(完整版)锅炉燃烧系统的控制系统设计

(完整版)锅炉燃烧系统的控制系统设计
(完整版)锅炉燃烧系统的控制系统设计

目录

1锅炉工艺简介 (1)

1.1锅炉的基本结构 (1)

1.2工艺流程 (2)

1.2煤粉制备常用系统 (3)

2 锅炉燃烧控制 (4)

2.1燃烧控制系统简介 (4)

2.2燃料控制 (4)

2.2.1燃料燃烧的调整 (4)

2.2.2燃烧调节的目的 (5)

2.2.3直吹式制粉系统锅炉的燃料量的调节 (5)

2.2.4影响炉内燃烧的因素 (6)

2.3锅炉燃烧的控制要求 (11)

2.3.1 锅炉汽压的调整 (11)

3锅炉燃烧控制系统设计 (14)

3.1锅炉燃烧系统蒸汽压力控制 (14)

3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14)

3.2燃烧过程中烟气氧含量闭环控制 (17)

3.2.1 锅炉的热效率 (18)

3.2.2反作用及控制阀的开闭形式选择 (20)

3.2.3 控制系统参数整定 (20)

3.3炉膛的负压控制与有关安全保护保护系统 (21)

3.3.1炉膛负压控制系统 (22)

3.3.2防止回火的连锁控制系统 (23)

3.3.3防止脱火的选择控制系统 (24)

3.4控制系统单元元件的选择(选型) (24)

3.4.1蒸汽压力变送器选择 (24)

3.4.2 燃料流量变送器的选用 (24)

4 DCS控制系统控制锅炉燃烧 (26)

4.1DCS集散控制系统 (26)

4.2基本构成 (27)

锅炉燃烧系统的控制

4.3锅炉自动燃烧控制系统 (31)

总结 (33)

致谢 (34)

参考文献 (35)

1锅炉工艺简介

1.1锅炉的基本结构

锅炉整体的结构包括锅炉本体和辅助设备两大部分。

1、锅炉本体

锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。

炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。炉膛的横截面一般为正方形或矩形。燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。当炉内的温度超过灰熔点时,灰便呈熔融状态。熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。粘结的灰粒逐渐增多,遂形成渣块,称为结渣。结渣会降低锅炉受热面的传热效果。严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。炉排热负荷过高会使飞灰大大增加。炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。

锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,

以避免含有高浓度盐分和杂质的锅水随蒸汽进入过热器和汽轮机中。这些盐分和杂质如在过热器管和汽轮机通道上发生结垢、积盐和腐蚀,会影响设备的经济安全运行。锅炉出口的蒸汽一般都有一定的质量标准。锅筒内部装置包括汽水分离和蒸汽清洗装置、给水分配管、排污和加药设备等。其中汽水分离装置的作用是将从水冷壁来的饱和蒸汽与水分离开来,并尽量减少蒸汽中携带的细小水滴。中、低压锅炉常用挡板和缝隙挡板作为粗分离元件。中压以上的锅炉除广泛采用多种型式的旋风分离器进行粗分离外,还用百叶窗、钢丝网或均汽板等进行进一步分离。随着水处理技术的提高,蒸汽分离装置趋向于简化和定型化。排污装置(包括连续排污和定期排污)能在锅炉运行中排出一部分含有较高盐分和泥渣的锅水。锅筒上还装有水位表、安全阀等监测和保护设施。

2、辅助设备

除锅炉本体外,在电站锅炉中还有许多配套的辅助设备:煤粉制备系统,把原煤磨成粉,以利煤的充分燃烧,包括给煤机、磨煤机、排粉机、粗粉分离器和煤粉管道等;

送、引风系统,向锅炉供给燃烧需要的空气及将煤燃烧后的烟气排出锅炉,包括送风机、引风机和烟风道等;

给水系统,包括给水泵、阀门和管道等;

水处理系统(见锅炉水处理);

灰渣清除系统,包括碎渣机、出渣机、除尘器等;

自动控制和监测系统(见锅炉自动控制、锅炉汽温调节)。

1.2工艺流程

燃烧的煤层厚度通过闸板控制,炉排转速可由交流变频调速电机控制。尾部受热面有省煤器和空气预热器。

图1.1 锅炉结构和工艺流程示意图

给水通过省煤器预热后给锅炉上水,空气经空气预热器后由炉排左右两侧留个风道进入,烟气通过除尘器除尘,由引风机送至烟囱排放,主蒸汽经过过热器送至汽柜和用汽部门。鼓风机、引风机都是由交流变频器来控制,通过调节鼓风机、引风机的速度来实现控制鼓风量、引风量。

