生物学业考试必背知识点(全)

生物学业考试必背知识点(全)
生物学业考试必背知识点(全)

必修1《分子与细胞》学业考试必背知识点

第1章:走进细胞

第1节:从生物圈到细胞

⒈生物体结构和功能的基本单位:细胞;

⒉病毒生物的标志是能通过增殖产生后代;

⒊草履虫是单细胞生物;

⒋人个体发育的起点是:受精卵;受精作用的场所:输卵管;胚胎发育的主要场所:子宫;

⒌父母和子女间遗传物质的桥梁:生殖细胞(精子和卵细胞);

⒍反射活动的结构基础:反射弧;完成缩手反射至少需要神经细胞和肌细胞的参与;

⒎艾滋病的病原体是:人类免疫缺陷病毒(HIV);HIV主要破坏人体免疫系统的淋巴细胞;

⒏非典型肺炎的病原体:冠状病毒;冠状病毒主要侵染人体的肺部细胞和呼吸道细胞;

⒐生物和外界环境间的物质和能量交换的基础:细胞代谢;生物生长和发育的基础:细胞增殖和分化;

生物遗传和变异的基础:细胞内基因的传递和变化;

⒑生命系统的结构层次从小到大依次是:细胞→组织→器官→系统→个体→种群→群落→生态系统→生物圈;

注意:①心肌,平滑肌属组织;骨骼肌属器官②绿色开花植物有6大器官:根、茎、叶、花、果实、种子;③绿色植物没有系统这一层次;④单个单细胞生物既是细胞层次又是个体层次;

⒒生物圈是最大的生命系统也是最大的生态系统;细胞是地球上最基本的生命系统;

⒓地球上最早出现的生命形式,是具有细胞形态的单细胞生物;

第2节:细胞的多样性和统一性

⒈高倍显微镜使用要点:①找:在低倍镜下找到所要观察的目标;②移:移动装片使观察目标处于

视野的中央

③换:转动转换器,使高倍物镜正对通光孔;④调:调节光圈,反光镜和细准焦螺旋使

视野明亮

⒉注意:①使用显微镜观察标本时,正确的方法:两眼睁开,用左眼观察,右眼作记录,画图;

②显微镜的放大倍数:物镜放大倍数×目镜放大倍数;

③目镜的长度和放大倍数成反比;物镜的长度和放大倍数成正比;

④显微镜的放大倍数指物体长度和宽度的放大倍数,而不是面积和体积的放大倍数;

⑤一行细胞数量的变化:根据放大倍数和视野成反比的规律计算;

⑥圆形视野范围内细胞数量的变化:根据看到的实物范围与放大倍数的平方成反比的规律计算;

⑦显微镜成像规律:显微镜下成的像是倒立的像(上下左右同时颠倒,旋转1800)(b→q,d →p);

⑧往物像所在的位置移动装片才能将物像移到视野的中央(物象在右下方就往右下方移动装片);

⒊根据细胞内有无以核膜为界限的细胞核,把细胞分为真核细胞和原核细胞两类;

①真核细胞构成真核生物,如动物、植物、真菌等;(注意:酵母菌和霉菌属真核生物)

②原核细胞构成原核生物,如蓝藻,细菌,放线菌,支原体,衣原体;(记忆口诀:蓝色细线织毛衣)

注意:乳酸菌,醋酸菌属细菌,是原核生物;

⒋蓝藻在水体里由于富营养化而群体聚集会产生水华(淡水)和赤潮(咸水);蓝藻在陆地上群体聚集可形成发菜;

⒌蓝藻细胞的细胞膜和真核细胞相似;

⒍蓝藻细胞的细胞质中仅含一种细胞器:核糖体;

⒎蓝藻细胞的细胞质中含有藻蓝素和叶绿素能进行光合作用,是自养生物

(细菌中的绝大多数是营寄生或腐生生活的异养生物);(注意:蓝藻细胞内不含叶绿体) ⒏动植物细胞的统一性:均含有细胞膜,细胞质,细胞核;

⒐真原核细胞的统一性:均含有细胞膜,细胞质,均以DNA 为遗传物质; ⒑细胞学说揭示了细胞的统一性和生物体结构的统一性; ⒒细胞学说的建立者:德国的施莱登和施旺;

⒓细胞的发现者和命名者:1665年,英国的虎克; ⒔第一个观察到活细胞的科学家:荷兰的列文虎克;

⒕细胞学说要点:①细胞是一个有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成;②细胞是一个相对独立的单位,既有它自己的生命,又对于其他细胞共同组成的整体的生命起作用; ③新细胞可以丛老细胞中产生;

第2章:组成细胞的分子

第1节:细胞中的元素和化合物(重点内容)

⒈组成细胞的化学元素,在无机自然界都能够找到,没有一种是细胞所特有的,说明生物界和非生物界具有统一性

⒉组成细胞的元素和无机自然界中的元素的含量相差很大说明生物界和非生物界具有差异性 ⒊含量最多的元素:O ;

⒋最基本的元素:C (生命的核心元素,没有碳就没有生命); ⒌基本元素:C 、H 、O 、N ;

⒍主要元素:C 、H 、O 、N 、P 、S ;

⒎大量元素:C 、H 、O 、N 、P 、S 、K 、Ca 、Mg ;

⒏微量元素:Fe 、Mn 、B 、Zn 、Mo 、Cu (铁猛碰新木桶) 注意:干重中含量最多的元素是C ; ⒐细胞中含量最多的化合物:水;⒑细胞中含量最多的无机物:水; ⒑细胞中含量最多的有机物:蛋白质; ⒒细胞干重中含量最多的化合物:蛋白质;

⒓还原性糖﹢斐林试剂→砖红色沉淀; ①常见的还原性糖包括:葡萄糖、麦芽糖、果糖; ②斐林试剂甲液:0.1g/mlNaOH ; 斐林试剂乙液:0.05g/ml CuSO 4; ③斐林试剂由斐林试剂甲液和乙液1:1现配现用; ④该过程需要水浴加热;

⑤试管中颜色变化过程:蓝色→棕色→砖红色

⒔蛋白质﹢双缩脲试剂→紫色 ①双缩脲试剂A 液:0.1g/mlNaOH ;双缩脲试剂B 液:0.01g/ml CuSO 4

②显色反应中先加双缩脲试剂A 液1ml ,摇匀;再加双缩脲试剂B 液4滴,摇

⒕脂肪﹢苏丹Ⅲ→橘黄色;脂肪﹢苏丹Ⅳ→红色;淀粉﹢碘液→蓝色 第2节:生命活动的主要承担者——蛋白质(重点内容) ⒈组成元素:C 、H 、O 、N (主);

⒉基本组成单位:氨基酸(组成生物体蛋白质的氨基酸共有20种)

