活性污泥法

活性污泥法
活性污泥法

活性污泥法工艺

作为有较长历史的活性污泥法生物处理系统,在长期的工程实践过程中,根据水质的变化、微生物代谢活性的特点和运行管理、技术经济及排放要求等方面的情况,又发展成为多种运行方式和池型。其中按运行方式,可以分为普通曝气法、渐减曝气法、阶段曝气法、吸附再生法(即生物接触稳定法)、高速率曝气法等。

―、推流式活性污泥法

推流式活性污泥法,又称为传统活性污泥法。推流式曝气池表面呈长方形,在曝气和水力条件的推动下,曝气池中的水流均匀地推进流动,废水从池首端进入,从池尾端流出,前段液流与后段液流不发生混合。其工艺流程图见图2-5-18所示。

在曝气过程中,从池首至池尾,随着环境的变化,生物反应速度是变化的,F/M值也是不断变化的,微生物群的量和质不断地变动,活性污泥的吸附、絮凝、稳定作用不断地变化,其沉降-浓缩性能也不断地变化。

推流式曝气的特点是:①废水浓度自池首至池尾是逐渐下降的,由于在曝气池内存在这种浓度梯度,废水降解反应的推

动力较大,效率较高;②推流式曝气池可采用多种运行方式;③对废水的处理方式较灵活。但推流式曝气也有一定的缺点,由于沿池长均匀供氧,会出现池首曝气不足,池尾供气过量的现象,增加动力费用。

推流式曝气池一般建成廊道型,根据所需长度,可建成单廊道、二鹿道或多廊道(见图2-5-18)。廊道的长宽比一般不小于5:1,以避免短路。

用于处理工业废水,推流式曝气池的各项设计参数的参考值大体如下:

BOD负荷(Ns)0.2~0.4kgBOD5/(kgMLSS.d)

容积负荷(Nv)0.3~0.6kgBOD5/(m3.d)

污泥龄(生物固体平均停留时间)(θr、ts)5~15d;

混合液悬浮固体浓度(MLSS)1500~3500mg/L;

混合液挥发性悬浮固体浓度(MLVSS)

1200~2500mg/L;

污泥回流比(R)25%~50%;

曝气时间(t)4~8h;

BOD5去除率85%~95%。

二、完全混合活性污泥法

完全混合式曝气池,是废水进入曝气池后与池中原有的混合液充分混合,因此池内混合液的组成、F/M值、微生物群的量和质是完全均匀一致的。整个过程在污泥增长曲线上的位置仅是一

个点。这意味着在曝气池中所有部位的生物反应都是同样的,氧吸收率都是相同的。工艺流程见图2-5-19。

完全混合式曝气池的特点是:①承受冲击负荷的能力强,池内混合液能对废水起稀释作用,对高峰负荷起削弱作用;②由于全池需氧要求相同,能节省动力;③曝气池和沉淀池可合建,不需要单独设置污泥回流系统,便于运行管理。

完全混合式曝气池的缺点是,连续进水、出水可能造成短路;易引起污泥膨胀。

本工艺适于处理工业废水,特别是高浓度的有机废水。

用于处理城市废水,完全混合曝气池的各项设计参数的参考值如下:

BOD负荷(Ns)0.2~0.6kgBOD5/(kgMLSS.d)

容积负荷(Nv)0.8~2.0kgBOD5/(m3.d)

污泥龄(生物固体平均停留时间)(θr)5~15d;

混合液悬浮固体浓度(MLSS)3000~6000mg/L;

混合液挥发性悬浮固体浓度(MLVSS)

2400~4800mg/L;

污泥回流比(R)25%~100%;

曝气时间(t)3~5h;

BOD5去除率85%~90%。

三、分段曝气活性污泥法

分段曝气活性污泥运行模式又称阶段进水活性污泥法或多段进水活性污泥法,其特点是废水沿池长多点进水,有机负荷分布均匀,使供氧量均化,克服了推流式供氧的弊病。沿池长F/M 分布均匀,充分发挥其降解有机物的能力。该法可提高空气利用率,提高池子工作能力,适用各种范围水质。该工艺的不足是,进水若得不到充分混合,会引起处理效果的下降。图2-5-20是分段式曝气法平面布置示意图。

分段曝气法处理工业废水的各项设计参数如下:

BOD负荷(Ns)0.2~0.4kgBOD5/(kgMLSS.d)

容积负荷(Nv)0.6~1.0kgBOD5/(m3.d)

污泥龄(生物固体平均停留时间)(θr)5~15d;

混合液悬浮固体浓度(MLSS)2000~3500mg/L;

混合液挥发性悬浮固体浓度(MLVSS)

1600~2800mg/L;

污泥回流比(R)25%~75%;

曝气时间(t)3~8h;

BOD5去除率85%~95%。

四、吸附再生活性污泥法

吸附-再生活性污泥法又称生物吸附法或接触稳定法。这种运行方式的主要特点是将活性污泥对有机污染物降解的两个过程一吸附、代谢,分别在各自的反应器内进行。

废水在再生池得到充分再生,具有很强活性的活性污泥同步进入吸附池,两者在吸附池中充分接触,废水中大部分有机物被活性污泥所吸附,废水得到净化。由二次沉淀池分离出来的污泥进入再生池,活性污泥在这里将所吸附的有机物进行代谢活动,使有机物降解,微生物增殖,微生物进人内源代谢期,污泥的活性、吸附功能得到充分恢复,然后再与废水一同进入吸附池。见图2-5-21。

吸附-再生活性污泥法的特点是:①废水与活性污泥在吸附池的接触时间较短,吸附池容积较小,由于再生池接纳的仅是浓度较高的回流污泥,因此,再生池的容积亦小,吸附池与再生池容积之和仍低于传统法曝气池的容积;②本方法能承受一定的冲击负荷,当吸附池的活性污泥遭到破坏时,可由再生池内的污泥予以补救。

本方法的主要缺点是对废水的处理效果低于传统

活性污泥法;此外,对溶解性有机物高的废水,处理效果差。

本系统处理工业废水的各项设计参数如下:

BOD负荷(Ns)0.2~0.6kgBOD5/(kgMLSS.d)

容积负荷(Nv)1.0~1.2kgBOD5/(m3.d)

污泥龄(生物固体平均停留时间)(θr)5~15d;

混合液悬浮固体浓度(MLSS)1000~3000mg/L;

混合液挥发性悬浮固体浓度(MLVSS)再生池

4000~10000mg/L;

吸附池800~2400mg/L;

再生池3200~8000mg/L;

反应时间吸附池0.5~1.0h,

再生池3~6h;

污泥回流比(R)25%~100%;

曝气时间(t)3~6h;

BOD5去除率80%~90%。

五、延时曝气活性污泥法

该工艺又称完全氧化活性污泥法。工艺的主要特点是:有机负荷低,污泥持续处于内源代谢状态,剩余污泥少,且污泥稳定、不需再进行消化处理,这种工艺可称为废水、污泥综合处理工艺。该工艺还具有处理水质稳定性较高,对废水冲击负荷有较强的适应性和不需设初次沉淀池的优点。主要缺点是池容大,曝气时间长,建设费和运行费用都较髙,而且占用较大的土地等。

