独立随机变量和的分布

独立随机变量和的分布
独立随机变量和的分布

离散型随机变量与正态分布

离散型随机变量的均值与方差、正态分布 一、选择题、填空题 1.已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.84,则P (ξ≤-2)=( ) A .0.16 B .0.32 C .0.68 D .0.84 2.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为 c ,a 、b 、c ∈(0,1),且无其他得分情况,已知他投篮一次得分的数学期望为1, 则ab 的最大值为 ( ) A.148 B.124 C.1 12 D.16 3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A .100 B .200 C .300 D .400 4.设X 是一个离散型随机变量,其分布列为: 则q 等于( ) A .1 B .1±22 C .1-2 2 D .1+ 2 2 5.随机变量X 的概率分布规律为P (X =k )=c k (k +1),k =1,2,3,4,其中c 是常数,则P (12

独立同分布随机变量序列的顺序统计方法(2019)

独立同分布随机变量序列的顺序统计方法 设有限长度离散随机变量序列12,,...,n x x x ,对其按从小到大的顺序排列,得到新的随机序列12,,...,n y y y ,满足:12...n y y y ≤≤≤;假设12,,...,n x x x 是独立同分布的连续取值型随机变量,每个变量的概率分布函数及概率密度分布函数分别为(),()F x f x 。 (1)求(1)k y k n ≤≤的概率密度分布函数()k y f y 解:k y 在y 处无穷小邻域取值的概率()k y f y dy 可以等效为这样一些事件发生的概率之 和:12,,...,n x x x 这n 个随机变量中有任意一个在y 处无穷小邻域取值,而剩余的n -1个随机变量中有任意k -1个的取值小于等于y ,对应的另外n -k 个变量的取值大于等于y 事件的个数(变量的组合数)为111n n k -???? ???-???? ,每个事件的概率为1[()]()[1()]k n k f y dy F y F y ---,则 11()()()[1()]11k k n k y n n f y dy f y dyF y F y k ---????=- ???-???? => 1!()()[1()]() (1)(1)!()! k k n k y n f y F y F y f y k n k n k --= -≤≤-- (2)求随机变量,(1)k l y y k l n ≤<≤的联合概率密度分布函数(,)k l y y f u v 解:(,) ()k l y y k l <在平面上的点(,) ()u v v u ≥处无穷小邻域取值的概率

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

简单随机变量之和与正态分布

简单随机变量之和与正态分布 本文将笼统,随意的讲解,为什么多随机变量之和可以认为服从正态分布。 首先我们建立一个简单的随机变量之和的模型。假设我们手里有一枚硬币,我们认定硬币的正面为1,反面为0,那么抛一次硬币的情况就是0或1且他们的概率都是50%。如果我不写概率也是写概率的比例,那么这个比例可以写为1:1。现在我们抛两次硬币,那么这个结果有四种,00,01,10,11。相信你知道我在说什么。那么正同我们提到的,我们要的是随机变量之和,所以我们有0,1,2。且他们的比例可以很容易的得到,是1:2:1。那么如果抛三次硬币呢?可能的结果就是0,1,2,3,而他们的比例是1:3:3:1。也许你已经发现这个规律了,也许你没有,但我会告诉你的。假如你抛2N次硬币,并且求和,那么其结果就是0,1,2……2N,共2N+1种可能。这2N+1种可能的比例服从组合数C2N i。你可以代入刚才抛三次的情况,C30:C31:C32:C33就是我们得到的1:3:3:1。至于为什么这个比例符合组合数,抛两次硬币那里举了个例子,就不重复了。这里简单的定义以下,每个随机变量称作X i他们的和称作Y,也就是: 2N Y=∑X i 1 (为什么突然变成了抛2N次而不是抛N次,因为我想保证我抛的是偶数次,这样Y的均值就是N了,你会发现抛两次的时候,Y的均值就是1,但是如果你抛三次,Y的均值就会是1.5,我想避免这个小数。) 所以接下来我们就要说明,组合数的分布规律为什么就成了正态分布。那么首先,你相信这个结论吗?让我们从抛多次到抛少次,来看一下正态分布和这个组合数分布到底有多像。 从Y的取值范围你也能猜出,这里分别是N取5,10,15,20的情况,实际上除了N 取5,也就是抛10次的时候,你还能看得清楚红线和蓝线,当N取10也就是抛20次以后,两线其实非常吻合了。你还可以看一下他们之间的误差,其峰值也是逐渐减小的。