必需氨基酸:体内不能合成,只能从食物中摄取(8种,婴儿有9种);非必需氨基酸:12种 ⒊氨基酸的结构通式:(见右图)

⒋通式的特点:

①至少含有一个氨基(-NH 2)和一个羧基(-COOH )

②都有一个氨基和一个羧基连接在同一个碳原子上

③一个以上的氨基和羧基都位于R 基上,各种氨基酸之间的区别在于R 基的不同

注意:氨基酸脱水缩合的过程中形成的水中的H 一个来自氨基,一个来自羧基,O 来自羧基

R

NH 2—C —COOH

∣H

⒌失去的水分子数=肽键数=氨基酸数-肽链条数=水解需水数

一条多肽链至少含有一个氨基(-NH2)一个羧基(-COOH),分别位于肽链的两端

⒍蛋白质分子结构的多样性:①组成蛋白质的氨基酸种类不同;②组成蛋白质的氨基酸数目不同;

③组成蛋白质的氨基酸排列顺序不同;④蛋白质的空间结构不同

⒎蛋白质的功能:①组成功能:肌肉;②催化功能:酶;③运输功能:血红蛋白;④调节功能:生长激素;

⑤免疫功能:抗体

⒏蛋白质的盐析和变性:盐析可逆,变性不可逆;

⒐一切生命活动都离不开蛋白质,蛋白质是生命活动的主要承担者

第3节:遗传信息的携带者——核酸

⒈核酸是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用

⒉核酸的分类:脱氧核糖核酸(DNA)和核糖核酸(RNA)

⒊核酸的分布:①脱氧核糖核酸(DNA)主要分布在细胞核中,线粒体和叶绿体中含有少量的DNA

②核糖核酸(RNA)主要分布在细胞质中;③DNA+甲基绿→绿色;

⒋核酸的组成元素:C、H、O、N、P

⒌核酸基本组成单位:核苷酸(包括一分子含氮碱基、一分子五碳糖、一分子磷酸)

⒍核苷酸的分类:①脱氧核苷酸:磷酸+脱氧核糖(C5H10O4)+含氮碱基(A/T/G/C),故脱氧核苷酸4种

②核糖核苷酸:磷酸+核糖(C5H10O5)+含氮碱基(A/U/G/C),故核糖核苷酸4种

⒎①在病毒体内含核酸1种;核苷酸4种;碱基4种②在细胞内含核酸2种;核苷酸8种;碱基5种

⒏脱氧核苷酸通过脱水缩合形成脱氧核苷酸长链,DNA分子一般由2条脱氧核苷酸长链组成

⒐核糖核苷酸通过脱水缩合形成核糖核苷酸长链,RNA分子一般由1条核糖核苷酸长链组成

第4节:细胞中的糖类和脂质

⒈糖类的组成元素:C、H、O(又称碳水化合物);

⒉功能:细胞内的主要能源物质

⒊糖的分类:⑴单糖:①五碳糖:核糖(C5H10O5)和脱氧核糖(C5H10O4)②六碳糖:葡萄糖(C6H12O6 绿

色植物光合作用的产物,细胞生命活动所需要的主要能源物质;是还原性糖)和果糖(自然界

最甜的糖,是还原性糖)

⑵二糖:(C12H22O11):①蔗糖:甘蔗,甜菜(植物细胞中的二糖)②麦芽糖:发芽的

麦粒(植物细胞中的二糖),是还原性糖;③乳糖:乳汁(动物细胞中的二糖)

⑶多糖:自然界中含量最多的糖类(C6H5O10)n,基本组成单位是葡萄糖

①淀粉:植物细胞中最重要的储能物质;②纤维素:植物细胞壁的基本组成成分,

一般不提供能量;③糖元:动物细胞中的储能物质,主要有肝糖原和肌糖原两类;

⒋脂肪:细胞内良好的储能物质;①组成元素:C、H、O(C、H比例高,燃烧时耗氧多,产能多);

②功能:储能、保温、缓压、减摩;

⒌磷脂:细胞膜及细胞器膜的基本骨架;

⒍固醇:小分子物质①胆固醇:动物细胞膜的成分;②性激素:促进人和动物生殖器官的发育

及生殖细胞的形成(化学本质是脂质);③维生素D:促进小肠对Ca和P的吸收(幼

年缺乏易患佝偻病);

⒎多糖的单体:葡萄糖;蛋白质的单体:氨基酸;核酸的单体:核苷酸

第5节:细胞中的无机物

⒈地球上最早的生命起源于原始海洋;

⒉水是细胞中含量最多的化合物;

⒊水在细胞中的存在形式:结合水和自由水

⒋结合水:和细胞内的其他物质相结合,是细胞结构的重要组成成分,丢失将导致细胞结构的破坏;

⒌自由水:细胞内良好的溶剂;生化反应的媒介并参与生物化学反应;运输营养物质和代谢废物;

⒍自由水含量越高代谢越旺盛,结合水含量越高细胞抗性越强;

⒎细胞中的无机盐大多数以离子形式存在;

⒏无机盐的功能:①维持细胞的形态和功能:Mg2+(叶绿素)、Fe2+(血红蛋白)、CaCO3(骨骼,

牙齿)、I(甲状腺激素)

②维持生物体的生命活动:血液内钙离子浓度过低导致抽搐;③维持细胞内的平

衡(酸碱平衡,渗透压平衡,离子平衡)

第3章:细胞的基本结构

第1节:细胞膜——系统的边界

⒈体验制备细胞膜的方法:①实验原理:哺乳动物成熟的红细胞没有细胞核和细胞器,将其放在清

水中,吸水胀破可以得到细胞膜;②成熟的哺乳动物红细胞吸水胀破后,流出的内容物的成分:

血红蛋白和无机盐等;

⒉细胞膜的成分:①脂质(50%):以磷脂为主,是细胞膜的骨架,含两层;

②蛋白质(40%):细胞膜功能的体现者,蛋白质种类和数量越多,细胞膜功能越复杂;

③糖类:和蛋白质结合形成糖蛋白也叫糖被,和细胞识别、免疫反应、信息传递、血型决定等有直接联系;

⒊细胞膜的功能:①将细胞和外界环境隔开;②控制物质进出细胞(控制具有相对性);③进行细

胞间的信息交流(和细胞膜上的糖蛋白紧密相关);

⒋植物细胞的细胞壁:①成分:纤维素和果胶;②功能:支持和保护细胞;

③用纤维素酶和果胶酶可以在不损伤细胞内部结构的前提下出去细胞壁;

第2节:细胞器——系统内的分工合作(重点内容,需要会看细胞结构示意图)

⒈显微结构:光学显微镜下看到的结构;亚显微结构:电子显微镜下看到的结构;