本工艺(工艺流程图同图2-5-19)适用于对处理水质要求高,又不宜采用单独污泥处理的小型城镇污水和工业废水。工艺采用的曝气池均为完全混合式或推流式。

本工艺处理城镇污水和工业废水所采用的各项设计参数的参考值如下:

BOD负荷(Ns)0.05~0.15kgBOD5/(kgMLSS.d)

容积负荷(Nv)0.1~0.4kgBOD5/(m3.d)

污泥龄(生物固体平均停留时间)(θr、ts)

20~30d;

混合液悬浮固体浓度(MLSS)3000~6000mg/L;

混合液挥发性悬浮固体浓度(MLVSS)

2400~4800mg/L;

污泥回流比(R)75%~100%;

曝气时间(t)18~48h;

BOD5去除率75%~95%。

从理论上来说,延时曝气活性污泥法是不产生污泥的,但在实际上仍产生少量的剩余污泥,其成分主要是一些无机悬浮物和微生物内源代谢的残留物。

六、高负荷活性污泥法

高负荷活性污泥法又称短时曝气法或不完全活性

污泥法。工艺的主要特点是负荷率高,曝气时间短,对废水的处理效果低。在系统和曝气池构造方面,本工艺与传统活性污泥法基本相同。

本工艺处理城市污水和各种工业废水各项设计参

数的参考数值如下:

BOD负荷(Ns)1.5~5.0kgBOD5/(kgMLSS.d)

容积负荷(Nv)1.2~2.4kgBOD5/(m3.d)

污泥龄(生物固体平均停留时间)(θr、ts)

0.25~2.5d;

混合液悬浮固体浓度(MLSS)200~500mg/L;

混合液挥发性悬浮固体浓度(MLVSS)

160~400mg/L;

污泥回流比(R)5%~15%;

曝气时间(t)1.5~3.0h;

BOD5去除率60%~75%。

七、浅层曝气、深水曝气、深井曝气活性污泥法

1.浅层曝气活性污泥法

浅层低压曝气又名因卡曝气(INKA aeration),是瑞典ka公司所开发的,其原理基于气泡在刚刚形成的瞬息间,其吸氧率最高。如图2-5-22所示。曝气设备装在距液面800~900mm处,可采用低压风机。单位输入能量的相对吸氧量可达最大,它可充分发挥曝气设备的能力。风机的风压约1000mm左右即可满足要求。池中间设置纵向隔板,以利液流循环,充氧能力可达1.80~2.60kg/(kW.h)。工艺缺点是曝气栅管孔眼易堵塞。

2.深水曝气活性污泥法

曝气池内水深可达8.5~30m,由于水压较大,故氧利用率较高;但需要的供风压力较大,因此动力消耗并不节省。近年来发展了若干种类的深水曝气池,主要有深水底层曝气、深水中层曝气,其中包括单侧旋流式、双侧旋流式、完全混合式等。为了减小风压,曝气器往往装在池深的一半,形成液―气流的循环,可节省能耗。当水深超过10~30m时,即为塔式曝气池。见图2-5-23。

3.深井曝气活性污泥法

深井曝气是20世纪70年代中期开发的废水生物处理新工艺。深井曝气处理废水的特点是:处理效果良好,并具有充氧能力高、动力效率高、占地少、设备简单、易于操作和维修、运行费用低、耐冲击负荷能力强、产泥量低、处理不受气候影响等优点。此外,在大多数情况下可取消一次沉淀池,对高浓度工业废水容易提供大量的氧,也可用于污泥的好氧消化。深井曝气装置,一般平面呈圆形,直径大约为1~6m,深度50~150m。在井身内,通过空压机的作用形成降流和升流的流动。见图2-5-24。

采用深井曝气装置处理城市和工业废水设计参数的参考值如下:

BOD负荷(Ns)1~1.2kgBOD5/(kgMLSS.d)

容积负荷(Nv)3.0~3.6kgBOD5/(m3.d)

污泥龄(生物固体平均停留时间)(θr)5d;

混合液悬浮固体浓度(MLSS)3000~5000mg/L;

混合液挥发性悬浮固体浓度(MLVSS)

2400~4000mg/L;

污泥回流比(R)40%~80%;

曝气时间(t)1~2h;

BOD5去除率85%~90%。

八、纯氧曝气活性污泥法

纯氧曝气又称富氧曝气,与空气曝气相比,具有以下几个特点:

(1)空气中含氧一般为21%,一般纯氧中含氧为90%~95%,而氧的分压纯氧比空气高4.4~4.7倍,因此纯氧曝气能大大提高氧在混合液中的扩散能力;

(2)氧的利用率可髙达80%~90%,而空气曝气活性污泥法仅10%左右,因此达到同等氧浓度所需的气体体积可大大减少;

(3)活性污泥浓度(MLSS)可达4000~7000mg/L,故在相同有机负荷时,容积负荷可大大提高;

(4)污泥指数低,仅100左右,不易发生污泥膨胀;

(5)处理效率高,所需的曝气时间短;

(6)产生的剩余污泥量少。

纯氧曝气池有三类:①多级密封式,氧从密闭顶盖引入池内,污水从第一级逐级推流前进,氧由离心压缩机经中空轴进入回转叶轮,它使池中污泥与氣保持充分混合与接触,使污泥能极大地吸收氧,未用尽的氧与生化反应代谢产物从最后一级排出;②对旧曝气池进行改造,池上设幕蓬,既通入纯氧,又输入压缩空气,部分尾气外排,也可循环回用;③敞开式纯氧曝气池。见图2-5-25。

BOD负荷(Ns)0.4~1.0kgBOD5/(kgMLSS.d)

容积负荷(Nv)2.0~3.2kgBOD5/(m3.d)

污泥龄(生物固体平均停留时间)(θr、ts)

05~15d;

混合液悬浮固体浓度(MLSS)6000~10000mg/L;

混合液挥发性悬浮固体浓度(MLVSS)

4000~6500mg/L;

污泥回流比(R)25%~50%;

曝气时间(t)1.5~3.0h;

溶解氧浓度(DO)6~10mg/L;

剩余污泥生成量(ES)0.3~0.45kgTSS/kgBOD去除;

污泥容积指数(SVI)30~50。

九、氧化沟工艺

氧化沟作为传统活性污泥法的变型工艺,其曝气池呈封闭的沟渠形,由于污水和活性污泥混合液在渠内呈循环流动,因此被称为“氧化沟”,又称环行曝气池”。流程形式见图2-5-26。

氧化沟的工艺运行特点主要有以下几方面。

(1)预处理得到简化

由于氧化沟的水力停留时间和污泥龄一般较其他

生物处理法长,因此悬浮有机物和溶解性有机物可同时得到较彻底的去除,因而经氧化沟处理后的剩余污泥已得到高度稳定。所以氧化沟通常不必设初沉池,也不需要进行厌氧硝化,可直接进行浓缩与脱水。(2)占地小