热电厂是利用煤和天然气作为燃料发电、产汽的,这也是目前世界上主要的电能生产方式。生产工艺是将燃料送入炉膛内燃烧,放出的热量将水加热成为具有一定压力和温度的过热蒸汽,过热蒸汽进入汽轮机膨胀做功,高速气流冲击汽轮机叶片带动转子旋转,同时带动同轴发电机转子发电。热电厂锅炉将经过处理后的除盐水加热至430度(根据汽机工况)左右的过热蒸汽送入汽轮机,推动汽轮机保持每分钟3000转的速度带动同轴的发电机旋转,通过同轴励磁机产生的直流电输入发电机转子,在静子上产生感应电势,同时作过功的余汽可用来当作供热源

1.2煤粉制备常用系统

①直吹式制粉系统:磨好的煤粉直接全部送入炉膛中燃烧,宜采用中速和高速磨煤机,适用于磨较软的烟煤和褐煤。缺点是磨煤机的出力和煤粉细度与锅炉负荷有关,因而随着锅炉负荷的变化需调整磨煤机的运行台数,并且研磨部件容易磨损。中速磨煤机直吹式制粉系统又分为正压式与负压式两种。近代大容量锅炉多采用正压系统。

②中间储仓式制粉系统:特点是磨煤机的出力和煤粉细度与锅炉负荷无关,适于采用可磨制各种硬度煤种的钢球磨煤机。缺点是设备较直吹式复杂,磨煤机耗电量较大,空载与满载时耗电量相差不大,故应使其常在满载下运行。

按煤粉燃烧器结构分类

煤粉燃烧器是将煤粉送入炉膛进行燃烧的设备。

①旋流式燃烧器:携带煤粉的一次风和不带煤粉的二次风分别用不同管道与燃烧器连接。煤粉与空气能充分混合并形成回流区。每台锅炉可配置4~48只燃烧器。

②直流式燃烧器:喷口成狭窄形,其一、二次风在燃烧器中都不旋转。煤粉在其中能完全燃烧。

受热面分蒸发受热面和过热受热面。现代大、中型锅炉均以水冷壁构成炉膛,由此水冷壁(即受热面)吸收炉内辐射热使水蒸发成饱和蒸汽。为不增加炉膛容积而增加辐射受热面,大型锅炉可采用双面曝光的水冷壁。过热受热面可分为布置于炉膛上部的屏式过热器受热面和布置于对流烟道内的对流过热器受热面。前者吸收炉内辐射热;后者吸收对流热。

空气预热器装于锅炉烟道尾部,用以回收烟气余热,提高助燃空气的温度。高参数、大容量的锅炉为提高热风温度(>300℃),常需使空气预热器与省煤器分级交叉布置。

2 锅炉燃烧控制

2.1燃烧控制系统简介

在锅炉运行中,燃烧调整通常由燃烧控制系统来完成。燃烧控制系统由燃料量控制系统、风量控制系统和炉膛风压控制系统三大部分组成。燃烧控制系统的任务是根据机炉主控制器来调节燃料量、送风量和炉膛风压,使锅炉在安全、经济条件下调节至负荷指令的要求。

增减燃料量信号同时调节燃料量与送风量,使风煤流量匹配。送风量作为炉膛风压调节的前馈信号,使引风量跟随送风量增减,燃料量、烟气氧量、炉膛风压作反馈信号改善调节品质,燃料量反馈信号用以平衡燃料量增减指令,防止过调。氧量反馈信号用以纠正送风量,使风煤流量配合最佳。炉膛风压反馈信号用以纠正引风量,使炉膛风压处于最佳状态。

燃烧控制的基本任务:

维持蒸汽压力稳定——燃料控制

保证燃烧过程的经济性——送风控制

2.2燃料控制

2.2.1燃料燃烧的调整

不同负荷下的燃烧的调整

锅炉运行中负荷的变化是最为经常的,高负荷运行时,由于炉膛温度高,着火与混合条件也好,所以然少一般是稳定的,但易产生炉膛和燃烧器结焦、过热器、再热器局部超温等问题。燃烧调整时应注意将火球位置调整居中,避免火焰偏斜;燃烧器全部投入并均匀分配燃烧率,防止局部过大的热负荷;适当增大一次风速,推开着火点离喷口的距离。此外,高负荷时煤粉在炉内的停留时间较短而且排烟损失较大,为此可在条件允许的情况下,适当降低过量空气系数的运行,以提高锅炉效率。