⒉线粒体:细胞内的动力车间①分布:动植物细胞,代谢旺盛的细胞含量多(如:心肌细胞);

②结构:双层膜,内膜向内折叠形成嵴,含呼吸酶和少量DNA;

③功能:有氧呼吸的主要场所,提供能量占90% (注意:蛔虫的体细胞内不含线粒体)

⒊叶绿体:细胞内的“养料制造工厂”和“能量转换站”①分布:绿色植物能进行光合作用的细

胞(主要是叶肉细胞);②结构:双层膜,内含基粒、基质、色素、酶和少量DNA③功

能:光合作用的场所;(注:植物的根尖细胞不含叶绿体)

⒋内质网:能增加细胞内的膜面积,是细胞内蛋白质的合成加工以及脂质合成的车间,是细胞内蛋

白质运输的通道

①分布:动植物细胞;②结构:单层膜连接而成的网状结构;③功能:和物质的合成和运输有关

⒌高尔基体:细胞内蛋白质加工、分类和包装的“车间”及“发送站”

①分布:动植物细胞;②结构:单层膜,由扁平囊和囊泡构成(其中扁平囊是判断高尔基体的依据)

③功能:和细胞分泌物的形成有关;和植物细胞壁的形成有关

⒍核糖体:细胞内生产蛋白质的机器①分布:动植物细胞;②结构:不具膜,呈颗粒状;③功能:

蛋白质合成的场所

⒎中心体:①分布:动物细胞和低等植物细胞;②结构:不具膜结构,由两组互相垂直的中心粒及周围物质组成

③功能:和细胞有丝分裂过程中纺锤体的形成有关(发出星射线形成纺锤体)

⒏液泡:①分布:主要在成熟的植物细胞内;②结构:单层膜(液泡膜),内含细胞液(细胞液中

含有色素,无机盐,糖类,蛋白质等);③功能:调节植物细胞的内环境;使植物

细胞保持坚挺;和细胞的吸水失水相关

注意:植物根尖份生区细胞没有液泡,根尖成熟区(根毛区)细胞有液泡

⒐溶酶体:细胞内的“消化车间”;①分布:动植物细胞;②结构:单层膜,内含多种水解酶

③功能:分解衰老,损伤的细胞器,吞噬并杀死侵入细胞的病毒或细菌

⒑细胞质基质:细胞质中除细胞器外的胶状物质,是新陈代谢的主要场所

⒒用高倍显微镜观察叶绿体和线粒体

原理:①叶肉细胞中的叶绿体呈绿色、扁平的椭球形或球形,可以在高倍显微镜下观察它的形态和分布;

②线粒体+健那绿→蓝绿色,可以对活的动物细胞中的线粒体进行染色,细胞质接近无色;

⒓分泌蛋白形成过程中涉及的细胞器和细胞结构:

①核糖体(合成蛋白质)→内质网(初步加工,转运通道)→高尔基体(加工组装)→细胞膜(通

过外排作用行成分泌蛋白);线粒体(供能);②其中:从内质网到高尔基体,从高尔基体

到细胞膜均通过囊泡来进行转移

⒔细胞的生物膜系统包括:细胞膜,细胞器膜和核膜(这些生物膜的组成成分和结构很相似)

第3节:细胞核——系统的控制中心

⒈细胞核的结构:①核膜(双层,内外核膜的融合处形成核孔):将核内物质和细胞核分开;

②核孔:实现细胞核和细胞质之间频繁的物质交换和信息交流(蛋白质核酸等大分

子物质进出细胞核的通道);

③核仁: RNA及核糖体的形成有关;

④染色质:由DNA和蛋白质组成,DNA携带遗传信息(存在于细胞分裂的分裂间

期,呈细丝状);

⑤染色体:存在于细胞分裂的分裂期,由染色质高度螺旋化,缩短,变粗而形成,

呈圆柱状或杆状,细胞分裂结束时能解螺旋形成染色质;⑥染色质和

染色体的关系:同样的物质在细胞不同时期的两种存在状态;

⒉细胞核的功能:细胞核是遗传信息库。是细胞代谢和遗传的控制中心;

⒊细胞是生物体结构、功能、代谢和遗传的基本单位,其行使各项功能的前提是保持细胞结构的完整性;

第4章:细胞的物质输入和输出

第1节:物质跨膜运输的实例

⒈细胞和环境进行物质交换必须经过细胞膜;

⒉发生渗透作用的两个条件:必须具有半透膜;半透膜两侧溶液具有浓度差;

⒊动物细胞吸水或失水的多少取决于:细胞质和外界溶液的浓度差,差值越大,吸水或失水越多;

⒋成熟的植物细胞是渗透系统:半透膜:原生质层(细胞膜,细胞质,液泡膜);浓度差:细胞液和

外界溶液有浓度差;

⒌发生质壁分离及质壁分离复原的细胞是:活的,成熟的植物细胞;

⒍质壁分离的本质:细胞壁和原生质层的分离;

⒎质壁分离的原因:细胞壁的伸缩性比原生质层的伸缩性小;

⒏当细胞液浓度小于外界溶液浓度时,细胞通过渗透作用失水发生质壁分离;

⒐当细胞液浓度大于外界溶液浓度时,细胞通过渗透作用吸水,发生质壁分离复原;

⒑质壁分离状态下:细胞液浓度增大,颜色加深,液泡体积变小;

⒒质壁分离状态下:细胞壁和原生质层(细胞膜)间充满外界溶液(因为细胞壁是全透性的);

⒓若外界溶液的溶质分子可以通过细胞膜进入细胞,则在该溶液中发生了质壁分离的细胞会发生质壁

分离的自动复原;

⒔观察质壁分离及质壁分离复原实验中,外界溶液的浓度不能太高,否则细胞失水过多失活,无法看

到质壁分离的复原;

第2节:生物膜的流动镶嵌模型

⒈19世纪末欧文顿提出:膜是由脂质组成的;

⒉20世纪初:膜的主要成分是脂质和蛋白质;

⒊1925年,荷兰科学家提出:细胞膜中的脂质分子必然排列为连续的两层;

⒋1959年罗伯特森提出:所有生物膜都是由蛋白质—脂质—蛋白质构成的静态统一结构;

⒌1970年通过细胞融合实验证明了:细胞膜具有流动性;

⒍1972年桑格和尼克森提出的流动镶嵌模型为大多数人所接受。其基本内容包括:

①磷脂双分子层构成膜的基本支架(磷脂双分子层可以运动);②蛋白质分子镶嵌或横跨在磷脂

双分子层上(大多数的蛋白质分子可以运动);③细胞膜外表有一层由细胞膜上的蛋白质和糖

类结合形成的糖蛋白,也做糖被;④细胞膜的功能特性:选择透过性;⑤细胞膜的结构特点:

具有一定的流动性;

第3节:物质跨膜运输的方式

⒈自由扩散①特点:从高浓度向低浓度顺浓度梯度扩散;不需要细胞膜上的载体蛋白协助;不消耗

能量;②实例:氧气(O2)、二氧化碳(CO2),水(H2O),乙醇,乙二醇,甘油,苯,

尿素,脂肪酸,胆固醇;

⒉协助扩散①特点:从高浓度向低浓度顺浓度梯度扩散;需要细胞膜上的载体蛋白协助;不消耗能

量;②实例:葡萄糖进入红细胞;

⒊被动运输:自由扩散和协助扩散统称为被动运输;

⒋被动运输吸收物质时,不需要消耗能量,但需要膜两侧的浓度差,浓度差是动力,浓度差越大,

吸收物质越容易;

⒌主动运输①特点:从低浓度向低高浓度逆浓度梯度扩散;需要细胞膜上的载体蛋白协助;消耗能

量;②实例:葡萄糖,氨基酸,核苷酸,无机盐离子等;③意义:保证了活细胞能够按

照生命活动的需要,主动选择吸收所需要的营养物质,排出代谢废物和对细胞有害的物

质;

⒍大分子或颗粒状物质进出细胞的方式:胞吞或胞吐(依赖于细胞膜的流动性,消耗能量,不需要

载体蛋白的参与);

⒎和物质跨膜运输过程中载体的形成有关的细胞器:核糖体;和物质跨膜运输过程中消耗的能量有

关的细胞器:线粒体;

第5章:细胞的能量供应和利用

第1节:降低化学反应活化能的酶

⒈细胞中每时每刻都进行着许多化学反应,统称为细胞代谢;

⒉比较过氧化氢在不同条件下的分解实验中要用新鲜的肝脏研磨液,新鲜时酶活性高,研磨有利于

过氧化氢酶的释放;

⒊变量:实验过程中可以变化的因素;①自变量:人为改变的变量;②因变量:随着自变量的变化而变化的变量;

③对照实验:除了一个因素外,其余因素都保持不变的实验叫对照实验;

⒋酶能加快反应速率的原因:能降低反应的活化能;

⒌同无机催化剂相比,酶降低活化能的作用更显著,因而催化效率更高;

⒍酶的本质:绝大部分的酶是蛋白质,极少数的酶是RNA(称核酶);

⒎酶的定义:酶是活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质,少量的酶是RNA;

⒏酶的特性:①酶具有高效性(酶的催化效率大约是无机催化剂的107—1013倍);

②酶具有专一性(每种酶只能催化一种或一类化学反应);

③酶的作用条件较温和:在最适温度和pH条件下,酶的活性最高。温度和pH偏高或

偏低,酶活性都会明显降低;

④高温,强酸,强碱均会使酶变性失活(蛋白质的空间结构破坏)而失去催化活性;

⑤胃蛋白酶最适pH为1.5

第2节:细胞的能量“通货”——ATP

⒈直接能源物质:ATP;主要能源物质:糖类;主要储能物质:脂肪;

⒉ATP的名称:三磷酸腺苷;

⒊ATP的结构简式:A—P~P~P(A:腺苷;P:磷酸;~:高能磷酸键);

⒋1个ATP分子中含有:A:1个;P:3个;~:2个;

⒌ADP:二磷酸腺苷;Pi:磷酸;

⒍ATP中远离腺苷(A)的高能磷酸键容易断裂,发生ATP的水解,形成ADP和Pi,同时释放出大量

的能量;细胞内的ATP和ADP间的相互转化不是可逆反应(物质可逆,能量不可逆);ATP在细

胞内的含量很少,但和ADP之间的转化非常的迅速,其含量处于动态平衡之中,ATP含量降为0

即意味着细胞的死亡;

⒎ADP转化成ATP时所需能量的主要来源:在动物、人、真菌和大多数细菌细胞内主要来自呼吸作用;

在绿色植物细胞内来自光合作用和呼吸作用;

⒏ATP断裂高能磷酸键释放的化学能能迅速转化为光能,电能,渗透能,热能,机械能供细胞代谢直接利用;

第3节:ATP的重要来源——细胞呼吸(重点内容)

⒈有氧呼吸①有氧呼吸是高等动植物细胞呼吸的主要形式;②主要场所:线粒体;③最常利用的

物质:葡萄糖;

④过程:酶

C6H12O6—→2CH3COCOOH + 4[H] + 少量能量(场所在细胞质基质)

2CH3COCOOH + 6H2O—→6CO2 + 20[H] + 少量能量(场所在线粒体基质)

24[H] + 6O2—→12H2O + 大量能量(场所在线粒体内膜)

⑤总反应式:酶

C6H12O6+ 6*O2 + 6H2O—→6 CO2+ 12H2*O + 能量(2870KJ,转移至ATP能量1161KJ,生成ATP38mol);

注意:产物H2O中的O全部来自O2,H来自C6H12O6和H2O;CO2中的O来自C6H12O6和H2O,C来自C6H12O6;

⑥相关小结:Ⅰ有氧呼吸CO2的生成在第二阶段,O2参与反应在第三阶段;Ⅱ有氧呼吸大量能量的

释放在第三阶段;

Ⅲ有氧呼吸H2O参与反应在第二阶段,H2O的生成在第三阶段;

⒉无氧呼吸①场所:细胞质基质;最常利用的物质:葡萄糖;

②过程:酶

C6H12O6—→2CH3COCOOH + 4[H] + 少量能量(场所在细胞质基质)

2CH3COCOOH + 4[H]—→2C3H6O3 + 少量能量

2CH3COCOOH + 4[H]—→2CH3CH2OH + 2CO2 + 少量能量

③总反应式:酶

C6H12O6 —→2CH3CH2OH + 2CO2 + 能量(212KJ,转移至ATP能量61.08KJ,生成ATP2mol)或酶

C6H12O6—→2C3H6O3 + 能量(196.65KJ,转移至ATP能量61.08KJ,生成ATP2mol)

⒊无氧呼吸产生酒精的典型生物类群:酵母菌和绿色植物;

⒋无氧呼吸产生乳酸的典型生物类群:人和高等动物及马铃薯的块茎,甜菜的块根等;

⒌在探究酵母菌细胞呼吸的方式实验中,CO2和CH3CH2OH的检测

①CO2+ 澄清石灰水—→浑浊;CO2+ 溴麝香草酚蓝—→黄色(颜色变化过程:蓝色→绿色→黄色);

②CH3CH2OH + 重铬酸钾 + H+→灰绿色(颜色变化过程:橙色→灰绿色);