由于在工艺流程中省去了初沉池、污泥消化系统,甚至还省去了二沉池和污泥回流装置,因此污水厂总占地面积不仅没有增大,相反还可缩小。

(3)流态的特征呈推流式

由于环形曝气的特点,使氧化沟具有推流特性,溶解氧浓度在沿池长方向呈浓度梯度,并形成好氧、缺氧和厌氧条件,

因此通过合理的设计与控制,氧化沟系统可以取得较好的除磷脱氮效果。

(4)取消二沉池使工艺更简化

通过将氧化沟和二沉池合建的一体设计形式,可取消二沉池,从而可大大简化处理流程。

同活性污泥法一样,氧化沟的型式和构造也是多种多样的,自从第一座氧化沟问世以来,氧化沟已演变成多种工艺方法和设备。按构造和运行特征以及不同的发明者和专利情况,氧化沟可分为如下几种有代表性的类型:

①卡鲁塞尔氧化沟

主要应用立式低速表面曝气器供氧并推动水流前进,为适应脱磷脱氮的要求,目前又开发了卡鲁塞尔2000等类型的氧化沟;

②交替式氧化沟

主要是双沟(D)式氧化沟,即双沟式交替地在好氧和沉淀的状态下工作,以免除分离式的二次沉淀池,并可完成硝化与反硝化。但由于双沟式氧化沟设备闲置率较高(大于50%),因此又开发了三沟式(T型〗氧化沟,从而提高了设备利用率(大于58.3%);

③Orbal氧化沟

为多个同心的沟渠组成,污水从外沟依次流入内沟。各沟内有机物浓度和溶解氧浓度均不相同,因此可实现脱氮除磷的目的;

④一体化氧化沟

将氧化沟和二沉池合为一体的氧化沟,该工艺可节省污泥回流系统和基建投资;

⑤其他类型氧化沟

包括射流曝气(JAC)系统、U-型化沟和采用微孔曝气的逆流氧化沟等。

目前氧化沟工艺在国内外均有较多应用,是活性污泥法中应用较多的工艺流程。

十、序批活性污泥法

序批活性污泥法又称SBR法,由于运行中采用间歇式的形式,因此每一反应池是一批一批地处理污水,故此得名。由于SBR运行操作的高度灵活性,在大多数场合都能代替连续活性污泥法,实现与之相同或相近的功能。改变SBR的操作模式,就可以模拟完全混合式和推流式的运行模式。在反应阶段,随着时间的推移,反应池中的有机物被微生物降解,废水浓度越来越低,非常类似稳态推流式,只不过这是一种时间意义上的推流。如果进水期很长,反应池中废水的有机物在这个时期累积程度非常小,那么这种情况就接近于完全混合式。

与连续流相比,SBR有许多优点,具体有以下几点。(1)运行管理简单

系统控制硬件如电动阀、气动阀、电磁阀、液位传感器、流量计、时间控制器及微电脑已产品化,能够为SBR系统提供

可靠的自动化控制,大大缩短了管理人员的操作时间,甚至可以实现无人化管理。

(2)降低了造价,减少占地由于SBR将曝气与沉淀两个过程合并在一个构筑物中进行,不需要二次沉淀池和污泥回流系统,甚至在大多数情况下可以不设初次沉淀池,所以占地面积可缩小1/3~1/2,基建投资节省20%~40%。

(3)耐冲击负荷

SBR充水时可作为均化池,对水质、水量的变化具有调节作用。在采用长时间进水和每周期换水体积很小的运行模式时,SBR可以模拟完全混合式流态,对进水有稀释作用,这也是SBR 耐冲击负荷的一个原因。

(4)出水水质好

主要原因是:第一,SBR系统可随时调整运行周期和反应曝气时间等的长短,使处理水达标后才排放;第二,沉淀是在静止条件下进行的,没有进出水的干扰,泥水分离效果好,可避免短路、异重流的影响;第三,可根据泥水分离情况的好坏控制沉淀时间,使出水SS最少;第四,SBR不仅可以处理一般有机物,还可以去除氮、磷等营养物,某些难降解物也可得到降解。

(5)可抑制活性污泥丝状菌膨胀

废水进入反应池后,浓度随反应时间而逐渐降低,因此,存在有机物的浓度梯度。这一浓度梯度的存在对于抑制丝状菌膨胀,保持良好的污泥性状,具有重要作用。从另一方面看,缺氧、

好氧状态并存,能够抑制专性好氧丝状菌的繁殖。研究和工程应用表明,SBR污泥的SVI值多在100左右,能有效地抑制丝状茵污泥膨胀。(6)脱氮除磷

适当控制运行条件,SBR系统可在不投加任何化学药剂的情况下,同时去除氮、磷等营养物,十分简便。

活性污泥指标及污泥膨胀处理

活性污泥法 处理的关键在于具有足够数量和性能良好的污泥。它是大量微生物聚集的地方,即微生物高度活动的中心,在处理废水过程中,活性污泥对废水中的有机物具有很强的吸附和氧化分解能力,故活性污泥中还含有分解的有机物和无机物等。污泥中的微生物,在废水中起主要作用的是细菌和原生动物。 微生物的指示作用 (1)着生的缘毛目多时,处理效果良好,出水BOD5和浊度低。(如小口钟虫、八钟虫、沟钟虫、褶钟虫、瓶累枝虫、微盘盖虫、独缩虫)这些缘毛目的种类都固定在絮状物上,并随窗之而翻动,其中还夹杂一些爬行的栖纤虫、游仆虫、尖毛虫、卑气管叶虫等,这说明优质而成熟的活性污泥。 (2)小口钟虫在生活污水和工业废水处理很好时往往就是优势菌种。 (3)如果大量鞭毛虫出现,而着生的缘毛目很少时,表明净化作用较差。 (4)大量的自由游泳的纤毛虫出现,指示净化作用不太好,出水浊度上升。 (5)如出现主要有柄纤毛虫,如钟虫、累枝虫、盖虫、轮虫、寡毛类时,则水质澄清良好,出水清澈透明,酚类去除率在90%以上。 (6)根足虫的大量出现,往往是污泥中毒的表现。

(7)如在生活污水处理中,累枝虫的大量出现,则是污泥膨胀、解絮的征兆。 (8)而在印染废水中,累枝虫则作为污泥正常或改善的指示生物。 (9)在石油废水处理中钟虫出现是理想的效果。 (10)过量的轮虫出现,则是污泥要膨胀的预兆。 另在一些对原生动物不宜生长的污泥中,主要看菌胶团的大小用数量来判断处理效果。 活性污泥中的微生物 活性污泥是微生物群体及它们所吸附的有机物质和无机物质的总称。微生物群体主要包括细菌、原生动物和藻类等。其中,细菌和原生动物是主要的两大类。 (一)细菌 细菌是单细胞生物,如球菌、杆菌和螺旋菌等。它们在活性污泥中种类多、数量大、体积微小,具有强的吸附和分解有机物的能力,在污水处理中起着关键作用。 在活性污泥培养的初期,细菌大量游离在污水中,但随着污泥的逐步形成,逐渐集合成较大的群体,如菌胶团、丝状菌等。 1.菌胶团 菌胶团是细菌及其分泌的胶质物质组成的细小颗粒,是活性污泥的主体,污泥的吸附性能、氧化分解能力及凝聚沉降等性能均与菌胶团有关。菌胶团有球形、分枝状、蘑菇形、垂丝形等