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.360docs.net/doc/c710703344.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

第32讲 相互独立的随机变量 (II)

§3.4相互独立的随机变量

课 即 则称随机变量X 和Y 相互独立。 F (x , y ) = F X (x )F Y (y ) 定义(随机变量的独立性) 设 F (x , y ) 是二维随机变量(X , Y )的联合分布 函数,F X (x )和F Y (y )分别是(X , Y )关于X 和关 于Y 的边缘分布函数。 若对于任意实数 x 和 y , 有 P {X ≤ x ,Y ≤ y }= P {X ≤ x }P {Y ≤ y }

即 若对于任意实数 x 和 y , 有 P {X ≤ x ,Y ≤ y }= P {X ≤ x }P {Y ≤ y } F (x , y ) = F X (x )F Y (y ) 四川大学 徐小湛 即X 和Y 相互独立当且仅当它们的联合分布函 数等于关于它们的边缘分布函数的乘积。 这时,联合分布可由边缘分布唯一确定。 则称随机变量X 和Y 相互独立。

传课 可以证明:对于连续型二维随机变量(X , Y ), 即 则称随机变量X 和Y 相互独立。 若对于任意实数 x 和 y , 有 P {X ≤ x ,Y ≤ y }= P {X ≤ x }P {Y ≤ y } F (x , y ) = F X (x )F Y (y ) X 和Y 相互独立当且仅当 f (x , y ) = f X (x ) f Y (y ) 在平面上几乎处处成立(即等式不成立的点 构成集合的“测度(面积)”等于零。) 这时,联合概率密度可由边缘概率密度唯一确定。

对于连续型二维随机变量(X , Y ),X 和Y 相互 独立当且仅当 f (x , y ) = f X (x ) f Y (y ) 此时,在条件Y =y 下,X 的条件概率密度 X |Y f f Y ( y ) f Y ( y ) X ( x ) (x | y ) = f (x , y ) = f X ( x ) f Y ( y ) = f 同理,在条件X =x 下,Y 的条件概率密度 X f ( x ) Y | X Y f ( y | x ) = f ( x , y ) = f (y ) 条件概率密度 等于边缘密度

二维随机变量及其分布题目

一、单项选择题 1 ,那么下列结论正确的是 ()A B C D.以上都不正确 2设X与Y相互独立,X 0—1分布,Y 0—1分布,则方程 t 有相同实根的概率为 (A(B(C (D 3.设二维随机变量(X,Y)的概率密度为 则k的值必为 (A(B(C (D 4.设(X,Y)的联合密度函数为 (A (B(C(D 5.设随机变量X与Y相互独立,而且X服从标准正态分布N(0,1),Y服从二项分布B(n,p),0

二、填空题 2 若(X ,Y )的联合密度 , 3 4 ,则 且区域 5 。 6 . 7

=? ∞+∞ -)(x f X . 8 如果随机变量),(Y X 的联合概率分布为 X 1 2 3 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 ;若X 与Y 相互独立,则=α ,=β . 9 设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 =),(y x f ,Y X Z +=的概率密度=)(Z f Z . 10、 设 ( 、 ) 的 联 合 分 布 函 数 为 ()()()()?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =_____。 11设X 服从参数为1的泊松分布,Y 服从参数为2的泊松分布,而且X 与Y 相互独立,则 (max(,)0)_______. (min(,)0)_______.P X Y P X Y ≠=≠= 12 设X 与Y 相互独立,均服从[1,3]上的均匀分布,记(),A X a =≤(),B Y a => 7 ()9 P A B ?= 且,则a=_______. 13 二维随机变量(X ,Y )的联合概率密度为 221()21sin sin (,)(,),2x y x y f x y e x y π -++= -∞<<+∞ 则两个边缘密度为_________. 三.解答题 1 一个袋中有三个球,依次标有数字 1, 2, 2,从中任取一个, 不放回袋中 , 再任取一个, 设每次取球时,各球被取到的可能性相等,以 X , Y 分别记第一次和第二次取到的球上标有的数字 ,求 ( X , Y ) 的分布律与分布函数. 2.箱子里装有12件产品,其中2件是次品,每次从箱子里任取一件产品,共取2次,定义随机变量12,X X 如下:

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

随机变量独立性的性质

议随机变量独立性及其应用 作者:张利荣 指导老师:桂春燕 摘要 随机变量的独立性是概率论中的一个重要概念.本文首先介绍了随机变量独立性的定义, 随机变量独立性的性质,然后对离散型随机变量和连续型随机变量的独立性分别给出了不同的判别方法,从而针对不同的问题运用相应的判别方法进行判定,除此还通过随机变量独立性的性质及其判别方法得出了一些相关的推论,并对其应用进行了举例说明. 关键词 离散型随机变量 连续型随机变量 独立性 联合分布 1 引言 概率统计是研究随机现象中数量规律的一门数学学科,它是近代数学的重要分支,理论严谨、应用广泛,并且与其他学科互相渗透结合.概率论是对随机现象统计规律演绎的研究,由于随机现象的普遍性,使得其具有极其广泛的应用,特别是在科学技术、工农业生产等方面.独立性是概率统计中最基本的概念之一,无论在理论研究还是在实际应用中都具有特别重要的意义.概率论和数理统计已有的成果大部分都是在某种独立性的前提下才得到的.因而随机变量独立性的研究倍受重视. 随机变量独立性的研究一直经历着缓慢的发展过程.进入二十世纪九十年代后,随机变量独立性判定的研究进入了一个新的阶段.关于这方面的著作、文献逐渐多了起来,如文献[2]中毛纲源对随机变量独立性的判定进行了分析并举例说明;文献[7]中明杰秀等对二维随机变量独立性的判定及其应用等相关内容进行了论述.本文将在此基础上对随机变量独立性做一下详细、全面的论述,重点介绍离散型随机变量和连续型随机变量独立性的判定方法,并对随机变量的独立性的应用进行举例说明. 2 随机变量独立性的定义 定义]1[ 设),(Y X 为二维随机变量,若对于任意的实数y x ,,事件{}x X ≤与{}y Y ≤相互独立,即 ()()() y Y P x X P y Y x X P ≤?≤=≤≤, , )1( 则称X 与Y 相互独立. 若()y x F ,为X 与Y 的联合分布函数,()x F X 、()y F Y 分别是X 与Y 的边缘分布函数,则 )1(式等价于 ()()()y F x F y x F Y X ?=,. 3 随机变量独立性的性质及其判别方法

随机变量独立同分布的概念

1、随机变量独立同分布的概念 随机变量X1和X2独立,是指X1的取值不影响X2的取值,X2的取值也不影响X1的取值。随机变量X1和X2同分布,意味着X1和X2具有相同的分布形状和相同的分布参数,对离散型随机变量具有相同的概率函数,对连续型随机变量具有相同的概率密度函数,有着相同的分布函数,相同的均值、方差与标准差。 反之,若随机变量X1和X2是同类型分布,且分布参数全相同,则X1和X2一定同分布。 一般来说,在相同条件下,进行两次独立试验,则这两次实验结果所对应的随机变量是独立同分布的。 比如,将一枚质地均匀的硬币抛掷两次,设X1为第一次抛掷硬币的结果,X2为第二次抛掷硬币的结果。显然,第一次抛掷硬币的结果对第二次的结果没有影响,反之亦然,故X1和X2相互独立。 同时,X1和X2都只有两种试验结果:正面朝上和背面朝上,以0代表正面朝上,1代表背面朝上,则 P(X1=0)=P(X2=0)=0.5, P(X1=1)=P(X2=1)=0.5, 故X1和X2是独立同分布的随机变量。 随机变量独立同分布的特性可以推广到三个或更多个随机变量。 2、独立同正态分布(定理1) 3、独立同分布(定理2——中心极限定理) 当的分布对称时,只要n 5,那么,近似效果就比较理想;当的分布非对称时,要求n 值较大,一般n 30近似效果较理想。 这个定理表明:无论随机变量服从何种分布,可能是离散分布,也可能是连续分布,连续分布可能是正态分布,也可能是非正态分布,只要独立同分布随机变量的个数n较大,那么,随机变量之和的分布、随机变量均值X-的分布都可以近似为正态分布。这一结论意义深远。 4、标准误 统计学中把均值X-的标准差称为均值的标准误,记为,无论是正态还是非正态,均值X-的标准误都有 SEM随着n的增加而减少。 常常对一个零件的质量特性只观测一次,就用该观测结果去估计过程输出的质量特性。这里建议一种简单有效的减少测量系统误差的方法。对同一个零件的质量特性作两次或更多次重复测量,用其观测结果的平均值去估计过程输出的质量特性,就可以减少标准差。当然,这不是回避使用更精确量具的理由,而是一种提高现有量具精度的简易方法,多次测量值的平均值要比单次测量值更精确。