③酵母菌是单细胞真菌,在有氧和无氧的条件下都能生存,属于兼性厌氧菌

第4节:能量之源——光与光合作用

⒈定义:绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存着能量的有机物,并且释放出O2的过程。

⒉光合作用的探究历程:

①1771年英,普利斯特里植物可以更新空气

②1779年英格豪斯绿叶在有光条件下可以更新空气

③1864年德,萨克斯光合作用产生淀粉

④1880年美,恩格尔曼叶绿体是光合作用的场所,光合作用产生氧气

⑤20世纪30年代美,鲁宾和卡门光合作用释放的氧全部来自水

⑥20世纪40年代美,卡尔文卡尔文循环

⒊捕获光能的色素:①分布:叶绿体类囊体薄膜上;②功能:吸收,传递和转化光能;③分离色素的

方法:纸层析法

④种类:叶绿素(3/4):叶绿素a(蓝绿色)和叶绿素b(黄绿色)(主要吸收红橙光和蓝紫光)

类胡萝卜素(1/4):胡萝卜素(橙黄色)和叶黄素(黄色)(主要吸收蓝紫光)

⑤层析的结果:四条色素带从上往下依次为:胡也,ab

橙黄色(胡萝卜素)→黄色(叶黄素)→蓝绿色(叶绿素a)→黄绿色(叶绿素b)

⑥分离最快的色素:胡萝卜素;含量最多的色素:叶绿素a;含量最少的色素:胡萝卜素;分离最

慢的色素:叶绿素b

⑦研磨时加入二氧化硅和碳酸钙的作用是:二氧化硅有助于研磨得充分,碳酸钙可防止研磨时色素被破坏。

⑧用培养皿盖住小烧杯和用棉塞塞紧试管口的原因是因为层析液中的丙酮是一种有挥发性的有毒物质。

⑨滤纸上的滤液细线不能触及层析液的原因:防止滤液细线中的色素被层析液溶解

⒋光合作用的场所:叶绿体(与光合作用有关的酶分布于基粒的类囊体及基质中;光合作用色素分布于

类囊体的薄膜上)

⒌光合作用的过程:⑴光反应阶段:①部位:叶绿体类囊体薄膜②条件:光、色素、酶、H2O

:2H2O—→4[H]+O2 (为暗反应供H)

:ADP+Pi+能量—→ATP(为暗反应供能)

④能量变化:光能→ATP中活跃的化学能

⑵暗反应阶段:①部位:叶绿体基质②条件:多种酶,[H],ATP,CO2

③过程:酶

2的固定:CO2 +C5—→2C3

3的还原:2C3—→(CH2O)+ C5([H]做还原剂,消耗ATP,CH2O指糖类)

④能量变化:ATP中活跃的化学能→糖类中稳定的化学能

⒍影响光合作用的因素及在生产实践中的应用

①光:主要影响光反应(光的波长,光照强度强度,光照时间均有影响);②温度:主要影响暗

反应(影响酶的活性)

③CO2浓度:主要影响暗反应;④水:影响气孔的开闭进而影响光合作用;⑤无机盐:主要影响酶,ATP等物质的形成

⒎化能合成作用:利用体外环境中某些无机物氧化时所释放的能量来制造有机物的物质合成方式

如:硝化细菌,不能利用光能,但能将土壤中的NH3氧化成HNO2,进而将HNO2氧化成HNO3。

⒏相关小结:①光合作用是自然界最基本的物质代谢和能量代谢

②光合作用的最有效光是白光,其次是蓝紫光和红光的复合光即品红光,然后是蓝紫光,

红光,最无效光是绿光

第6章:细胞的生命历程

第1节:细胞的增殖(重点内容)

⒈限制细胞长大的原因:①细胞表面积与体积的比;②细胞的核质比

⒉意义:生物体生长、发育、繁殖和遗传的基础;

⒊方式:①有丝分裂③无丝分裂③减数分裂

⒋有丝分裂:真核细胞进行细胞分裂的主要方式

①细胞周期:指连续分裂的细胞,从上一次细胞分裂完成时开始,到下一次分裂完成时为止。

②分裂间期:上一次分裂结束之后到下一次分裂开始之前(90%~95%)

③分裂期:下一次细胞分裂开始到下一次细胞分裂结束(前期、中期、后期、末期)注:分裂期

是一个连续的过程

⒌植物细胞有丝分裂的过程:

①间期: D复蛋合现单体(DNA复制,蛋白质合成,出现染色单体,细胞体积略有增加)

②前期:膜仁消失显两体(核膜崩解,核仁消失,出现染色体和纺锤体)

③中期:形定数晰赤道齐(染色体形态比较稳定,数目比较清晰,染色体的着丝点排列在细胞中

央的赤道板上)

是染色体形态观察和记数的最佳时期

④后期:点裂数加均两极(着丝点分裂,染色体数目加倍,染色单体变为0,在纺锤丝的牵引下

向细胞两极移动)

⑤末期:两消两现生新壁(染色体解螺旋成为染色质,纺锤体消失,核膜重建,核仁重现,在赤

道板的位置出现细胞板,细胞板向四周扩散形成新的细胞壁,此时高尔基体的活动

频繁,合成纤维素形成细胞壁)

⑥相关概念:染色体、姐妹染色单体、着丝点、纺锤体、赤道板(有名无实)、细胞板

⒍动植物细胞有丝分裂的不同点:

⑴间期:DNA复制,蛋白质合成,中心体复制(形成两组互相垂直的中心粒,共有中心粒4个,中心

体2个)

⑵前期:纺锤体的形成方式不同;①植物细胞:细胞两极发出纺锤丝形成纺锤体;

②动物细胞:中心粒周围发出星射线形成纺锤体;

⑶末期:子细胞的形成过程不同;①植物细胞:细胞板向四周扩散形成新的细胞壁,细胞分裂成两

个子细胞

②动物细胞:细胞中央向内凹陷,细胞缢裂成两个子细胞

⒎有丝分裂的意义:将亲代细胞的染色体经过复制(实质为DNA的复制)之后,精确地平均分配到两个

子细胞中,在亲子代细胞间保持了遗传性状的稳定性。

⒐相关小结:①有丝分裂过程中染色体的复制,出现,加倍,消失依次出现在:间期,前期,后期,末期

②有丝分裂过程中DNA的复制和减半分别发生在间期和末期

⒑无丝分裂:无纺锤丝和染色体的出现但是有遗传物质的复制(如:蛙的红细胞)