活性污泥法污水处理

水污染控制工程课程设计城镇污水处理厂设计 指导教师刘军坛 学号 130909221 姓名秦琪宁

目录 摘要 (3) 第一章引言 (4) 1.1设计依据的数据参数 (4) 1.2设计原则 (5) 1.3设计依据 (5) 第二章污水处理工艺流程的比较及选择 (6) 2.1 选择活性污泥法的原因 (6) 第三章工艺流程的设计计算 (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房 (9) 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

摘要 本设计采用传统活性污泥法处理城市生活污水,设计规模是200000m3/d。该生活污水氨氮磷含量均符合出水水质,不需脱氮除磷,只考虑除掉污水中的SS、BOD、COD。传统活性污泥法是经验最多,历史最悠久的一种生活污水处理方法。污泥处理工艺为污泥浓缩脱水工艺。污水处理流程为:污水从泵房到沉砂池,经过初沉池,曝气池,二沉池,接触消毒池最后出水;污泥的流程为:从二沉池排出的剩余污泥首先进入浓缩池,进行污泥浓缩,然后进入贮泥池,经过浓缩的污泥再送至带式压滤机,进一步脱水后,运至垃圾填埋场。本设计的优势是:设计流程简单明了,无脱氮除磷的设计,节省了成本,该方法是早期开始使用的一种比较成熟的运行方式,处理效果好,运行稳定,BOD 去除率可达90%以上,适用于对处理效果和稳定程度要求较高的污水,城市污水多采用这种运行方式。 关键词:城市污水传统活性污泥法污泥浓缩

活性污泥处理工业废水..

活性污泥法处理工业废水项目建议书 一、项目提出的必要性和依据: (1)世界的淡水资源极端紧缺,前联合国秘书长德奎利亚尔曾讲到:“过去人类最可怕的是战争,未来人类最可怕的是淡水资源的紧缺”。淡水资源面临取尽,使人类产生巨大的危机感。(2)中国水资源的拥有量在世界排名第121位,可见我国水资源的占有量居于世界排位之后,说明我国淡水资源匮乏,需引起我们高度关注,并在节约用水的同时还要积极杜绝水资源的污染。 这就需要我们积极研究和保护水资源,活性污泥法处理工业废水是一个热点。(3)由于该行业排放的废水中生化可降解成分较多,因而处理效率一般较高。Wheaton等人研究了连续活性污泥法对水果加工业废水的处理,发现对BOD去除率较高;(4)只要保持较低有机负荷和较高水力停留时间(2·5 天),活性污泥能成功处理玉米碱性发酵厂废水;对已连续运行两年的处理高强度啤酒厂废水的深井曝气活性污泥系统的运行结果分析后可知:尽管该废水具有S含量高、水量变化大、悬浮物浓度达6 10 0一9 6 0 0mgl/等特点,活性污泥对进水有机负荷的平均去除率仍达到97 %。(5)活性污泥法是以活性污泥为主体的废水处理方法,是目前有机废水生物处理的主要方法之一。它主要是利用活性污泥中的好氧菌及其它原生动物,对废水中的酚、氛等有机物进行氧化和分解,把有机物最终变成CO2和H2O,其过程主要由物理化学和生物化学作用来完成的。(6)活性污泥处理效率也在不断提高,生化处理的关键是细菌的繁殖与生长,这就要求活性污泥(7)要有较好的

质量,应具备颗粒松散,易于吸附氧化有机物,有良好的凝聚、沉降性能。(8)因此,在实际操作时,要严格控制活性污泥的性能指标。通过多年实践,我们认识到,理想的指标应控制在如下范围: 污泥沉降比:1 5一30%; 污泥浓度:2一39 / L; 污泥指数:50一150。 (9)日本一专利习对生物固定滤床加以改进,用含15 %铁酸钻的聚乙烯和1%偶氮甲酞胺发泡剂制成发泡磁化聚乙烯颗粒填充滤床,连续运转一周,滤床形成生物膜处理工业废水中有机污染物。(10)实验应用表明,以磁化的塑料作为生物载体能高效地处理工业废水中BO D、COD (见表1)。 表l磁化峨料固定溥床处理效果mg/L (11)活性污泥法的新发展: 到目前为止, 对活性污泥法在运行方式上还没有大的突破, 往往所作的是一些局部的改进, 但在曝气方式上确取得了较大的成果, 如纯氧曝气、深井曝气、射流曝气, 采用微气泡扩散器等, 这些都增大了氧转移率、提高了氧的利用率使曝气池中氧的浓度增加。如美日等

活性污泥系统的工艺计算与设计

活性污泥系统的工艺计算与设计 一、设计应掌握的基础资料与工艺流程的选定 活性污泥系统由曝气池、二次沉淀池及污泥回流设备等组成。其工艺计算与设计主要包括5方面内容,即 ①工艺流程的选择; ②曝气池的计算与设计; ②曝气系统的计算与设计; ④二次沉淀池的计算与设计; ⑤陌泥回流系统的计算与设计。 进行活性污泥处理系统的工艺计算和设计时,首先应比较充分地掌握与废水、污泥有关的原始资料并确定设计的基础数据。主要是下列各项: ①废水的水量、水质及变化规律; ②对处理后出水的水质要求; ③对处理中所产生污泥的处理要求; ④污泥负荷率与BOD5去除率: ⑤混合液浓度与污泥回流比。 对生活污水和城市废水以及性质与其相类似的工业废水,人们已经总结出一套较为成熟和完整的设计数据可直接应用。而对于一些性质与生活污水相差较大的工业废水或城市废水,则需要通过试验来确定有关的设计数据, 选定废水和污泥处理工艺流程的主要依据就是的前述的①、②、③各项内容和据此所确定的废水和污泥的处理程度。 在选定时,还要综合考虑当地的地理位置、地区条件、气候条件以及施工水平等因素,综合分析本工艺在技术上的可行性和先进性及经济上的可能性和合理性等。特别是对工程量大、建设费用高的工程,需要进行多种工艺流程比较之后才能确定,以期使工程系统达到优化。 二、曝气池的计算与设计 曝气他的计算与设计主要包括:①曝气池(区)容积的计算;②需氧量和供气量的计算; ③池体设计等几项。 1.曝气池(区)容积的计算 (1)计算方法与计算公式 计算曝气区容积,常用的是有机负荷计算法。也称BOD5负荷计算法。负荷有两种表示方法,即污泥负荷和容积负荷。曝气池(区)容积计算公式列于表3—17—19中。

活性污泥法的基本工艺流程

第一节活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed Volatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

活性污泥法污泥产量计算

活性污泥工艺的设计计算方法活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。 1污泥负荷法 这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。 污泥负荷法的计算式为[1] V=24LjQ/1000FwNw=24LjQ/1000Fr(1) 污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d) Fr=0.4~0.9 kgBOD/(m3池容·d) 可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。