在低负荷运行时,由于燃烧减弱,投入的燃烧器数量较少,炉温较低,火焰充满度较差,使燃烧不稳定,经济性较差。为稳定着火,可适当增大空气系数,降低一次风率和风速。煤粉应磨得更细些,但增大炉膛氧量后会降低燃烧器的区域温度,因此,当煤质差时亦因限制其高线。低负荷时应尽可能的集中火嘴运行,提高风中煤粉浓度,并保证最下排燃烧器的投运。为提高炉膛温度,可以适当降低炉膛负压,以减少漏风,这样不但能稳定燃烧,也能减少不完全燃烧的损失,但此时必须注意安全,防止炉膛喷火烟伤人,此外,低负荷时保持更高些的过量空气系数对于抑制锅炉效率的过分降低也是有利的。

煤质变化时的燃烧调整

无煤烟、贫烟的挥发分较低,燃烧时的最大问题是着火。燃烧配风的原则是采取较小的一次风率和风速以增大煤粉浓度、减少着火热并是着火点提前;二次风速可以高些,这样可与增加其穿透能力,使实际燃烧切圆的直径大些,同时也有利于避免二次风过早混入一次风粉气流。燃烧差煤时也要求将煤粉磨的更细些,以强化着火和燃尽;也要求较大的过量空气系数,以减少燃烧损失。

挥发分高的烟煤,一般火不成问题,需要注意燃烧的安全性,可适当减小二次风率,一、二次风的混合应早些进行。煤质好时,应降低空气过量系数的运行,一提高锅炉效率。

2.2.2燃烧调节的目的

炉内燃烧过程的好坏,不仅直接关系到锅炉的生产能力和生产过程的可靠性,而且在很大程度上决定了锅炉运行的经济性。进行锅炉燃烧调节的目的是:在外满足外界电负荷需要的蒸汽品质的基础上,保证锅炉运行的安全性和经济性。具体可归纳为:1、保证正常稳压的汽压、气温和蒸汽量;2、保证火稳定、燃烧安全,火焰均匀充满炉膛,不结渣,不烧损燃烧器和冷水壁、过热器不超温;3、使机组运行保持较高的经济性;4、减少燃烧污染物排放。

燃烧过程的稳定直接关系到锅炉运行的可靠性。如燃烧过程不稳定将引起蒸汽参数发生波动;炉内温度过低或一、二次风配合失当,将影响燃料的着火和正常燃烧,是造成锅炉灭火的主要原因;炉膛内温度过高或火焰中心偏斜,将引起水冷壁、炉膛出口受热面结渣,并可能增大过热器的热偏差,造成局部管壁超温等。

燃烧过程的经济性要求保持合理的风煤配合,一、二次风配合和引风配合,此外还要求保持适当高的炉膛温度。合理的风煤配合就是要保持最佳的过量空气系数;合理的一、二次风配合就是要保证着火迅速、燃烧完全;合理的引风配合就是要保持适当的炉膛负压、减少漏风。当运行工况改变时,这些配合比例如果调解适当,就可以减少燃烧损失,提高锅炉效率。

对于煤粉炉,为达到上述燃烧调节目的,在运行操作过程时应注意燃烧器的出口一、二次风速、风率,各燃烧器之间的负荷分配方式,炉膛风量、燃烧量和煤粉细度等各方面的调节,使其达到较佳数值。

2.2.3直吹式制粉系统锅炉的燃料量的调节

当锅炉负荷不变时,可通过调节运行着的制粉系统的出力来解决。对于中速磨,当负荷增加时,可先开打一次风机的进风挡板,增加磨煤机的通风量,以利用磨煤机内的存煤量作为增加负荷的缓冲调节,然后再增加給煤量。相反,当负荷减少时,则应是先

减少給煤量,然后降低磨煤机的通风量。此调节方式可避免出粉量和燃烧工况的骤然变化,还可以减少调解过程中石子煤量和防止堵磨。不同形式的中速磨,由于磨内存煤量不同,其响应负荷不同。对于双进双出钢球磨,当负荷变化时,则总是磨煤机通风量首先变化,其次才是給煤量的相应调节,这种调节方式可以使制粉系统的出力对锅炉负荷做出快速的响应。

当锅炉负荷有较大变动时,需启动或停止一套制粉系统。减负荷时,当各磨出力均降至某一最低值时,即应停止一台磨,以保证其余各磨在最低出力以上运行;加负荷时,当各磨出力上升至其最大允许值时,则应增投一台新磨。在确定启动或停止方案时,必须要考虑到制粉系统运行的经济性、燃烧工况的合理性,必要时还应该兼顾气温调节等方面的要求。

