常用分子生物学试剂的选择-中文-

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

建立一个分子生物学实验室所需的仪器

分子生物学技术信息 关于筹建一个分子生物学实验室所需的仪器 一、上游分子克隆 分子克隆技术是分子生物学的核心技术,这项技术的主要目的是获得某一基因或DNA片段的大量拷贝,从而可以深入分析基因结构与功能,并可达到人为改造细胞及物种个体的遗传性状的目的。 1. 分子克隆的基本技术路线: 1) 分离制备目的基因或DNA片段; 2) 目的DNA与载体在体外进行连接; 3) 重组DNA分子转入宿主细胞; 4) 筛选及鉴定阳性重组体; 5) 重组体的扩增。 2. 分子克隆常用仪器:

二、核酸分子杂交 核酸分子杂交技术是分子生物学领域中最常用的技术之一。其基本原理是具有一定同源性的两条核酸单链在一定的条件下可按碱基互补原则形成双链。由于核酸分子杂交的高度特异性及检测方法的高度灵敏性,使其在分子生物学领域中被广泛应用于分子克隆的筛选,基因组中特定基因序列的定量定性检测,基因表达和基因突变分析及疾病的基因诊断等。根据核酸种类分为Southern印迹法和Northern印迹法。 核酸分子杂交中常用的仪器: 三、下游蛋白的表达及分离纯化 目的基因能否发挥其效应,只能通过其表达有功能的蛋白质来实现,因此蛋白质的表达及分析方法成为分子生物学中必不可少的组成部分。 1. 蛋白的表达 大肠杆菌是自然界中最为人知的生物体之一。由于其具有操作简易,产量高和成本低廉等优点,使其成为蛋白质表达的首选宿主。缺点是:表达缺乏翻译后加工,得到的蛋白可能缺乏某些天然蛋白所具有的活性。 酵母作为单细胞低等真核生物,具有易培养,繁殖快,便于基因操作等优点,渐渐被开发作为目的基因的表达系统。其中甲基酵母作为外源基因的表达

分子生物学实验指导(精)

分子生物学实验指导 生物技术教学室编 宁夏大学生命科学学院 2008年8月

实验一分子生物学实验技术多媒体演示 [目的要求] 通过多媒体试验录像进一步掌握分子生物学基本操作技术。 [教学方式] 多媒体光盘演示。 [实验内容] 基本的分子生物学实验操作技术包括核酸凝胶电泳技术;质粒提取;转化;重组体的筛选;PCR技术等。

实验二琼脂糖凝胶电泳检测DNA [目的要求] 通过本实验学习琼脂糖凝胶电泳检测DNA的方法和技术 [实验原理] 琼脂糖凝胶电泳是分离鉴定和纯化DNA片段的常用方法。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应,DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。不同浓度琼脂糖凝胶可以分离从200bp至50 kb的DNA片段。在琼脂糖溶液中加入低浓度的溴化乙锭(Ethidum bromide ,EB),在紫外光下可以检出 10ng的DNA条带,在电场中,pH8.0条件下,凝胶中带负电荷的DNA向阳极迁移。 琼脂糖凝胶有如下特点: (1) DNA的分子大小在凝胶基质中其迁移速率与碱基对数目的常用对数值成反比,分子越大迁移得越慢。 (2) 琼脂糖浓度一个特定大小的线形DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。DNA电泳迁移率(u)的对数与凝胶浓度(t)成线性关系。 (3) 电压低电压时,线状DNA片段迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量DNA片段的迁移率将以不同的幅度增长,随着电压的增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA片段的分辨率达到最大,所加电压不得超过5v/cm。 (4) 电泳温度DNA在琼脂糖凝胶电泳中的电泳行为受电泳时的温度影响不明显,不同大小的DNA片段其相对迁移速率在4℃与30℃之间不发生明显改变,但浓度低于0.5%的凝胶或低熔点凝胶较为脆弱,最好在4℃条件下电泳。 (5) 嵌入染料荧光染料溴化乙锭用于检测琼脂糖凝胶中的DNA,染料嵌入到堆积的碱基对间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状迁移率降低15%。 (6) 离子强度电泳缓冲液的组成及其离子强度影响DNA电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶,电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化。