⒒观察植物细胞的有丝分裂

⑴细胞核内的染色体容易被碱性染料(龙胆紫或者醋酸洋红)染成深色,便于观察

⑵方法步骤:①洋葱根尖的培养:实验前3~4天,取一个洋葱放在广口瓶上,瓶内装满清水,让洋葱

的底部接触到瓶内的水面。放在温暖的地方,经常换水(防止无氧呼吸产生酒精毒害细胞),使洋葱底部总是接触到水,待根长到5cm时,取生长健壮的根尖观察

②装片制作:取材(取根尖2~3cm)→解离(解离液:质量分数15%的HCl和体积分数95%的酒精溶液

1:1混合;室温解离3~5分钟)→漂洗(清水漂洗10分钟,利于染色)→染色(0.01g/ml的龙胆紫或0.02g/ml的醋酸洋红染色3~5分钟)→制片(放根尖、滴清水、加盖片、覆载片、轻压片)→观察(先低倍镜找到分生区细胞后高倍镜找到分裂中期、后期、末期、前期的细胞,最后观察间期细胞)

⑶各步骤的目的:

①解离:15%的HCl:使果胶成为果胶质,解除细胞间的粘连;95%的酒精:杀死细胞(根尖细胞

被杀死,细胞间质溶解,细胞容易分离);

②②漂洗:去除多余的解离液,特别是盐酸。因为染色时用的是碱性染料,酸碱反应会影响染色

效果

③染色:便于观察;④压片:使组织细胞分散

⑷根尖分生区细胞的特点:细胞呈正方形,排列紧密,有的细胞处于分裂状态

⑸视野中看到的细胞90%—95%处于间期,所观察到的细胞都是死细胞

第2节:细胞的分化

⒈细胞分化:在个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定

性差异的过程

①特点:持久性、稳定性和不可逆性;②意义:使多细胞生物体中的细胞趋向专门化;

③原因:细胞中遗传信息的选择性执行(同一个体体细胞所含遗传信息相同)④细胞分化程度越高,

分裂能力越弱

⒉细胞全能性:已经分化的细胞,仍然具有发育成完整个体的潜能(细胞→个体)

①原因:已分化体细胞含有一整套和受精卵相同的遗传物质,因此,具有发育成完整新个体的潜能

②植物细胞全能性:高度分化的植物细胞仍然具有全能性(如:胡萝卜韧皮部细胞可以发育成完整的新植株)

③动物细胞全能性:高度分化的动物细胞细胞核具有全能性(如:克隆羊多莉)④全能性:受精卵>

生殖细胞>体细胞

⒊干细胞:动物和人体内少数具有分裂和分化能力的细胞(如:造血干细胞和胚胎干细胞)

第3节:细胞的衰老和凋亡

⒈个体衰老与细胞衰老的关系:①单细胞生物体,细胞的衰老或死亡就是个体的衰老或死亡。

②多细胞生物体,个体衰老的过程就是组成个体的细胞普遍衰老的过程。

⒉衰老细胞的主要特征:①在衰老的细胞内水分减少(如皱纹);②衰老的细胞内有些酶的活性降低(如白发);

③细胞内的色素会随着细胞的衰老而逐渐积累(如老年斑);④衰老的细胞内呼吸速率减慢,

细胞核体积增大,染色质固缩,染色加深;⑤细胞膜通透性改变,使物质运输功能降低;

⒊细胞衰老的原因:①自由基学说②端粒学说

4.细胞凋亡:由基因所决定的细胞自动结束生命的过程(也被称为细胞编程性死亡)

①意义:完成正常发育,维持内部环境的稳定,抵御外界各种因素的干扰;②细胞死亡:细胞凋亡和细胞坏死

第4节:细胞的癌变

1. 癌细胞:有的细胞受到致癌因子的作用,细胞中遗传物质发生变化,就变成不受有机体控制的、连

续进行分裂的恶性增殖细胞,这种细胞就是癌细胞。

2. 癌细胞的特征:①能够无限增殖(海拉细胞系);②癌细胞的形态结构发生了变化(如:正常的成

纤维细胞呈扁平的梭形,癌变后呈球形);③癌细胞的表面也发生了变化(细胞膜上的糖蛋

白减少,容易在有机体内分散和转移)

3. 致癌因子的种类:①物理致癌因子:辐射,如紫外线,X射线等(居里夫人,二战后日本白血病的

发病率增加等)

②化学致癌因子:煤焦油,黄曲霉毒素,亚硝酸盐等(香烟的烟雾中有20多种致

癌因子)③病毒致癌因子:150多种

4.细胞癌变的原因:致癌因子使原癌基因和抑癌基因发生突变,导致正常细胞的生长和分裂失控而成为癌细胞(一般要积累5~6个基因突变,才会发生细胞的癌变)

必修2遗传与进化会考必背知识点

第五周次 20XX年月号 2课时

第一章遗传因子的发现

第一节孟德尔豌豆杂交试验(一)

1.孟德尔之所以选取豌豆作为杂交试验的材料是由于:

(1)豌豆是自花传粉植物,且是闭花授粉的植物;

(2)豌豆花较大,易于人工操作;

(3)豌豆具有易于区分的性状。

2.遗传学中常用概念及分析

(1)性状:生物所表现出来的形态特征和生理特性。

相对性状:一种生物同一种性状的不同表现类型。

举例:兔的长毛和短毛;人的卷发和直发等。

性状分离:杂种后代中,同时出现显性性状和隐性性状的现象。如在DD×dd杂交实验中,杂合F1代自交后形成的F2代同时出现显性性状(DD及Dd)和隐性性

状(dd)的现象。

显性性状:在DD×dd 杂交试验中,F1表现出来的性状;如教材中F1代豌豆表现出高茎,即高茎为显性。决定显性性状的为显性遗传因子(基因),用大写字

母表示。如高茎用D表示。

隐性性状:在DD×dd杂交试验中,F1未显现出来的性状;如教材中F1代豌豆未表现出矮茎,即矮茎为隐性。决定隐性性状的为隐性基因,用小写字母表示,

如矮茎用d表示。

(2)纯合子:遗传因子(基因)组成相同的个体。如DD或dd。其特点纯合子是自交后代全为纯合子,无性状分离现象。

杂合子:遗传因子(基因)组成不同的个体。如Dd。其特点是杂合子自交后代出现性状分离现象。

(3)杂交:遗传因子组成不同的个体之间的相交方式。

如:DD×dd Dd×dd DD×Dd等。

自交:遗传因子组成相同的个体之间的相交方式。

如:DD×DD Dd×Dd等

测交:F1(待测个体)与隐性纯合子杂交的方式。

如:Dd×dd

正交和反交:二者是相对而言的,

如甲(♀)×乙(♂)为正交,则甲(♂)×乙(♀)为反交;