各运行磨煤机的最低允许出力,取决于制粉经济性和燃烧器着火条件恶化的程度;各运行磨煤机的最大允许出力,则不仅与制粉经济性、安全性有关,而且要考虑锅炉本身的特性。对于稳燃性能低的锅炉或燃烧较差的煤种时,往往需要集中火嘴运行,因而可能推迟增投新磨的时机;炉膛、燃烧器结焦严重的锅炉,高负荷时都需要均匀的燃烧出力,因而也常降低各磨的上限出力。燃烧器投运层数的优化顺序则主要考虑气温调节、低负荷稳燃等特性。

燃烧过程的稳定性,要求燃烧器出口处的风量和粉量尽可能同时改变,以便在调解过程中始终保持稳定的风媒比。因此,应掌握从给煤机开始调节到燃烧器出口煤粉量产生改变的时滞,以及从送风机的风量调节开关动作到燃烧器风量改变的时差,燃烧器出口风煤改变的同时性可根据这一时滞时间差的操作来解决。一般情况下,制粉系统的时滞总是远大于风系统的,所以要求制粉系统对负荷的响应更快些,当然过分提前也是不适宜的。锅炉运行中应对此作出一些规定。

在调节給煤量时和风机风量时,应注意监视辅机的电流变化、挡板开度指示、风压以及有关参数的变化,防止电流超限和堵塞煤粉管等异常情况发的生。

2.2.4影响炉内燃烧的因素

1煤质

锅炉实际运行中,煤质往往变化较大。但任何燃烧设备对煤种的适应总有一定程度,因而运行煤种的这种变动对锅炉燃烧的稳定性和经济性均将产生直接的影响。

煤的成分中,对燃烧影响最大的是挥发部分。挥发部分高的煤,着火点低,着火距离近;燃烧速度和燃尽程度高。但燃烧挥发部分高的煤,往往是炉膛结焦的一个重要原因。与此相反,当然用煤种的挥发分低时,燃烧的稳定性和经济性下降,而锅炉的最低的稳燃负荷升高。

煤的发热量低于设计值较多时,燃料使用量增加,对直吹式制粉系统锅炉,磨煤机可能要超出力运行,一次风量增加,煤粉变粗;对中储式制粉系统,煤粉管内的粉流量大,为避免堵粉都会对着火产生不利影响,尤其在燃用挥发分低的差煤时。发热量低的煤往往灰分都高,也会是着火推迟、炉温降低,燃烧不稳和燃尽程度变差,灰熔点低时还会产生较严重的炉膛结焦、燃烧器结焦问题。燃烧器结焦往往会破坏炉内的空气动力厂。

2.切圆直径

对四角布置切向燃烧的锅炉,切圆直径对着火稳定,燃烧安全,受热面气温偏差等具有综合的影响。适当加大却圆直径,可使邻角过来的火焰更靠近射流根部,对着火有利,对混合也有好处,炉膛充满度也比较好。当燃用挥发分较低的劣质煤时,希望有比较大的切圆直径;但是燃烧切圆直径过大,一次风煤粉气流可能偏转贴墙,以致火焰冲刷水冷壁,引起结焦和燃烧损失增加。这是必须避免的。当然用易着火或易结焦的煤以及高挥发分煤时,则应适当减小切圆直径。大的切圆可将炉内余旋保持到炉膛出口甚至更远,使煤粉气流的后期扰动强化,对煤粉的燃尽十分有利,但其消极作用是加大了沿炉膛宽度的烟量偏差和烟温偏差,易引起过热器,再热器的较大偏差及超温爆管。

燃烧切圆直径的大小主要取决于设计时确定的假想切圆的大小及各气流反切得效果。但运行调整也可对其发生一定影响,其中较常用的手段是改变二、一次风的动量比和喷嘴的停用方式。前者通过改变上游气流总动量与下游一次风刚性的对比影响一次风粉的偏转,切圆往往变乱,也会使燃烧切圆的直径和形状变化。

3.煤粉细度

煤粉越细,单位质量的煤粉表面积越大,加热升温、挥发分的析出着火及燃烧反应速度越快,因而着火越迅速;煤粉细度越小,燃尽所需时间越短,飞灰可燃物含量越小,燃烧越彻底。

图4-2是在一台然贫煤的600MW机组锅炉上实测煤粉细度影响曲线。从中可以看出,当煤粉比较细(R90<10%)的时候,煤粉细度变化对飞灰可燃物的影响不大,但当煤粉细度变粗,超过某一数值的时候,飞灰可燃物迅速增大,煤粉细度越大,其对飞灰可燃物的影响越显著。因此,为了提高燃烧的稳定性和经济性,严格控制煤粉细度是十分必要的。