分子生物学实验技术考试题库

一、名词解释 1.分配常数:又称分配系数,是指一种分析物在两种不相混合溶剂中的平衡常数。 2.多肽链的末端分析:确定多肽链的两末端可作为整条多肽链一级结构测定的标志,分为氨基端分析和羧基端分析。 3.连接酶:指能将双链DNA中一条单链上相邻两核苷酸连接成一条完整的分子的酶。 4.预杂交:在分子杂交实验之前对杂交膜上非样品区域进行封闭,用以降低探针在膜上的非特异性结合。 5.反转录PCR:是将反转录RNA与PCR结合起来建立的一种PCR技术。首先进行反转录产生cDNA,然后进行常规的PCR反应。 6.稳定表达:外源基因转染真核细胞并整合入基因组后的表达。 7.基因敲除:是指对一个结构已知但功能未知或未完全知道的基因,从分子水平上设计实验,将该基因从动物的原基因组中去除,或用其它无功能的DNA片断取代,然后从整体观察实验动物表型,推测相应基因的功能。 8.物理图谱:人类基因组的物理图是指以已知核苷酸序列的DNA片段为“路标”,以碱基对(bp,kb,Mb)作为基本测量单位(图距)的基因组图。 9.质谱图:不同质荷比的离子经质量分析器分开后,到检测器被检测并记录下来,经计算机处理后所表示出的图形。 10.侧向散射光:激光束照射细胞时,光以90度角散射的讯号,用于检测细胞内部结构属性。

11.离子交换层析:是以离子交换剂为固定相,液体为流动相的系统中进行的层析。 12.Edman降解:从多肽链游离的N末端测定氨基酸残基的序列的过程。 13.又称为限制性核酸内切酶(restriction endonuclease):是能够特异识别双链DNA序列并进行切割的一类酶。 14.电转移:用电泳技术将凝胶中的蛋白质,DNA或RNA条带按原位转移到固体支持物,形成印迹。 15.多重PCR:是在一次反应中加入多对引物,同时扩增一份模板样品中不同序列的PCR 过程。 16.融合表达: 在表达载体的多克隆位点上连有一段融合表达标签(Tag),表达产物为融合蛋白(有分N端或者C端融合表达),方便后继的纯化步骤或者检测。 17.同源重组:发生在DNA同源序列之间,有相同或近似碱基序列的DNA分子之间的遗传交换。 18.遗传图谱又称连锁图谱(linkage map),它是以具有遗传多态性的遗传标记为“路标”,以遗传学距离为图距的基因组图。 19.碎片离子:广义的碎片离子为由分子离子裂解产生的所有离子。 20.前向散射光:激光束照射细胞时,光以相对轴较小角度向前方散射的讯号用于检测细胞等离子的表面属性,信号强弱与细胞体积大小成正比。 21.亲和层析:利用共价连接有特异配体的层析介质分离蛋白质混合物中能特异结合配体的目的蛋白或其他分子的一种层析法。(利用分子与其配体间特殊的、可逆性的亲和结合

分子生物学实验报告

分子生物学实验 院系:生命科学与技术学院 专业:生物科学(基地) 班级: 201101班 学号: 姓名: 分子生物学基础实验 分子生物学实验技术已成为生物化学及分子生物学以及相关学科院系教学科研不可缺少的一部分。为提高学生在分子生物学技术方面的动手能力,生物技术综合实验室主要开设常用而基本的分子生物学实验技术。它的内容包括质粒DNA的制备;DNA的重组;PCR基因扩增等等。 实验一质粒DNA的小量制备 一、实验原理 要把一个有用的外源基因通过基因工程手段,送进细胞中去进行繁殖和表达,需要运载工具,携带外源基因进入受体细胞的这种工具就叫载体(vector)。载体的设计和应用是DNA体外重组的重要条件。作为基因工程的载体必须具备下列条件:(1)是一个复制子,载体有复制点才能使与它结合的外源基因复制繁殖;(2)载体在受体细胞中能大量增殖,只有高复制率才能使外源基因在受体细胞中大量扩增;(3)载体DNA链上有1到几个限制性内切酶的单一识别与切割位点,便于外源基因的插入;(4)载体具有选择性的遗传标记,如有抗四环素基因(Tc r),抗新霉素基因(Ne r)等,以此知道它是否已进入受体细胞,也可根据这个标记将受体细胞从其他细胞中分离筛选出来。细菌质粒具备上述条件,它是基因工程中常用的载体之一。 质粒(plasmid)是一种染色体外的稳定遗传因子,大小在1~120kb之间,具