如甲(♂)×乙(♀)为正交,则甲(♀)×乙(♂)为反交。

3.杂合子和纯合子的鉴别方法

若后代无性状分离,则待测个体为纯合子

测交法

若后代有性状分离,则待测个体为杂合子

若后代无性状分离,则待测个体为纯合子

自交法

若后代有性状分离,则待测个体为杂合子

4.常见问题解题方法

(1)如后代性状分离比为显:隐=3 :1,则双亲一定都是杂合子(Dd)

即Dd×Dd 3D_:1dd

(2)若后代性状分离比为显:隐=1 :1,则双亲一定是测交类型。

即为Dd×dd 1Dd :1dd

(3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。

即DD×DD 或 DD×Dd 或 DD×dd

5.分离定律

其实质就是在形成配子时,等位基因随减数第一次分裂后期同源染色体的分开而分离,分别进入到不同的配子中。

第2节孟德尔豌豆杂交试验(二)

1.两对相对性状杂交试验中的有关结论

(1)两对相对性状由两对等位基因控制,且两对等位基因分别位于两对同源染色体。

(2) F1 减数分裂产生配子时,等位基因一定分离,非等位基因(位于非同源染色体上的非

等位基因)自由组合,且同时发生。

(3)F2中有16种组合方式,9种基因型,4种表现型,比例9:3:3:1 YYRR 1/16 YYRr 2/16

Y_R_) YyRR 2/16 9/16 黄圆 YyRr 4/16 yyrr ) yyrr 1/16 1/16

绿皱 YYrr 1/16

Y_rr ) YYRr 2/16 3/16 黄皱 yyRR 1/16 yyR _) yyRr 2/16 3/16 绿圆

注意:上述结论只是符合亲本为YYRR ×yyrr ,但亲本为YYrr ×yyRR ,F2中重组类型为

10/16 ,亲本类型为 6/16。 2.常见组合问题 (1)配子类型问题

如:AaBbCc 产生的配子种类数为2x2x2=8种 (2)基因型类型

如:AaBbCc ×AaBBCc ,后代基因型数为多少? 先分解为三个分离定律:

Aa ×Aa 后代3种基因型(1AA :2Aa :1aa ) Bb ×BB 后代2种基因型(1BB :1Bb )

Cc ×Cc 后代3种基因型(1CC :2Cc :1cc ) 所以其杂交后代有3x2x3=18种类型。

(3)表现类型问题

如:AaBbCc ×AabbCc ,后代表现数为多少? 先分解为三个分离定律:

Aa ×Aa 后代2种表现型 Bb ×bb 后代2种表现型 Cc ×Cc 后代2种表现型

所以其杂交后代有2x2x2=8种表现型。

3.自由组合定律

实质是形成配子时,成对的基因彼此分离,决定不同性状的基因自由组合。

第二章 基因和染色体的关系

第一节 减数分裂和受精作用 知识结构

精子的形成过程

减数分裂

卵细胞形成过程

减数分裂和受精作用

配子中染色体组合的多样性

受精作用

受精作用的过程和实质

1.正确区分染色体、染色单体、同源染色体和四分体

(1)染色体和染色单体:细胞分裂间期,染色体经过复制成由一个着丝点连着的两条姐妹染色单体。所以此时染色体数目要根据着丝点判断。

(2)同源染色体和四分体:同源染色体指形态、大小一般相同,一条来自母方,一条来自父方,且能在减数第一次分裂过程中可以两两配对的一对染色体。四分体指减数第一次分裂同源染色体联会后每对同源染色体中含有四条姐妹染色单体。

(3)一对同源染色体= 一个四分体=2条染色体=4条染色单体=4个DNA分子。

2.减数分裂过程中遇到的一些概念

同源染色体:上面已经有了

联会:同源染色体两两配对的现象。

四分体:上面已经有了

交叉互换:指四分体时期,非姐妹染色单体发生缠绕,并交换部分片段的现象。

减数分裂:是有性生殖的生物在产生成熟生殖细胞时进行的染色体数目减半的细胞分裂。

3.减数分裂

特点:复制一次,分裂两次。

结果:染色体数目减半,且减半发生在减数第一次分裂。

场所:生殖器官内

注:卵细胞形成无变形过程,而且是只形成一个卵细胞,卵细胞体积很大,细胞质中存有大 量营养物质,为受精卵发育准备的。

6.识别细胞分裂图形(区分有丝分裂、减数第一次分裂、减数第二次分裂) (1)、方法(点数目、找同源、看行为)

第1步:如果细胞内染色体数目为奇数,则该细胞为减数第二次分裂某时期的细胞。

第2步:看细胞内有无同源染色体,若无则为减数第二次分裂某时期的细胞分裂图;若有则为减数第一次分裂或有丝分裂某时期的细胞分裂图。

第3步:在有同源染色体的情况下,若有联会、四分体、同源染色体分离,非同源染色体自由组合等行为则为减数第一次分裂某时期的细胞分裂图;若无以上行为,则为有丝分裂的某一时期的细胞分裂图。

(2)例题:判断下列各细胞分裂图属何种分裂何时期图。

[解析]:

甲图细胞的每一端均有成对的同源染色体,但无联会、四分体、分离等行为,且每一端

都有一套形态和数目相同的染色体,故为有丝分裂的后期。

乙图有同源染色体,且同源染色体分离,非同源染色体自由组合,故为减数第一次分裂的后期。

丙图不存在同源染色体,且每条染色体的着丝点分开,姐妹染色单体成为染色体移向细胞两极,故为减数第二次分裂后期。

7.受精作用:指卵细胞和精子相互识别、融合成为受精卵的过程。

注:受精卵核内的染色体由精子和卵细胞各提供一半,但细胞质几乎全部是由卵细胞提供,因此后代某些性状更像母方。

意义:通过减数分裂和受精作用,保证了进行有性生殖的生物前后代体细胞中染色体数目的恒定,从而保证了遗传的稳定和物种的稳定;在减数分裂中,发生了非同源染色体的自由组合和非姐妹染色单体的交叉互换,增加了配子的多样性,加上受精时卵细胞和精子结合的随机性,使后代呈现多样性,有利于生物的进化,体现了有性生殖的优越性。

下图讲解受精作用的过程,强调受精作用是精子的细胞核和卵细胞的细胞核结合,受精卵中的染色体数目又恢复到体细胞的数目。

8.配子种类问题

由于染色体组合的多样性,使配子也多种多样,根据染色体组合多样性的形成的过程,所以配子的种类可由同源染色体对数决定,即含有n对同源染色体的精(卵)原细胞产生配子的种类为2n种。

9.植物双受精(补充)