污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)[2],其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢? 污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和B OD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。 综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)[3],1995年又推出了活性污泥二号模型(简称ASM2)[4、5]。 2数学模型法 数学模型法在理论上是比较完美的,但在具体应用上则存在不少问题,这主要是由于污水和污水处理的复杂性和多样性,即使是简化了的数学模式,应用起来也相当困难,从而阻碍了它的推广和应用。到目前为止,数学模型法在国外尚未成为普遍采用的设计方法,而在我国还没有实际应用于工程,仍停留在研究阶段。

水质工程学复习题

污水处理复习题 1.解释生化需氧量BOD 2.解释化学需氧量COD 3.解释污泥龄 4.绘图说明有机物耗氧曲线 5.绘图说明河流的复氧曲线 6.解释自由沉降 7.解释成层沉降 8.解释沉淀池表面负荷的意义 9.写出沉淀池表面负荷q0的计算公式 10.曝气沉砂池的优点 11.说明初次沉淀池有几种型式 12.说明沉淀有几种沉淀类型 13.说明沉砂池的作用 14.辐流沉淀池的进水和出水特点 15.解释向心辐流沉淀池的特点 16.绘图解释辐流沉淀池的工作原理 17.解释竖流沉淀池的特点 18.解释浅层沉降原理 19.说明二次沉淀池里存在几种沉淀类型、为什么 20.活性污泥的组成 21.绘图说明活性污泥增长曲线 22.说明生物絮体形成机理 23.解释混合液浓度MLSS 24.解释混合液挥发性悬浮固体浓度 MLVSS 25.解释污泥龄 26.解释污泥沉降比 SV,污泥指数 SVI 27. 解释BOD污泥负荷率,容积负荷率及计算公式 28.解释活性污泥反应的影响因素 29.解释剩余污泥量计算公式 30.解释微生物的总需氧量计算公式 31.解释传统活性污泥法的运行方式及优缺点 32.解释阶段曝气活性污泥法的运行方式及优缺点

33.解释吸附——再生活性污泥法的运行方式及优缺点 34.解释完全混合池的运行方式及优缺点 35.绘图说明传统活性污泥法、阶段曝气活性污泥法、吸附——再生活性污泥法、 完全混合池的各自BOD降解曲线 36.绘图说明间歇式活性污泥法的运行特点 37.解释活性污泥曝气池的曝气作用 38.根据氧转移公式解释如何提高氧转移速率 39.氧转移速率的影响因素 40.活性污泥的培养驯化方式 41.解释活性污泥系统运行中的污泥异常情况 42.解释污泥膨胀 43.解释生物膜的构造与净化机理 44.解释生物膜中的物质迁移 45.解释生物膜微生物相方面的特征 46.说明高浓度氮的如何吹脱去除 47.解释生物脱氮原理 48.解释A/O法生物脱氮工艺 49.解释生物除磷机理 50.绘图说明A2/O法同步脱氮除磷工艺 51.解释生污泥 52.解释消化污泥 53.解释可消化程度 54.解释污泥含水率 55.说明污泥流动的水力特征 56.污泥浓缩的目的 57.重力浓缩池垂直搅拌栅的作用 58.厌氧消化的影响因素 59.厌氧消化的投配率 60.厌氧消化为什么需要搅拌 61.说明污泥的厌氧消化机理 62.解释两段厌氧消化的机理 63.说明厌氧消化的C/N比 64.说明厌氧消化产甲烷菌的特点 65.消化污泥的培养与驯化方式

污水处理中关于活性污泥的浅谈(1)

【格林课堂】 一直以自己是环境工程专业的自称,但是从来没有在公司的网站上投稿过什么专业 类的文章,说起来比较惭愧。主要是觉得自己才学疏浅,实在不敢在公司的这种对所有人公开的网站上面班门弄斧。但是最近看了伟大的数学家华罗庚的一篇文章后觉得班门弄斧才能有助于自身的提高,同时也希望借此能够加强与各位资深的前辈们交流工艺技术方面的东西。当然,这篇文章是比较初级的东西,写的是一些比较基本的入门的知识,如果你系统的学过但是理解不够深刻那么我希望你看完这篇文章后能够让你对水处理有一个重新的系统理解,如果你已经对水处理方面有一套自己独特的理解的话也希望你看完后能提出意见以供我学习,让我改进。 我个人研究比较多的方向是生物处理,对于水处理这个专业而言,生物处理也算比较核心的一块吧。所以我们就来简单的谈谈生物处理吧。 说起水处理,不得不说最初的发现过程,让我们先来对“活性污泥”进行一个简单的认识吧。将经过沉淀处理后的生活污水注入沉淀管(或者适宜的器皿)中,然后注入空气对污水加以曝气,并使生活污水保持下列条件;水温在20℃左右,水中溶解氧值介于1—3mg/L。pH在6—8之间,每日保留沉淀物,更换部分污水,注入经过沉淀处理后的新鲜生活污水,这样的操作持续一段时间(10天到2周)后,在污水中形成一种呈黄褐色絮凝体状的群体,这种絮凝体易于沉降与水分离,污水已得到净化处理,水质澄清,这种絮凝体是由大量繁殖的以细菌为主体的微生物所构成,是一种生物性污泥,它就是“活性污泥”。希望各位看完这篇文章后能想想这个过程是什么。留一个问题作为悬念,接下来就开始我们的正式话题。生物处理篇: 活性污泥M的组成分为四个部分,具有代谢功能活性的微生物群体Ma、微生物内源代谢自身氧化的残留物Me、由原水挟入附着的难降解的有机物Mi、由原水挟入附着的生物表面的无机物Mii。 即 M=Ma+Me+Mi+Mii。 活性污泥的主体组成部分是具有活性的微生物。接下来整个活性污泥系统我都将围绕微生物来讨论。 微生物的组成:其中包括细菌,原生动物后生动物等等。当然这其中组成主体部分是细菌,细菌的种类比较多,主要类型有假单胞菌属、分枝杆菌属、芽孢杆菌属等

关于活性污泥法的详解

关于活性污泥法的详解 活性污泥法是由多种好氧微生物与兼性厌氧微生物(在某些情况下还可能有少量厌氧微生物)与废水中的有机、无机固体物混凝交织在一起形成的絮状物。使活性污泥起到净化作用的主体是细菌,多数是革兰阴性菌,此外还有大量的原生动物和后生动物,以及微生物代谢残留物和一些从污水中夹带的惰性有机物、无机物等。 活性污泥的含水率在99%左右,密度为1.002~1.006g/m3。其结构疏松,表面积很大,对有机污染物有着强烈的吸附和氧化(分解)能力。此外,活性污泥还具有良好的自身凝聚和沉降性能。 1.活性污泥法的原理及环境影响因素 活性污泥法的工艺原理是在人工充氧的曝气池中,利用活性污泥去除废水中的有机物,然后再二沉池中使污泥和水分离。大部分污泥再回流到曝气池中,多余部分则排出。 普通活性污泥法的处理系统中由以下几部分组成:①曝气池、②曝气系统、③二沉池、④污泥回流系统、⑤剩余污泥排放系统。 活性污泥法净化废水能力强、效率高、占地面积小、臭味轻微,但产生剩余污泥量大,另外需要一定的电能来向废水中不断供氧。 2.影响活性污泥性能的环境因素主要有: (1).溶解氧(好氧处理中,一般在1.5~2mg/L为宜)。 (2).水温(好氧处理中,宜在15~25℃的范围内)。 (3).pH值(一般以6.5~9为宜)。