1多维随机变量及其联合分布

3.1多维随机变量及其分布 教学目标:本节讲解的是多维随机变量及其分布.通过本节的教学,要求学生正确理解多维随机变量及其分布,掌握多维随机变量及其分布的计算方法,运用定义和性质解决有关问题. 教学重点:多维随机变量及其分布的定义与性质. 教学难点:多维随机变量及其分布的证明与计算. 二维随机变量 定义1 设E 是随机试验,则由定义在E 的样板空间Ω上的随机变量X 与Y 构成的有序对),(Y X 称为二维随机变量(或二维随机向量)。 定义2 对任意实数y x ,,二元函数 },{)}(){(),(y Y x X P y Y x X P y x F ≤≤≡≤≤= 称为二维随机变量),(Y X 的分布函数,或称为随机变量X 和Y 的联合分布函数。 若把二维随机变量),(Y X 看成平面上随机点),(Y X 的坐标,则分布函数 ),(y x F 就表示随机点落在以点),(y x 为顶点的左下方的无限矩形域内的概率。 ),(),(),(),(},{111221222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤< 分布函数具有以下基本性质: (1)1),(0≤≤y x F ,且 对任意固定的y ,0),(=-∞y F , 对任意固定的x ,0),(=-∞x F , 0),(=-∞-∞F ,1),(=∞∞F 。 (2)),(y x F 分别是x 和y 的不减函数。 (3)),(),0(y x F y x F =+,),()0,(y x F y x F =+,即),(y x F 关于x 或y 均右连续。

(4)若2121,y y x x <<,则 0),(),(),(),(11122122≥+--y x F y x F y x F y x F 如果二维随机变量),(Y X 可能取的值是有限对或可列无限对,则称),(Y X 是二维离散型随机变量。),(Y X 的分布律或X 和Y 的联合分布律为 ij j i p y Y x X P ===},{, ,2,1,=j i 。 其中 ij p 满足 (1) ; 0≥ij p (2) 111 =∑∑∞=∞ =i j ij p 。 X 和Y 的联合分布律也可用表格表示: ij j j j i i i p p p y p p p y p p p y x x x X Y 2122212212111121\ X 和Y 的联合分布函数为 ∑∑≤≤= x x y y ij i j p y x F ),(。 【例1】吴书p.66.例1。 一箱子装有5件产品,其中2件正品,3件次品.每次从中取1件产品检验质量,不放回地抽取,连续抽取两次.定义随机变量X 和Y 如下: 试求),(Y X 的分布律和分布函数。 解 10X ?=? ?,第一次取到次品,第一次取到正品10Y ?=? ?,第二次取到次品 ,第二次取到正品

正态分布的数学期望与方差

正态分布的数学期望与方差 正态分布: 密度函数为:分布函数为 的分布称为正态分布,记为N(a, σ2). 密度函数为: 或者 称为n元正态分布。其中B是n阶正定对称矩阵,a是任意实值行向量。 称N(0,1)的正态分布为标准正态分布。 (1)验证是概率函数(正值且积分为1) (2)基本性质: (3)二元正态分布: 其中, 二元正态分布的边际分布仍是正态分布: 二元正态分布的条件分布仍是正态分布:

即(其均值是x的线性函数) 其中r可证明是二元正态分布的相关系数。 (4)矩,对标准正态随机变量,有 (5)正态分布的特征函数 多元正态分布 (1)验证其符合概率函数要求(应用B为正定矩阵,L为非奇异阵,然后进行向量线性变换) (2)n元正态分布结论 a) 其特征函数为: b) 的任一子向量,m≤n 也服从正态分布,分布为其中,为保留B 的第,…行及列所得的m阶矩阵。 表明:多元正态分布的边际分布还是正态分布 c) a,B分别是随机向量的数学期望及协方差矩阵,即 表明:n元正态分布由它的前面二阶矩完全确定 d) 相互独立的充要条件是它们两两不相关 e) 若,为的子向量,其中是,的协方差矩阵,则是,相应分量的协方差构成的相互协方差矩阵。则相互独立的充要条件为=0 f) 服从n元正态分布N(a,b)的充要条件是它的任何一个线性组合服

从一元正态分布 表明:可以通过一元分布来研究多元正态分布 g) 服从n元正态分布N(a,b),C为任意的m×n阶矩阵,则服从m元正态分布 表明:正态变量在线性变换下还是正态变量,这个性质简称正态变量的线性变换不变性 推论:服从n元正态分布N(a,b),则存在一个正交变化U,使得是一个具有独立正态分布分量的随机向量,他的数学期望为Ua,而他的方差分量是B的特征值。 条件分布 若服从n元正态分布N(a,b),,则在给定下,的分布还是正态分布,其条件数学期望: (称为关于的回归) 其条件方差为: (与无关)

第八讲:正态分布及随机变量函数的分布.