被子植物特有的一种受精现象。花粉被传送到雌蕊柱头后,长出花粉管,

伸达胚囊,管的先端破裂,放出两精子,其中之一与卵结合,形成受精卵,

另一精子与两个极核结合,形成胚乳核;经过一系列的发展过程,前者形

成胚,后者形成胚乳,这种双重受精的现象称双受精。

注:其中两个精子的基因型相同,胚珠中极核与卵细胞基因型相同。

例:一株白粒玉米(aa)接受红粒玉米(AA)的花粉,所结的种子的胚细胞、胚乳细胞基因型依次是:Aa、Aaa

第二节基因在染色体上

1.萨顿假说推论:基因在染色体上,也就是说染色体是基因的载体。因为基因和染色体行

为存在着明显的平行关系。

2.、基因位于染色体上的实验证据

果蝇杂交实验分析

3.一条染色体上一般含有多个基因,且这多个基因在染色体上呈线性排列

4. 基因的分离定律的实质

基因的自由组合定律的实质

第三节伴性遗传

1.伴性遗传的概念

2. 人类红绿色盲症(伴X染色体隐性遗传病)

特点:⑴男性患者多于女性患者。⑵交叉遗传。即男性→女性→男性。⑶一般为隔代遗传。

2.抗维生素D佝偻病(伴X染色体显性遗传病)

特点:⑴女性患者多于男性患者。⑵代代相传。

4、伴性遗传在生产实践中的应用

3、人类遗传病的判定方法

口诀:无中生有为隐性,有中生无为显性;隐性看女病,女病男正非伴性;显性看男病,男病女正非伴性。

第一步:确定致病基因的显隐性:可根据

(1)双亲正常子代有病为隐性遗传(即无中生有为隐性);

(2)双亲有病子代出现正常为显性遗传来判断(即有中生无为显性)。

第二步:确定致病基因在常染色体还是性染色体上。

①在隐性遗传中,父亲正常女儿患病或母亲患病儿子正常,为常染色体上隐性遗传;

②在显性遗传,父亲患病女儿正常或母亲正常儿子患病,为常染色体显性遗传。

③不管显隐性遗传,如果父亲正常儿子患病或父亲患病儿子正常,都不可能是Y染色体上

的遗传病;

④题目中已告知的遗传病或课本上讲过的某些遗传病,如白化病、多指、色盲或血友病等

可直接确定。

注:如果家系图中患者全为男性(女全正常),且具有世代连续性,应首先考虑伴Y遗传,无显隐之分。

第三章 基因的本质

第一节 DNA 是主要的遗传物质 1.肺炎双球菌的转化实验

(1)、体内转化实验:1928年由英国科学家格里菲思等人进行。

①实验过程

结论:在S 型细菌中存在转化因子可以使R 型细菌转化为S 型细菌。

(2)、体外转化实验:1944年由美国科学家艾弗里等人进行。 ①实验过程

结论:DNA 是遗传物质 2.噬菌体侵染细菌的实验

1、实验过程 ①标记噬菌体

含35

S 的培养基???

→培养含35

S 的细菌35

S ???→培养

蛋白质外壳含35

S 的噬菌体 含32

P 的培养基???

→培养含32

P 的细菌???→培养

内部DNA 含32

P 的噬菌体 ②噬菌体侵染细菌

侵染细菌细菌体内没有放射性35S

含35S的噬菌体????→

侵染细菌细菌体内有放射线32P

含32P的噬菌体????→

结论:进一步确立DNA是遗传物质

3.烟草花叶病毒感染烟草实验:

(1)、实验过程

(2)、实验结果分析与结论

烟草花叶病毒的RNA能自我复制,控制生物的遗传性状,因此RNA是它的遗传物质。

4、生物的遗传物质

非细胞结构:DNA或RNA

生物原核生物:DNA

细胞结构

真核生物:DNA

结论:绝大多数生物(细胞结构的生物和DNA病毒)的遗传物质是DNA,所以说DNA是主要的遗传物质。

第二节 DNA分子的结构

1.DNA分子的结构

(1)基本单位---脱氧核糖核苷酸(简称脱氧核苷酸)

2、DNA分子有何特点?

⑴稳定性

是指DNA分子双螺旋空间结构的相对稳定性。与这种稳定性有关的因素主要有以下几点:

①DNA分子由两条脱氧核苷酸长链盘旋成精细均匀、螺距相等的规则双螺旋结构。

②DNA分子中脱氧核糖和磷酸交替排列的顺序稳定不变。

③DNA分子双螺旋结构中间为碱基对、碱基之间形成氢键,从而维持双螺旋结构的稳定。

④DNA分子之间对应碱基严格按照碱基互补配对原则进行配对。

⑤每个特定的DNA分子中,碱基对的数量和排列顺序稳定不变。

⑵多样性

构成DNA分子的脱氧核苷酸虽只有4种,配对方式仅2种,但其数目却可以成千上万,更重要的是形成碱基对的排列顺序可以千变万化,从而决定了DNA分子的多样性。

⑶特异性

每个特定的DNA分子中具有特定的碱基排列顺序,而特定的排列顺序代表着遗传信息,

所以每个特定的DNA分子中都贮存着特定的遗传信息,这种特定的碱基排列顺序就决定了DNA分子的特异性。

3.DNA双螺旋结构的特点:

⑴DNA分子由两条反向平行的脱氧核苷酸长链盘旋而成。

⑵DNA分子外侧是脱氧核糖和磷酸交替连接而成的基本骨架。

⑶DNA分子两条链的内侧的碱基按照碱基互补配对原则配对,并以氢键互相连接。

4.相关计算

(1)A=T C=G

(2)(A+ C )/ (T+G )= 1或A+G / T+C = 1

(3)如果(A1+C1 ) / ( T1+G1 )=b

那么(A2+C2 ) / (T2+G2 ) =1/b

(4)(A+ T ) / ( C +G ) =(A1+ T1 ) / ( C1 +G1 )

= ( A2 + T2 ) / ( C2+G2 )

= a

例:已知DNA分子中,G和C之和占全部碱基的46%,又知在该DNA分子的H链中,A和C 分别占碱基数的28%和22%,则该DNA分子与H链互补的链中,A和C分别占该链碱基的比例为( )

A28%、22% B. 22%、28% C. 23%、27% D.26%、24%

4.判断核酸种类

(1)如有U无T,则此核酸为RNA;

(2)如有T且A=T C=G,则为双链DNA;

(3)如有T且A≠ T C≠ G,则为单链DNA ;

(4)U和T都有,则处于转录阶段。

第3节 DNA的复制

一、DNA半保留复制的实验证据

1、方法:同位素标记及密度梯度离心法。

2、实验过程:以含15NH4Cl的培养液来培养大肠杆菌,让大肠杆菌繁殖几代,再将大肠

杆菌转移到14N的普通培养液中。然后,在不同时刻收集大肠杆菌并提取DNA,进行密

4、结论:DNA分子复制为半保留复制。

二、、DNA分子复制的过程

相关主题
相关文档
最新文档