(4).营养料(一般要求BOD?:N:P=100:5:1为宜)。 (5).有毒物质(重金属、一些非金属化合物、油类物质等)数量亦应加予控制。 3.活性污泥法的性能评价指标 活性污泥法的性能评价指标主要有以下几项。 (1).生物相观察:即利用光学显微镜或电子显微镜观察活性污泥中的细菌、真菌、原生动物及后生动物等微生物的种类、数量、优势度及代谢活动等状况,在一定程度上反映整个系统的运行状况。 (2).混合液悬浮固体浓度(MLSS):指曝气池中单位体积混合液中活性污泥悬浮固体的质量,也称为污泥浓度。MLSS代表混合液悬浮固体中有机物的含量。 (3).污泥沉降比(SV):指曝气池混合液静止30min后沉淀污泥的体积分数,通常采用1L的量筒测定污泥沉降比。 (4).污泥体积指数(SVI):指曝气池混合液沉淀30min后,每单位质量干泥形成的湿污泥的体积,常用单位为mL/g。 污泥体积指数(SVI)能较好的反应出活性污泥的松散程度、凝聚和沉降性能。一般城市污水正常运行条件下的SVI值在100~150mL/g 之间。SVI值过低,说明泥粒细小,无机质含量高,缺乏活性;SVI 值过高,说明污泥沉降性能不好,并且已经有产生膨胀现象的可能。如果SVI>200mL/g,污泥难于分离,容易产生污泥膨胀。 4.活性污泥法的运行方式

活性污泥法运算指标

2、活性污泥法运算指标 活性污泥法处理污水的关键是要有充足的供氧(曝气)及性能良好的活性污泥,活性污泥的性能应具有良好的聚凝结构和分解有机物能力,以及在()时与水迅速分离,活性污泥性能可用下面几项指标来表示: (1)污泥沉降比(SV ) 污泥沉降比是指一定量的曝气池混合液,静置沉淀30min 后,沉淀物与原混合物与原混合液的体积比(以百分数表示)即 污泥沉淀比(%)=混合液体积 静置沉淀后污泥体积混合液经min 30 由于,污泥经沉淀30min 后,沉淀污泥可接近最大密度,因此以30min 为依据,沉淀比的大小与污泥凝聚与沉降性有关。若凝聚性差时,上清液混浊,污泥难以下沉。在通常情况下曝气池混合液宜保持沉淀比在20%--50%范围内。(一般表曝SV 高,射流曝气SV 低些)。 (2)污泥浓度(MLSS ) 污泥浓度是为IL 曝气池混合液所含悬浮固体(MLSS )的重量,单位为g/L 或mg/L 。MLSS 值得大小,间接地反映出曝气池混合液中所含微生物的重量。保证适宜MLSS 的对处理效率有十分重要的影响。通常MLSS 控制在2-4g/L 为宜。 (3)污泥容积指数(SVI ) 是指曝气池混合液经30min 静置沉淀后,1g 干污泥所占沉淀污泥容积毫升数,其单位为mg/L ,其计算公式 g 1000污泥浓度(污泥沉降比()?=SVI SVI 值能反映活性污泥凝聚性和沉降性。若 SVI 值过高,证明污泥颗粒松散,不是沉淀,将发生污泥膨胀或已经发生了污泥膨胀。如 SVI 值过低,证明污泥颗粒紧密、细小和吸附性也差。在正常情况下, SVI 值一般在50-100之间为宜。 SVI<100 沉淀性能好 SVI=100 沉淀性能一般 SVI>100 沉淀性能差 由于工业污水中成分各异,SVI 正常值也略有不同,若污水溶解性有机物含量大时,正常的SVI 值可能偏高。若污水中无机物含量大时,正常的SVI 值可能偏低。 3、活性污泥中的微生物及其变化规律 活性污泥是由细菌、真菌、原生动物和后生动物等不同种属的微生物组成的。在净化废水时,它们与废水中的有机营养物形成了极为复杂的食物链。最初担当净化任务的是异养型细菌和腐蚀性真菌。如在高糖、低pH 值、低磷以及某些特殊的有机物多时,会促使真菌的生长繁殖。大部分细菌形成菌胶团。原生动物吞食活的细菌,是细菌的一次捕食者。活性污泥中最常见的原生动物有鞭毛虫类、肉足虫类、纤毛虫类和吸管虫类。但这些原生动物并非同时出现,而是随条件及水质的变化而变化。一般在曝气的初期,肉足虫和鞭毛虫占优势;接着是自由游动性的纤毛虫(如豆形虫草履虫)占优势;随着活性污泥的逐渐成熟,固着型的纤毛虫(如纤维虫、盖纤虫、等枝虫、钟虫等)又相继占优势,特别是钟虫出现且数量较多时,则说明污泥成熟,所以原生动物的演替变化,可以用来评估活性污泥的质量及废水处理的情况。后生动物是细菌的二次捕食者。活性污泥中的后生动物像轮虫、线虫等,只能在氧气很充足的条件下才出现,所以后生动物的出现是水质处理相当好的标志。

活性污泥法

(1)、生物固体停留时间(solid retention time,SRT ) 活性污泥在曝气池、二沉池和污泥回流系统内的停留时间称为生物固体停留时间。可用下式表示: SRT=) //(/d kg kg 污泥量每天从系统排出的活性系统内活性污泥量 (2)有机物负荷 有机物(BOD 5)负荷分为污泥负荷(Ls)和容积负荷(Lv),用公式表示如下: Ls= XV Q O S Lv=V QS 0×103 式中:Ls ——BOD-SS 负荷,kgBOD/(kgMLSS.d); Lv ——BOD 容积负荷,kgBOD/(m 3.d); S 0——反应器进水BOD 浓度,mg/L ; X ——污泥浓度,mg/L 。 (3)水力停留时间 水力停留时间(HRT )表示污水在反应池内的反应时间,用下式表示: t=Q V 式中:t ——曝气池水力停留时间,h ; V ——曝气池有效容积,m 3; Q ——进水流量,m 3/h BOD-SS 负荷和生物固体停留时间都是活性污泥法设计和污水处理厂运行管理的重要参数。 (4)污泥浓度 污泥浓度是指曝气池中1L 混合液内所含的悬浮固体(常表示为MLSS ,mixed liquor suspended solids )或挥发性悬浮固体(MLVSS )的浓度,单位是g/L 或mg/L 。污泥浓度的大小可间接地反映曝气池中所含微生物的浓度。对于普通活性污泥法而言,曝气池中污泥浓度一般在1.5~3g/L 之间。 (5)污泥沉降比和污泥容积指数 污泥沉降比(settling velocity,SV)指曝气池混合液在量筒中静置30min 后,所得的沉淀污泥体积与混合液总体积的比(用百分数表示),即: 污泥沉降比=混合液经30min 静置沉淀后的污泥体积/混合液体积 污泥容积指数(sludge volume index ,SVI)指曝气池的污泥浓度与污泥沉降比的比值。即1g 干污泥所相当的沉淀污泥体积数,单位为mL/g ,但一般不标注。SVI 计算式为: SVI=SV 的百分数×10/MLSS SVI 通常反应了活性污泥的沉降性好坏。如果SVI 较高,表示SV 值较大,则表明沉降性较差;如果SVI 较小,污泥颗粒密实,则表明沉降性较好。但是,如果SVI 过低,则可能反映出污泥中泥的成分过多,微生物量太少。通常,当SVI>100时,污泥的沉降性能良好;当SVI=100~200时,沉降性一般;而当SVI>200时,沉降性较差,污泥可能处在膨胀状态。 二、活性污泥法工艺的运行与管理 活性污泥法工艺 的运行与管理工作主要包括活性污泥的培养与驯化、系统运行状态的监察与相关检测、异常现象的预防及处理等。