有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制和转录能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。它可独立游离在细胞质内,也可以整合到细菌染色体中,它离开宿主的细胞就不能存活,而它控制的许多生物学功能也是对宿主细胞的补偿。 质粒在细胞内的复制,一般分为两种类型:严密控制型(stringent control)和松弛控制型(relaxed control)。前者只在细胞周期的一定阶段进行复制,染色体不复制时,它也不复制。每个细胞内只含有1个或几个质粒分子。后者的质粒在整个细胞周期中随时复制,在细胞里,它有许多拷贝,一般在20个以上。通常大的质粒如F因子等,拷贝数较少,复制受到严格控制。小的质粒,如ColE Ⅰ质粒(含有产生大肠杆菌素E1基因),拷贝数较多,复制不受严格控制。在使用蛋白质合成抑制剂-氯霉素时,染色体DNA复制受阻,而松弛型ColEⅠ质粒继续复制12-16h,由原来20多个拷贝可扩增至1000-3000个拷贝,此时质粒DNA占总DNA的含量由原来的2%增加到40%-50%。本实验分离提纯化的质粒pBR322、pUC19就是由ColE Ⅰ衍生的质粒。 所有分离质粒DNA的方法都包括三个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。采用溶菌酶可破坏菌体细胞壁,十二烷基硫酸钠(SDS)可使细胞壁解,经溶菌酶和阴离子去污剂(SDS)处理后,细菌染色体DNA 缠绕附着在细胞壁碎片上,离心时易被沉淀出来,而质粒DNA则留在清液中。用乙醇沉淀、洗涤,可得到质粒DNA。 质粒DNA的相对分子量一般在106-107范围内,如质粒pBR322的相对分子质量为2.8×106,质粒pUC19的相对分子质量为1.7×106。在细胞内,共价闭环DNA(covalently closed circular DNA,简称cccDNA)常以超螺旋形式存在。如果两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,这种松弛型的分子叫做开环DNA(open circular DNA,简称ocDNA)。在电泳时,同一质粒如以cccDNA形式存在,它比其开环和线状DNA的泳动速度快,因此在本实验中,自制质粒DNA在电泳凝胶中呈现3条区带。 二、实验目的 1.掌握最常用的提取质粒DNA的方法和检测方法。 2.了解制备原理及各种试剂的作用。 三、实验材料和试剂

现代分子生物学课后答案(朱玉贤_第三版)上

第一章绪论 2.写出DNA和RNA的英文全称。 答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid)4.早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤。 答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡; 二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。2,DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。 三,烟草TMV的重建实验:1957年,Fraenkel-Conrat等人,将两个不同的TMV株系(S株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。 6.说出分子生物学的主要研究内容。 答:1,DNA重组技术;2,基因表达调控研究;3,生物大分子的结构功能研究----结构分子生物学;4,基因组、功能基因组与生物信息学研究。 第二章染色体与DNA 3.简述真核生物染色体的组成及组装过程 真核生物染色体除了性细胞外全是二倍体,DNA以及大量蛋白质及核膜构成的核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)构成的扁球状8聚体。 蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分 由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构。 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。 2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。 3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色

分子生物学实验课件

实验一、菌株复壮与单菌落菌株的获取 一、实验目的 学习细菌培养的LB培养基及抗生素抗性筛选培养基的配制,掌握高压灭菌和获取细菌单菌落菌株两种基本实验操作技能。 二、实验材料、设备及试剂 1、实验材料 大肠杆菌(E. coli)DH5α菌株:R-,M-,Amp- 2、实验设备 恒温摇床,电热恒温培养箱,无菌工作台,高压灭菌锅 3、试剂 酵母浸膏,蛋白胨,氯化钠,琼脂,卡那霉素 三、实验步骤 液体LB(Luria-Bertain)培养基配方: 蛋白胨(typtone) 1.0% (1 g/100 ml) 酵母提取物(Yeast extraction)0.5% (0.5g/100 ml) 氯化钠 1.0% (1 g/100 ml) PH 7.0 固体LB培养基:每100 ml液体培养基中加入1.5g琼脂粉 请按试剂瓶上的编号使用相应编号的药勺取药,防止药品相互污染! (1)每组按上述液体LB培养基配方,以配制100ml的量称取药品放入烧杯。 (2)用量筒量取约80 ml 蒸馏水注入烧杯中,玻棒搅拌使药品完全溶解后用100ml量筒定容 至100ml。 (3)pH试纸检测pH值,并用1 N NaOH或1 N HCl调节pH值至7.0。 (4)将100ml溶液分装入两个三角瓶,每瓶为50ml。 (5)按固体培养基配方称取适量琼脂粉分别放入两个三角瓶中,以配制成两瓶50ml固体LB培 养基。 (6)两个三角瓶分别用锡纸包扎瓶口。并用记号笔在三角瓶上标注各组标记。 (7)把装有培养基三角瓶放入灭菌锅中,盖上锅盖,以对称方式拧紧锅盖,打开排气阀通电加 热,至有连续的白色水蒸气从排气阀排出时,关闭排气阀。当高压锅温度(气压)指示器指示锅温度升高至121℃(0.1Mpa)时,调节电压(或利用手动开关电源的方式)使高压

