现的存在于锌中,就以含锌的矿石菱的名称Calamine命名它为Cadmium,定为Cd【我国农田土壤镉污染现状及防治对策】。镉(Cd)是生物毒性最强的重金属元素,在环境中的化学活性强,移动性大,毒性持久,容易对人和周围环境造成极大的危害,会对呼吸道产生刺激,长期暴露会造成症、牙龈或渐成黄圈,对人体具有三致(致病、致癌、致突变)作用【1-2】,能诱发肾衰变、关节炎、癌症等病。长期食用遭到镉污染的食品,可能导致“”。世界卫生组织(2003)和美国环保局(1994)规定人体Cd的最大允许摄人量(ADI值)均为1 μg·kg-1·d-1

垃圾焚烧中重金属污染物的迁移和分布规律

基金项目:国家重点自然科学基金资助项目(N 59836210);浙江省青年科技人才专项资金资助(RC 99041) 垃圾焚烧中重金属污染物的迁移和分布规律 陆胜勇,池 涌,严建华,李晓东,岑可法 (浙江大学,浙江杭州 310027) [摘 要] 城市生活垃圾成分复杂,并且焚烧过程中会产生重金属的二次污染,是城市垃圾处理中最难解 决的问题。对此,从垃圾重金属的来源,重金属在垃圾焚烧过程中的迁移和转变特性,以及重金属在焚烧 过程中迁移分布的影响因素等方面进行研究。研究认为,重金属在焚烧炉中的最终分布除了受本身特性(蒸发压力和沸点)影响外,还与原生垃圾组成以及焚烧环境有关。[关键词] 垃圾焚烧;重金属;污染物迁移;污染物分布规律[中图分类号]X506 [文献标识码]A [文章编号]1002 3364(2003)03 0024 05 随着经济发展和城市化进程的加快,城市生活垃圾对环境造成的污染已经成为全球瞩目的问题。与填埋、堆肥等其它垃圾处理方法相比较,焚烧法垃圾处理技术具有如下优点:(1)大幅减少垃圾体积和重量;(2)处理速度快、储存期短;(3)回收能量用于供热、发电;(4)就地燃烧无需长距离运输;(5)通过合理组织燃烧及尾气处理实现清洁燃烧等[1] 。焚烧法垃圾处理技术已成为我国部分城市处理生活垃圾的首选技术。由于原生垃圾中含有不等量的各类金属废弃物如各种金属制品、电池等,其中所含的重金属(如汞、铅、镉、铬、铜、锌、锰等)在焚烧过程中将发生迁移和转化,富集于直径小于1μm 的飞灰颗粒中。由于常规的颗粒捕集设备对小颗粒飞灰捕集效率很低,这些富集了有毒重金属的细小颗粒将被排放到大气中,最终被人类呼吸。焚烧炉底灰、除尘设备飞灰、炉壁残留灰以及洗涤塔所产生的污水中也都可能含有重金属,由于重金属的渗滤特性,其中的重金属也会进入环境而造成二次污染。 随着人民生活水平的提高,人们越来越重视生态环境的改善,从垃圾焚烧工业兴起至今,许多国家相继对焚烧炉烟气中重金属等的排放作了严格的限制,且要求越来越严格。表1为现今国内外垃圾焚烧烟气排放重金属控制标准。 表1 各国生活垃圾焚烧重金属污染物 排放标准[3~5] mg/m 3(标准状态) 项目 德国 (11%O 2)美国 (7%O 2)瑞典 (10%CO 2)英国 (11%O 2)中国 (11%O 2)Hg 010501101050121~0139012Cd 01026010101002<011~315011Pb 01358 011 0106 011~50 116 Floyd Hasselriis [6,7]等人在对典型垃圾组分中重 金属含量测定后指出,即便是去除了明显易生成重金 属污染的垃圾源,焚烧后仍将有大量有毒重金属存在;另一方面,Vogger [8]等人指出垃圾焚烧中各种重金属的释放不仅与高温焚烧过程有关,还与烟气中非金属成分有关。含有重金属的垃圾在进入垃圾焚烧炉后,重金属在焚烧过程中将发生迁移和转化,且其最终在焚烧炉各区域的分布比例与垃圾给料中重金属含量关系不大[9]。 本文研究了垃圾焚烧过程中重金属污染物来源及其迁移、转变特性和迁移分布的影响因素。该研究对于发展适合我国国情的垃圾清洁焚烧技术、低污染控制技术,有效地控制垃圾焚烧重金属污染物的排放有重要意义。 研究论文  μψ  热力发电?2003(3)

相关文档
最新文档