活性污泥法污水处理

水污染控制工程课程设计 城镇污水处理厂设计 指导教师刘军坛 姓名秦琪宁 目录 摘要 (3) 第一章引言...................................... 1.1设计依据的数据参数........................................................................................ 1.2设计原则............................................................................................................ 1.3设计依据............................................................................................................ 第二章污水处理工艺流程的比较及选择错误!未定义书 签。 2.1 选择活性污泥法的原因................................................................................... 第三章工艺流程的设计计算.. (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房............................................................................................................ 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

活性污泥法曝气量有关计算(仅供参考)

氧的传递与转移 一、双膜理论与氧总转移系数 (1)气、液两相接触的界面两侧存在着处于层流状态的气膜和液膜,在其外侧则分别为处于紊流状态的气相主体和液相主体。气体分子以分子扩散方式从气相主体通过气膜和液膜而进入液相主体。(2)气、液两相主体的物质浓度基本上是均匀的,不存在浓度差,也不存在传质阻力,气体向液相主体的传递,阻力仅存在于气、液两层膜中。(3)在气膜中存在氧的分压梯度,在液膜中存在氧的浓度梯度,它们是氧转移的推动力。(4)氧难溶于水,氧转移决定性的阻力集中在液膜上,因此,氧分子通过液膜是氧转移过程的控制步骤。 V A X D K f L a L =()C C K dt dC s La -= KLa 小,则氧转移过程中阻力大;KLa 大,则氧转移过程中阻力小。1/KLa 的单位为h ,表示曝气池中溶解氧浓度从C 提高到Cs 所需要的时间。KLa ——氧总转移系数是评价空气扩散装置的重要参数。 二、提高氧转移效率的方法: (1)提高KLa 值。要加强液相主体的紊流程度,降低液膜厚度,加速气、液面的更新,增大气、液接触面积等(气泡细小)。 什么是液膜呢?你一定知道肥皂泡沫吧,它就是最常见的液膜,它的分子一端亲水,一端亲油,在水中遇到油,亲油的一端向油,亲水的一端向外,就成为包围着油的泡沫。这种液膜不稳定,一吹就破。 (2)提高Cs 值。可提高气相中的氧分压,如采用纯氧曝气或高压下曝气如深井曝气等。 三、影响氧转移的因素 (1)污水性质 污水中存在着溶解性有机物,特别是表面活性物质,如短链脂肪酸和乙醇,是一种两亲分子,极性端亲水羧基COOH -或羟基-OH -插入液相,而非极性端疏水的碳基链则伸入气相中。由于两亲分子聚集在气液界面上,阻碍氧分子的扩散转移,增加了氧转移过程的阻力→KLa ↓,引入一个小于1的因子α来修正表面活性物质对KLa 的影响 α=KLa ’(污水)/KLa(清水) KLa ’(污水)=α*KLa(清水) (2)污水中含有盐类,因此,氧在水中的饱和度也受水质的影响。引入小于1的系数β因子来修正。 β=Cs ’(污水)/Cs(清水) Cs ’(污水)=β*Cs(清水) (3)水温 水温降低有利于氧的转移。30-35℃的盛夏情况不利。 KLa (T)=KLa (20)*1.024(T-20) (3)氧分压 Cs 值受氧分压或气压的影响。气压降低 ,Cs 降低,反之则提高。在当地气压不是一个标准大气压时,C 值应乘以如下修正系数: ρ=所在地区实际压力(Pa)/101325(Pa) 主要影响因素:气相中氧分压梯度、液相中氧浓度梯度、气液之间的接触面积(气泡大小)和接触时间、水温、污水性质、水流的紊流程度。

活性污泥法课程设计(DOC)知识分享

活性污泥法课程设计 (D O C)

学号:2010122140 课程设计 题目城镇污水处理厂工艺设计 (活性污泥法) 学院环境与生物工程学院 专业环境工程 班级环境工程一班 学生姓名张琼 指导教师谭雪梅 2012 年12 月7 日

目录 目录 0 第一章设计任务 (3) 1.1 设计任务及要求 (3) 1.1.1 设计任务 (3) 1.1.2 设计要求 (3) 第二章总体设计 (4) 2.1 处理构筑物选择 (4) 2.2 污水处理厂选址 (4) 2.3 核心工艺比较 (5) 2.3.1 氧化沟工艺 (5) 2.3.2 A/O法 (5) 2.3.3 SBR法 (6) 2.3.4 曝气生物滤池(BAF) (6) 2.3.5 MBR工艺 (6) 2.4 设计流量 (8) 2.5 污水、污泥处理工艺流程图 (8) 第三章格栅 (9) 3.1 设计草图 (9) 3.2 设计参数 (9) 3.3 设计计算 (9) 3.3.1 中格栅的设计计算 (9) 3.3.2 细格栅的设计计算 (11) 第四章沉砂池 (14) 4.1 设计草图 (14) 4.2 设计参数 (14) 4.3 设计计算 (15) 第五章初级沉淀池 (16) 5.1 设计草图 (17) 5.2 设计计算 (17)

第六章曝气池 (19) 6.1 污水处理程度的计算及曝气池的运行方式 (20) 6.1.1 污水处理程度的计算 (20) 6.1.2 曝气池的运行方式 (20) 6.2 曝气池的计算与各部位尺寸的确定 (20) 6.3 曝气系统的计算与设计 (23) 6.4 供气量计算 (24) 6.5 空气管系统计算 (27) 6.6 空压机的选定 (27) 第七章二次沉淀池 (28) 7.1 设计草图 (28) 7.2 设计参数 (29) 7.3 设计计算 (29) 第八章其他构筑物 (32) 8.1 集水井 (32) 8.2 污水提升泵房 (32) 8.3 接触池 (33) 8.4 液氯投配系统 (34) 8.5 计量堰 (34) 8.6 污泥回流泵房 (35) 8.7 污泥浓缩池 (36) 8.8 污泥脱水间 (36) 第九章构筑物高程布置计算及水力损失 (36) 9.1平面布置 (36) 9.2构筑物水头损失计算 (37) 9.2.1 污泥管道水头损失 (38) 9.2.2 污水管渠水力计算 (38) 9.3 污泥高程计算 (39) 第十章污水厂运行成本及其构成 (40) 10.1 污水处理厂的处理成本构成 (40) 10.2 运行成本分析 (41)