分子生物学实验技术全攻略

分子生物学实验技术 目录 实验一细菌的培养 2 实验二质粒DNA的提取 3 实验三紫外吸收法测定核酸浓度与纯度 4 实验四水平式琼脂糖凝胶电泳法检测DNA 5 实验五质粒DNA酶切及琼脂糖电泳分析鉴定 7 实验六植物基因组DNA提取、酶切及电泳分析 8 实验七聚合酶链反应(PCR)技术体外扩增DNA 9 实验八 RNA提取与纯化 11 实验九 RT-PCR扩增目的基因cDNA 13 实验十质粒载体和外源DNA的连接反应 15 实验十一感受态细胞的制备及转化 16 实验十二克隆的筛选和快速鉴定 18 实验十三 DNA分析——Southern杂交 19 一基本操作 实验一、细菌培养 实验二、质粒DNA提取 实验三、紫外吸收法测定核酸浓度与纯度 实验四、水平式琼脂糖凝胶电泳法检测DNA 实验五、质粒DNA酶切及琼脂糖电泳分析鉴定 实验六、植物基因组DNA提取、定量、酶切及电泳分析实验八、植物RNA提取及纯化 二、目的基因获取

实验七、聚合酶链式反应(PCR)技术体外扩增DNA 实验九、RT-PCR扩增目的基因cDNA 三、目的基因的克隆和表达 实验十、质粒载体和外源DNA的连接反应 实验十一、感受态细胞的制备及转化 实验十二、克隆的筛选和快速鉴定 实验十三、DNA分析——Southern杂交 实验一细菌的培养 一、目的 学习细菌的培养方法及培养基的配置。 二、原理 在基因工程实验和分子生物学实验中,细菌是不可缺少的实验材料。质粒的保存、增殖和转化;基因文库的建立等都离不开细菌。特别是常用的大肠杆菌。 大肠杆菌是含有长约3000kb的环状染色体的棒状细胞。它能在仅含碳水化合物和提供氮、磷和微量元素的无机盐的培养基上快速生长。当大肠杆菌在培养基中培养时,其开始裂殖前,先进入一个滞后期。然后进入对数生长期,以20~30min复制一代的速度增殖。最后,当培养基中的营养成分和氧耗尽或当培养基中废物的含量达到抑制细菌的快速生长的浓度时,菌体密度就达到一个比较恒定的值,这一时期叫做细菌生长的饱和期。此时菌体密度可达到 1×109~2×109/mL。 培养基可以是固体的培养基,也可以是液体培养基。实验室中最常用的是LB培养 基。 三、实验材料、试剂与主要仪器 (一)实验材料 大肠杆菌 (二)试剂 1、胰蛋白胨 2、酵母提取物

现代分子生物学总结题库

第一章、基因的结构和功能实体及基因组 1、基因定义 基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,是具有遗传效应的DNA分子片段,是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。3、DNA损伤 DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。 DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition)指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。 e、双链断裂:对单倍体细胞一个双链断裂就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday 结构(Holiday Juncture Structure) 的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)和位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性和高度保守性。

分子生物学实验方法

实验1 植物总DNA的提取 生物总DNA的提取是分子生物学实验的一个重要内容。由于不同的生物材料细胞壁的结构和组成不同,而细胞壁结构的破坏是提取总DNA的关键步骤。同时细胞内的物质也根据生物种类的不同而有差异,因此不同生物采用的提取方法也不同,一般要根据具体的情况来设计实验方法。本实验介绍采用CTAB法提取植物总DNA的技术。 [实验目的] 学习和掌握学习CTAB法提取植物总DNA的基本原理和实验技术。学习和掌握紫外光吸收法鉴定DNA的纯度和浓度。 [实验原理] 植物叶片经液氮研磨,可使细胞壁破裂,加入去污剂(如CTAB),可使核蛋白体解析,然后使蛋白和多糖杂质沉淀,DNA进入水相,再用酚、氯仿抽提纯化。本实验采用CTAB 法,其主要作用是破膜。CTAB 是一种非离子去污剂,能溶解膜蛋白与脂肪,也可解聚核蛋白。植物材料在CTAB的处理下,结合65℃水浴使细胞裂解、蛋白质变性、DNA 被释放出来。CTAB与核酸形成复合物,此复合物在高盐(>0.7mM)浓度下可溶,并稳定存在,但在低盐浓度(0.1-0.5mM NaCl)下CTAB-核酸复合物就因溶解度降低而沉淀,而大部分的蛋白质及多糖等仍溶解于溶液中。经过氯仿/ 异戊醇(24:1) 抽提去除蛋白质、多糖、色素等来纯化DNA,最后经异丙醇或乙醇等沉淀剂将DNA沉淀分离出来。 由于核酸、蛋白质、多糖在特定的紫外波长都有特征吸收。核酸及其衍生物的紫外吸收高峰在260nm。纯的DNA样品A260/280≈1.8,纯的RNA样品A260/280≈2.0,并且1μg/ml DNA 溶液A260=0.020。 [实验器材] 1、高压灭菌锅 2、冰箱 3、恒温水浴锅 4、高速冷冻离心机 5、紫外分光光度计 6、剪刀 7、陶瓷研钵和杵子 8、磨口锥形瓶(50ml) 9、滴管 10、细玻棒 11、小烧杯(50ml) 12、离心管(50ml) 13、植物材料 [实验试剂] 1、3×CTAB buffer(pH8.0) 100mM Tris 25mM EDTA 1.5M NaCl 3% CTAB 2% β-巯基乙醇