一、分布函数(P27) 定义(P27):设X是随机变量,对任意实数兀,事件{X a

分布函数的性质(P28) (1) 单调不减性:若Xl—CO X—?-Foo (3) 右连续性;R卩对于任意实数心有; F(x0 +0) = lim F(x) = F(x0). KT威 若某函数满足上述3条性质,则它一定是某随机变最的分布函数 一般地,对离散型随机变量,若P{X= x k}=p k, 其分布函数为F(x) = P{X

连续型随机变(P30) 定义(P31):对任意实数x,如果随机变量X的分布函数F (x)可以写成 F(x)=P(X < 其时(x) > 0 则称X为连续型随机变量,f(x)为X的概率密度函数,简称概率密度或密度函数. 常记为X ~ (-oo

数学:人教版选修2-3第二章离散型随机变量教案(2.2.2事件的相互独立性)

2.2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:2课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率 m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的, 如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么 12()n P A A A +++ =12()()()n P A P A P A +++

最新10-9随机变量的数字特征与正态分布理

10-9随机变量的数字特征与正态分布理

10-9随机变量的数字特征与正态分布(理) 基础巩固强化 1.(2011·烟台模拟)设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=p ,则P (-1<ξ<0)=( ) A.1 2+p B.12-p C .1-2p D .1-p [答案] B [解析] ∵ξ~N (0,1), ∴P (ξ<-1)=P (ξ>1)=p , ∴P (-1<ξ<0)=12[1-2p (ξ>1)]=1 2-p . 2.(2012·浙江嘉兴模拟)甲、乙两人分别独立参加某高校自主招生考试,若甲、乙能通过面试的概率都是2 3,则面试结束后通过的人数X 的数学期望是( ) A.43 B.119 C .1 D.89 [答案] A [解析] 依题意,X 的取值为0、1、2. 且P (X =0)=(1-23)×(1-23)=1 9, P (X =1)=23×(1-23)+(1-23)×23=4 9, P (X =2)=23×23=4 9.

故X 的数学期望E (X )=0×19+1×49+2×49=129=4 3,选A. 3.(2011·盐城模拟)某人射击一次击中的概率为3 5,经过3次射击,此人至少有两次击中目标的概率为( ) A.81125 B.54125 C.36125 D.27125 [答案] A [解析] 该人3次射击,恰有两次击中目标的概率是 P 1=C 23· (35)2·2 5, 三次全部击中目标的概率是 P 2=C 33· (35)3 , 所以此人至少有两次击中目标的概率是 P =P 1+P 2=C 23· (35)2·25+C 3 3· (35)3=81125. 4.(2011·福州调研)已知某一随机变量ξ的概率分布列如下,且E (ξ)=6.3,则a 的值为( ) A.5 C .7 D .8 [答案] C [解析] 由0.5+0.1+b =1知,b =0.4, 由E (ξ)=4×0.5+a ×0.1+9×0.4=6.3知,a =7,故选C.

随机变量及其分布--正态分布

正态分布 知识点 一、正态曲线 函数f(x)=1 2πσ 2 2 () 2 e xμ σ - - ,x∈R的图象如图所示 x∈(-∞,+∞),其中实数μ,σ(σ>0)为参数,我们称φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质 ①曲线位于x轴上方,与x轴不相交; ②曲线是单峰的,它关于直线x=μ对称; ③曲线在x=μ处达到峰值1 σ2π ; ④曲线与x轴之间的面积为1; ⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图甲所示; ⑥当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”,总体的分布越分散;σ越小,曲线越“瘦高”,总体的分布越集中,如图乙所示:

二、正态分布 bφμ,σ(x)d x,则称随机变量X服从正一般地,如果对于任何实数a,b(a

【例1】如图所示是一个正态分布的图象,试根据该图象写出正态分布密度函数的解析式,求出随机变量总体的均值和方差. 【过关练习】 1.某次我市高三教学质量检测中,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由如图曲线可得下列说法中正确的一项是() A.甲科总体的标准差最小 B.丙科总体的平均数最小 C.乙科总体的标准差及平均数都居中 D.甲、乙、丙的总体的平均数不相同

随机变量及其分布-正态分布

正态分布知识点 一、正态曲线 函数f(x)= 1 2πσ 2 2 () 2 e xμ σ - - ,x∈R的图象如图所示 x∈(-∞,+∞),其中实数μ,σ(σ>0)为参数,我们称φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质 ①曲线位于x轴上方,与x轴不相交; ②曲线是单峰的,它关于直线x=μ对称; ③曲线在x=μ处达到峰值1 σ2π ; ④曲线与x轴之间的面积为1; ⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图甲所示; ⑥当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”,总体的分布越分散;σ越小,曲线越“瘦高”,总体的分布越集中,如图乙所示:

二、 正态分布 一般地,如果对于任何实数a ,b (a

题型一正态曲线的图象的应用 【例1】如图所示是一个正态分布的图象,试根据该图象写出正态分布密度函数的解析式,求出随机变量总体的均值和方差. 【过关练习】 1.某次我市高三教学质量检测中,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的

相互独立的随机变量

12.相互独立的随机变量 【教学内容】:高等教育出版社浙江大学盛骤,谢式千,潘承毅编的《概率论与数理统计》第三章第§4相互独立的随机变量 【教材分析】:在多维随机变量中,各分量的取值有时会相互影响,但有时会毫无影响,譬如一个人的身高X和体重Y救护相互影响,但与收入Z一般无影响,当两个随机变量的取值互不影响时,就称它们是相互独立的。本节将利用两个事件相互独立的概念引出两个随机变量相互独立的概念,这是一个十分重要的概念。 【学情分析】: 1、知识经验分析 学生已经学习了两个事件相互独立的概念,对独立性有了一定的认识。 2、学习能力分析 学生虽然具备一定的理论基础,但概念理解不透彻,解决问题的能力不高。 【教学目标】: 1、知识与技能 理解随机变量的独立性定义,掌握随机变量的独立性的判定方法。 2、过程与方法 在知识的教学过程中,用类比的方法培养学生的探索归纳能力及运算能力和应用新知的能力,渗透归纳、转化的数学思想方法. 3、情感态度与价值观 创设教学情境,培养学生学习数学的良好思维习惯和兴趣,加深学生对从特殊到一般的思想认知规律的认识,树立学生善于创新的思维品质. 【教学重点、难点】: 重点:二维随机变量独立性的判定方法。 难点:二维随机变量独立性的判定方法。 【教学方法】:讲授法启发式教学法 【教学课时】:1个课时 【教学过程】: 一、问题引入 若P(AB)=P(A)P(B),则称事件A ,B相互独立。 【设计意图】:两个事件相互独立的概念引出两个随机变量相互独立的概念。 二、随机变量的独立性

(,)(),() (,). ,{,}{}{},(,)()(),. X Y X Y F x y F x F y X Y x y P X x Y y P X x P Y y F x y F x F y X Y ≤≤=≤≤= 定义 设及分别是二维随机变量的分布函数及边缘分布函数若对于所有有即则称随机变量和是的相互独立 1、若(,)X Y 为离散型随机变量 X Y 和相互独立充分必要条件: ()()()(),,i j i j P X x Y y P X x y i j N Y P =====∈ ij i j p p p ??=? (|)(|),j i i j j i p p P X x Y y P Y y X x ????====== 2、若(,)X Y 为连续随机变量 X Y 和 相互独立充分必要条件:(,)()()(,)X Y f x y f x f y x y =?对任意实数 已知随机变量 例1已知(,)X Y 的联合分布律为 1 2 3 1 1/3 a b 2 1/6 1/9 1/18 试确定常数 a 与 b ,使X Y 与相互独立。 解:先求(,)X Y 关于X Y , 的边缘分布律: 1 2 3 {}Y j P Y y = 1 1/3 a b 1 +3a b + 2 1/6 1/9 1/18 13 {}X i P X x = 12 19a + 1+18 b 1 要使X Y 与 相互独立, ij i j p p p ??=? ()()(),2222P X Y P X Y P =====,(,)()()3232P X Y P X P Y ===== X Y X Y

相关文档
最新文档