活性污泥法污泥产量计算

活性污泥工艺的设计计算方法探讨 摘要对活性污泥工艺的三种设计计算方法:污泥负荷法、泥龄法、数学模型法的优缺点进行了评述,建议现阶段推广采用泥龄法进行设计计算,并对泥龄法基本参数的选用提出了意见。 关键词活性污泥工艺泥龄法污泥负荷法数学模型法设计计算 活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。 1污泥负荷法 这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。 污泥负荷法的计算式为[1] V=24LjQ/1000FwNw=24LjQ/1000Fr(1) 污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d) Fr=0.4~0.9 kgBOD/(m3池容·d)

可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。 污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)[2],其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢? 污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和B OD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。 综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)[3],1995年又推出了活性污泥二号模型(简称ASM2)[4、5]。 2数学模型法

活性污泥法处理工艺12种方法分析

活性污泥法处理工艺12种方法分析 活性污泥法、生物膜法、厌氧处理法、生物脱氮、除磷等工艺技术,是废水生物处理借助环境工程和化学工程的手段和方法,以微生物作用为主体开发出了种种用于控制和治理水污染治理的新方法。 所谓“好氧”:是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应。所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物。 1.活性污泥法的特点 曝气池中污泥浓度一般控制在2—3g/L,废水浓度高时采用较高数值; 废水在曝气池中的停留时间(HRT)常采用4—8h,视废水中有机物浓度而定; 回流污泥量约为进水流量的25%—50%左右; BOD和悬浮物去除率都很高,达到90%—95%左右。 2.作用原理 普通活性污泥法是依据废水的自净作用原理发展而来的。 3.不足之处 对水质变化的适应能力不强; 所供的氧不能充分利用,因为在曝气池前端废水水质浓度高、污泥负荷高、需氧量大,而后端则相反,但空气往往沿池长均匀分布,这就造成前端供氧量不足、后端供氧量过剩的情况。 因此,在处理同样水量时,同其他类型的活性污泥法相比,曝气池相对庞大、占地多、能耗费用高。 阶段曝气活性污泥法 阶段曝气法也称为多点进水活性污泥法,它是普通活性污泥法的一个简单的改进,可克服普通活性污泥法供氧同需氧不平衡的矛盾。 曝气池容积同普通活性污泥法比较可以缩小30%左右,但其出水差于普通活性污泥法。 渐减曝气法

克服普通活性污泥法曝气池中供氧、需氧不平衡另一个改进方法是将曝气池的供氧沿活性污泥推进方向逐渐减少,这即为渐减曝气法。 该工艺曝气池中有机物浓度随着向前推进不断降低、污泥需氧量也不断下降、曝气量相应减少。 吸附再生活性污泥法 吸附再生活性污泥法系根据废水净化的机理,污泥对有机污染物的初期高速吸附作用,将普通活性污泥法作相应改进发展而来。 特点: 回流污泥量比普通活性污泥法多,回流比一般在50%—100%左右 吸附池和再生池的总容积比普通活性污泥法曝气池小得多,空气用量并不增加,因此减少了占地和降低了造价。 具有较强的调节平衡能力,以适应进水负荷的变化 缺点是去除率较普通活性污泥法低,尤其是对溶解性有机物较多的工业废水,处理效果不理想。 完全混合活性污泥法 完全混合活性污泥法的流程和普通活性污泥法相同,但废水和回流污泥进入曝气池时,立即与池内原先存在的混合液充分混合。 (a)采用扩散空气曝气器的完全混合活性污泥法工艺流程; (b)采用机械曝气的完全混合活性污泥工艺流程; (c)合建式圆形曝气沉淀池。 1.优点: 微生物的代谢速率甚高; 废水水力停留时间往往较短,系统的负荷较高; 构筑物的占地较省。 2.缺点: 导致出水水质较差; 较易发生丝状菌过量生长的污泥膨胀等运行间题。 序批式活性污泥法

活性污泥法参数表

德国是世界上环境保护工作开展较好的国家,在污水处理的脱氮除磷方面积累了很多值得借鉴的经验。现将德国排水技术协会(ATV)最新制定的城市污水设计规范A131中关于生物脱氮(硝化和反硝化)的曝气池设计方法介绍给大家,以供参考。 一、A131的应用条件: ≈2,TKN/BOD5≤0.25; ①进水的COD/BOD 5 ②出水达到废水规范VwV的规定。 对于具有硝化和反硝化功能的污水处理过程,其反硝化部分的大小主要取决于: ①希望达到的脱氮效果; ②曝气池进水中硝酸盐氮NO -N和BOD5的比值; 3 ③曝气池进水中易降解BOD5占的比例; ④泥龄ts; ⑤曝气池中的悬浮固体浓度X; ⑥污水温度。 图1为前置反硝化系统流程。(无) 1、计算NDN/BOD5和VDN/VT NDN------需经反硝化去除的氮 VDN------反硝化区体积 VT-------总体积 NDN表示需经反硝化去除的氮,它与进水的BOD5之比决定了反硝化区体积VDN 占总体积VT的大小。 由氮平衡计算NDN/BOD5: NDN=TKNi-Noe-Nme-Ns 式中 TKNi——进水总凯氏氮,mg/L Noe——出水中有机氮,一般取1~2mg/L Nme——出水中无机氮之和,包括氨氮、硝酸盐氮和亚硝酸盐氮,是排放控制值。按德国标准控制在18mg/L以下,则设计时取0.67×18=12mg/L Ns——剩余污泥排出的氮,等于进水BOD5的0.05倍,mg/L

由此可计算NDN/BOD5之值,然后从表1查得VDN/VT。 表1晴天和一般情况下反硝化设计参考值 VDN/VT 反硝化能力,以kgNDN/kgBOD5计,(t=10℃) 2、泥龄 泥龄ts是活性污泥在曝气池中的平均停留时间,即 ts=曝气池中的活性污泥量/每天从曝气池系统排出的剩余污泥量 tS=(X×VT)/(QS×XR+Q×XE) 式中 tS——泥龄,d X——曝气池中的活性污泥浓度,即MLSS,kg/m3 VT——曝气池总体积,m3 QS——每天排出的剩余污泥体积,m3/d XR——剩余污泥浓度,kg/m3 Q——设计污水流量,m3/d XE——二沉池出水的悬浮固体浓度,kg/m3 根据要求达到的处理程度和污水处理厂的规模,从表2选取应保证的最小泥龄。 表2处理程度及处理厂规模和最小泥龄的关系

相关文档
最新文档