分子生物学实验技术实验内容

2006 年《分子生物学实验技术》实验内容 RT-PCR (一)总 RNA的提取 实验安排:每两人抽提一管。为了使操作同步以节省时间,各组样品请一起离心。 操作步骤: TM(苯冰预冷的900μlLS -Biotragents液体样品加入 1.5ml Ep管中,再加入1、将100μ l 酚和异硫氰酸胍的混合物)。 2、将样品剧烈混合后,在室温放置5min。 3、加入200μl 氯仿,颠倒Ep 管混和两次,并剧烈振荡混和10s。 4、在4℃条件下,以10000×g 离心15min。 5、将上层水相转移到一个新的Ep 管中,加入等体积的异丙醇(Isopropanol)并混匀,然后在4℃放置至少10min。 6、在4℃条件下,以10000×g离心15min 后,小心并尽可能地去除全部上清夜。 7、用1ml 75%乙醇洗涤RNA 沉淀和管壁。 8、将RNA 沉淀进行干燥(不能完全干燥)处理后,用10μl 无RNase污染的水(RNase- Free Water)将RNA 溶解并于-20℃保存。 注意事项: 1、所有的玻璃器皿均应在使用前于180℃的高温下干烤6hr 或更长时间。 2、所用的塑料材料,如吸头、离心管等需用0.1% DEPC 水浸泡过夜。 3、配制的溶液应尽可能用0.1% DEPC,在37℃处理12hr 以上。然后用高压灭 菌除去残留的DEPC。不能高压灭菌的试剂,应当用DEPC 处理过的无菌双蒸水 配制,然后经0.22μm 滤膜过滤除菌。 4、操作人员需在超净工作台上操作,并戴一次性口罩、手套,实验过程中手套要勤换。 二)反转录 实验安排: 每人做一管反应体系(20μ l):按下列顺序加样 μl4 5× Buffer

医学分子生物学实验技术

1、基因:是遗传的物质基础,是DNA 或者RNA分子中携带遗传信息的特定核苷酸序列。 2、基因组:是指单倍体细胞核、细胞器或病毒粒子所含的全部DNA 或RNA分子,每个生物的基因组携带者构成和维持该生物体生物形式所必需的所有生物信息。 3、逆转录:以RNA为模板,由反转录酶催化四种dNTP聚合,产生DNA的过程。 4、聚合酶链反应:是一种由引物介导利用DNA聚合酶在体外扩增目的基因的方法,也叫基因扩增技术。 5、限制性核酸内切酶:是一类能识别双链DNA分子中的某些特定核苷酸序列,并由此切割DNA双链的核酸内切酶。 6引物:是一种与DNA模板链互补的线性核苷酸变短,其3’末端为游离的-OH,细胞内复制所需的引物是一小段RNA。催化游离dNTP之间相互聚合。 7、TaqDNA聚合酶:从一种嗜热菌株中分离得到的耐热的DNA聚合酶。 8、退火:热变性的DNA经缓慢冷却后即可复性,这一过程成为退火。 9、启动子:是位于转录起始点附近,且为转录所必需的序列元件。 10、DNA变性:当DNA收到某些理化因素作用时,DNA双链互补碱基对之间的氢键和相邻碱基之间的堆积力受到破坏,DNA分子被解开成单链,逐步形成为无规则线团的构象,不涉及核苷酸间共价键的断裂。

1、RT-PCR的基本原理 将RNA反转录与PCR过程结合的一种PCR技术,在反转录酶的作用下,以mRNA为模板,反转录生成DNA,再以cDNA为模板进行PCR扩增。 2、DNA电泳的基本原理,按照支持物不同可以分为几类 基本原理:核酸是两性电解质,在中性或偏碱性的pH溶液中均带负电,在电场中向正极泳动,不同的核酸在相对分子质量、分子形状等方面各有不同,在凝胶的空隙中泳动时电泳迁移率各不相同,因此借助电泳即可使其得到分离。 分类:1琼脂糖凝胶电泳AGE 2聚丙烯酰胺凝胶电泳PAGE 3 毛细管电泳 3、总RNA提取后,如何鉴定RNA的纯度 (1)紫外分光光度法:先通过A260与A280的比值判断核算的纯度,纯RNA的A260与A280的比值等于2.0,比值升高或降低均表示样品不纯。 (2)琼脂糖凝胶电泳法:基因组DNA的分子量远远大于RNA,两者之间电泳迁移率存在很大差别,用荧光染料EB为示踪剂的AGE即可观察到RNA分子中是否含有DNA,细胞RNA的琼脂糖凝胶电泳一般可见三条条带,条带模糊比例不合适及弥散明显说明RNA有严重降解。

现代分子生物学思考题答案(朱玉贤_第三版)

第一章绪论 1.简述孟德尔、摩尔根和沃森等人对分子生物学发展的主要贡献。 答:孟德尔的对分子生物学的发展的主要贡献在于他通过豌豆实验,发现了遗传规律、分离规律及自由组合规律;摩尔根的主要贡献在于发现染色体的遗传机制,创立染色体遗传理论,成为现代实验生物学奠基人;沃森和克里克在1953年提出DAN反向双平行双螺旋模型。2.写出DNA和RNA的英文全称。 答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid)3.试述“有其父必有其子”的生物学本质。 答:其生物学本质是基因遗传。子代的性质由遗传所得的基因决定,而基因由于遗传的作用,其基因的一半来自于父方,一般来自于母方。 4.早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤。 答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡; 二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。2,DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。 三,烟草TMV的重建实验:1957年,Fraenkel-Conrat等人,将两个不同的TMV株系(S 株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR 株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。 5.请定义DNA重组技术和基因工程技术。 答:DNA重组技术:目的是将不同的DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,然后在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 基因工程技术:是除了包含DNA重组技术外还包括其他可能是生物细胞基因结构得到改造的体系,基因工程是指技术重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技

现代分子生物学(第3版)-朱玉贤-课后答案(全)上课讲义

现代分子生物学(第3版)-朱玉贤-课后答 案(全)

第一章 1 简述孟德尔、摩尔根和沃森等人对分子生物学发展的主要贡献 答:孟德尔的对分子生物学的发展的主要贡献在于他通过豌豆实验,发现了遗传规律、分离规律及自由组合规律;摩尔根的主要贡献在于发现染色体的遗传机制,创立染色体遗传理论,成为现代实验生物学奠基人;沃森和克里克在1953年提出DAN反向双平行双螺旋模型。 2写出DNARNA的英文全称 答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid) 3试述“有其父必有其子”的生物学本质 答:其生物学本质是基因遗传。子代的性质由遗传所得的基因决定,而基因由于遗传的作用,其基因的一半来自于父方,一般来自于母方。 4早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤 答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡;二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。 2,DNA中P的含量多,蛋白质中P 的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P 标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射

第五章 分子生物学常用技术 习题

第五章常用分子生物学技术的原理及其应用习题(引自网络精品课程) 一、选择题 (一)A型题 1 .分子杂交实验不能用于 A .单链 DNA 与 RNA 分子之间的杂交 B .双链 DNA 与 RNA 分子之间的杂交 C .单链 RNA 分子之间的杂交 D .单链 DNA 分子之间的杂交 E .抗原与抗体分子之间的杂交 2 .关于探针叙述错误的是 A .带有特殊标记 B .具有特定序列 C .必须是双链的核酸片段 D .可以是基因组 DNA 片段 E .可以是抗体 3 .下列哪种物质不能用作探针 A . DNA 片段 B . cDNA C .蛋白质 D .氨基酸 E . RNA 片段 4 .印迹技术可以分为 A . DNA 印迹 B . RNA 印迹 C .蛋白质印迹 D .斑点印迹 E .以上都对 5 . PCR 实验延伸温度一般是 A .90 ℃ B .72 ℃ C .80 ℃ D .95 ℃ E .60 ℃ 6 . Western blot 中的探针是 A . RNA B .单链 DNA C . cDNA D .抗体 E .双链 DNA 7 . Northern blotting 与 Southern blotting 不同的是 A .基本原理不同 B .无需进行限制性内切酶消化 C .探针必须是 RNA D .探针必须是 DNA E .靠毛细作用进行转移 8 .可以不经电泳分离而直接点样在 NC 膜上进行杂交分析的是 A .斑点印迹 B .原位杂交 C . RNA 印迹 D . DNA 芯片技术 E . DNA 印迹 9 .下列哪种物质在 PCR 反应中不能作为模板 A . RNA B .单链 DNA C . cDNA D .蛋白质 E .双链 DNA 10 . RT-PCR 中不涉及的是 A .探针 B . cDNA C .逆转录酶 D . RNA E . dNTP 11 .关于 PCR 的基本成分叙述错误的是 A .特异性引物 B .耐热性 DNA 聚合酶 C . dNTP D .含有 Zn 2+ 的缓冲液 E .模板 12 . DNA 链末端合成终止法不需要 A . ddNTP B . dNTP C .引物标记 D . DNA 聚合酶 E .模板 13 . cDNA 文库构建不需要 A .提取 mRNA B .限制性内切酶裂解 mRNA C .逆转录合成 cDNA D .将 cDNA 克隆入质粒或噬菌体 E .重组载体转化宿主细胞 14 .标签蛋白沉淀是 A .研究蛋白质相互作用的技术 B .基于亲和色谱原理 C .常用标签是 GST D .也可以是 6 组氨酸标签 E .以上都对 15 .研究蛋白质与 DNA 在染色质环境下相互作用的技术是 A .标签蛋白沉淀 B .酵母双杂交 C .凝胶迁移变动实验 D .染色质免疫沉淀法 E .噬菌体显示筛选系统 16 .动物整体克隆技术又称为

最新分子生物学实验文档

分子生物学实验文档

分子生物学基础实验 分子生物学实验技术已成为生物化学及分子生物学以及相关学科院系教学科研不可缺少的一部分。为提高学生在分子生物学技术方面的动手能力,生物技术综合实验室主要开设常用而基本的分子生物学实验技术。它的内容包括质粒DNA的制备;DNA的重组;PCR基因扩增等等。 实验一质粒DNA的小量制备 一、实验原理 要把一个有用的外源基因通过基因工程手段,送进细胞中去进行繁殖和表达,需要运载工具,携带外源基因进入受体细胞的这种工具就叫载体(vector)。载体的设计和应用是DNA体外重组的重要条件。作为基因工程的载体必须具备下列条件:(1)是一个复制子,载体有复制点才能使与它结合的外源基因复制繁殖;(2)载体在受体细胞中能大量增殖,只有高复制率才能使外源基因在受体细胞中大量扩增;(3)载体DNA链上有1到几个限制性内切酶的单一识别与切割位点,便于外源基因的插入;(4)载体具有选择性的遗传标记,如有抗四环素基因(Tc r),抗新霉素基因(Ne r)等,以此知道它是否已进入受体细胞,也可根据这个标记将受体细胞从其他细胞中分离筛选出来。细菌质粒具备上述条件,它是基因工程中常用的载体之一。 质粒(plasmid)是一种染色体外的稳定遗传因子,大小在1~120kb之间,具有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制和转录能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。它可独立游离在细胞质内,也可以整合到细菌染色体中,它离开宿主的细胞就不能存活,而它控制的许多生物学功能也是对宿主细胞的补偿。 质粒在细胞内的复制,一般分为两种类型:严密控制型(stringent control)和松弛控制型(relaxed control)。前者只在细胞周期的一定阶段进行复制,染色体不复制时,它也不复制。每个细胞内只含有1个或几个质粒分子。后者的质粒在整个细胞周期中随时复制,在细胞里,它有许多拷贝,一般在20个以上。通常大的质粒如F因子等,拷贝数较少,复制受到严格控制。小的质粒,如ColE Ⅰ质粒(含有产生大肠杆菌素E1基因),拷贝数较多,复制不受严格控制。在使用蛋白质合成抑制剂-氯霉素时,染色体DNA复制受阻,而松弛型ColEⅠ质粒继续复制12-16h,由原来20多个拷贝可扩增

现代分子生物学实验教程

现代分子生物学实验技术教材 目 录 第一章 质粒DNA的分离、纯化和鉴定 第二章 DNA酶切及凝胶电泳 第三章 大肠杆菌感受态细胞的制备和转化 第四章 RNA的提取和cDNA合成 第五章 重组质粒的连接、转化及筛选 第六章 基因组DNA的提取 第七章 RFLP和RAPD技术 第八章 聚合酶链式反应(PCR)扩增和扩增产物克隆 第九章 分子杂交技术 第一章 质粒DNA的分离、纯化和鉴定 第一节 概 述 把一个有用的目的DNA片段通过重组DNA技术,送进受体细胞中去进行繁殖和表达的工具叫载体(Vector)。细菌质粒是重组DNA技术中常用的载体。 质粒(Plasmid)是一种染色体外的稳定遗传因子,大小从1-200kb不等,为双链、闭环的DNA 分子,并以超螺旋状态存在于宿主细胞中。质粒主要发现于细菌、放线菌和真菌细胞中,它具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表达所携带的遗传信息。质粒的复制和转录要依赖于宿主细胞编码的某些酶和蛋白质,如离开宿主细胞则不能存活,而宿主即使没有它们也可以正常存活。质粒的存在使宿主具有一些额外的特性,如对抗生素的抗性等。F质粒(又称F因子或性质粒)、R质粒(抗药性因子)和Col质粒(产大肠杆菌素因子)等都是常见的天然质粒。 质粒在细胞内的复制一般有两种类型:紧密控制型(Stringent control)和松驰控制型(Relaxed control)。前者只在细胞周期的一定阶段进行复制,当染色体不复制时,它也不能复制,通常每个细胞内只含有1个或几个质粒分子,如F因子。后者的质粒在整个细胞周期中随时可以

复制,在每个细胞中有许多拷贝,一般在20个以上,如Col E1质粒。在使用蛋白质合成抑制剂-氯霉素时,细胞内蛋白质合成、染色体DNA复制和细胞分裂均受到抑制,紧密型质粒复制停止,而松驰型质粒继续复制,质粒拷贝数可由原来20多个扩增至1000-3000个,此时质粒DNA占总DNA的含量可由原来的2%增加至40-50%。 利用同一复制系统的不同质粒不能在同一宿主细胞中共同存在,当两种质粒同时导入同一细胞时,它们在复制及随后分配到子细胞的过程中彼此竞争,在一些细胞中,一种质粒占优势,而在另一些细胞中另一种质粒却占上风。当细胞生长几代后,占少数的质粒将会丢失,因而在细胞后代中只有两种质粒的一种,这种现象称质粒的不相容性(Incompatibility)。但利用不同复制系统的质粒则可以稳定地共存于同一宿主细胞中。 质粒通常含有编码某些酶的基因,其表型包括对抗生素的抗性,产生某些抗生素,降解复杂有机物,产生大肠杆菌素和肠毒素及某些限制性内切酶与修饰酶等。 质粒载体是在天然质粒的基础上为适应实验室操作而进行人工构建的。与天然质粒相比,质粒载体通常带有一个或一个以上的选择性标记基因(如抗生素抗性基因)和一个人工合成的含有多个限制性内切酶识别位点的多克隆位点序列,并去掉了大部分非必需序列,使分子量尽可能减少,以便于基因工程操作。大多质粒载体带有一些多用途的辅助序列,这些用途包括通过组织化学方法肉眼鉴定重组克隆、产生用于序列测定的单链DNA、体外转录外源DNA序列、鉴定片段的插入方向、外源基因的大量表达等。一个理想的克隆载体大致应有下列一些特性: (1)分子量小、多拷贝、松驰控制型; (2)具有多种常用的限制性内切酶的单切点; (3)能插入较大的外源DNA片段; (4)具有容易操作的检测表型。 常用的质粒载体大小一般在1kb至10kb之间,如PBR322、PUC系列、PGEM系列和pBluescript (简称pBS)等。 从细菌中分离质粒DNA的方法都包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细胞;分离和纯化质粒DNA。采用溶菌酶可以破坏菌体细胞壁,十二烷基磺酸钠(SDS)和Triton X-100可使细胞膜裂解。经溶菌酶和SDS或Triton X-100处理后,细菌染色体DNA会缠绕附着在细胞碎片上,同时由于细菌染色体DNA比质粒大得多,易受机械力和核酸酶等的作用而被切断成不同大小的线性片段。当用强热或酸、碱处理时,细菌的线性染色体DNA变性,而共价闭合环状DNA(Covalently closed circular DNA,简称cccDNA)的两条链不会相互分开,当外界条件恢复正常时,线状染色体DNA片段难以复性,而是与变性的蛋白质和细胞碎片缠绕在一起,而质粒DNA 双链又恢复原状,重新形成天然的超螺旋分子,并以溶解状态存在于液相中。 在细菌细胞内,共价闭环质粒以超螺旋形式存在。在提取质粒过程中,除了超螺旋DNA外,

相关文档
最新文档