图2.1 煤粉细度曲线图

4.煤粉浓度

煤粉炉中,一次风中的煤粉浓度对着火稳定性有很大影响。高的煤粉浓度不仅使单位体积燃烧释热强度增大,而且单位容积内辐射粒子数量增加,导致风粉气流的黑度增大,可迅速吸收炉膛辐射热量,使着火提前。此外,随着煤粉浓度的增大,煤中挥发分逸出后其浓度增加,也促进了可燃混合物的着火。因此,不论何种煤,在煤粉浓度的一定范围内,着火稳定性都是随着煤粉浓度的增加而后加强的。图4-3是国内研究人员的近期试验结果。图中着火指数定义为喷入试验炉内的风粉气流能维持稳定着火的最低炉温。由图可知,随着煤粉浓度的增加,各种煤的着火指数都降低,着火容易。对于高挥发分的褐煤,煤粉浓度的影响有一临界值。但随着煤质变差,这一临界值增大,甚至不出现。就是说,煤粉浓度的增加对劣质煤的着火总是有利的。

图2.2 煤粉浓度对着火的影响曲线图

煤粉浓度对着火的影响

1-永安无烟煤;2-峰峰贫煤;3-安源煤;4-大同烟煤;5-霍林河褐煤

5.锅炉负荷

锅炉负荷降低时,燃烧率降低,炉膛平均温度及燃烧器区域的温度都要降低,着火困难。当锅炉负荷降低到一定数值时,为稳定燃烧必须投油助燃。影响锅炉低负荷稳燃性能的主要因素是煤的着火性能、炉膛的稳燃性能和燃烧器的稳燃性能。同义煤种,在不同的炉子中燃烧,其最低稳燃负荷可能有较大的差别;对同一锅炉,当运行煤质变差时,其最低负荷值便要升高;燃用挥发分较高的好煤时,其值则可降低。

随着负荷的增加,炉温升高,对燃烧经济性的影响一般是有利的。但负荷的这个影响与煤质有关。燃烧调整试验表明,挥发分高的煤,飞灰可燃物很低,负荷对燃烧损失的影响也很小,对于Vdaf》40%的烟煤,负荷怎么调整,燃烧损失也不大变化。但对于挥发分低的煤,负荷对燃烧损失的影响就大,如图4-4所示。

图2.3 锅炉负荷对燃烧损失的影响

6.一、二次风的配合

一、二次风的混合特性也是影响炉内燃烧的重要因素。二次风在煤粉着火以前过早地混入一次风对着火不利的,尤其对于挥发分低的难燃烧煤种更是如此。因为这种过早的混合等于增加了一次风率,使着火热量增加,着火推迟;如果二次风过迟混入,又会使着火后的煤粉得不到燃烧所需氧气的及时补充。故二次风的送入应与火焰根部有一定的距离,使煤粉气流先着火,当燃烧过程发展到迫切需要氧气时,再与二次风混合。如果不能恰当地把握混合的时机,那么与其过早,不如迟些。

对于旋流式燃烧器,由于基本是单只火嘴决定燃烧工况,而各燃烧器射流之间的相互配合作用远不及四角燃烧方式,因此一、二次风的混合问题就显得更为重要。

7.一次风煤粉气流初温

提高煤粉气流初温可减少煤粉气流的着火热,并提高炉内的温度水平,使着火提前。提高煤粉气流初温的直接办法是提高热风温度。计算表面,一次风温从20度升至300度时着火热可减少60%;升至400度时着火热可减少80%。图4-5是热风温度对炉内烟温的影响关系。由图可见,热风温度升高,炉膛温度升高很快,煤粉着火提前。

图2.4 热风温度对炉内烟温的影响

1-热风温度310摄氏度; 2-热风温度340摄氏度;3-热风温度390摄氏度

8送风量调节

锅炉送风量的具体调节的方法,对于离心式风机,通过改变入口调节挡板的开度进行调节,对于轴流式风机,通过改变风机动叶的安装角度进行调节。除了改变总风量外,有时还需要根据燃烧要求,改变各二次风挡板的开度,进行较细致的配风。在调节风量时应注意观察风机电流、电压、炉膛负压、氧量等指示值的变化,以判断调节是否有效。

2.3锅炉燃烧的控制要求

控制任务被控变量操纵变量

锅炉蒸汽出口压力稳定燃烧过程的经济稳定锅炉炉膛负压稳定

蒸汽出口压力

燃料量与送风量比值

炉膛负压

燃料量

送风量

抽风量表一锅炉燃烧过程的任务、被控变量和操控变量

锅炉燃烧控制系统的基本任务是使燃料燃烧所产生的热量适应蒸汽负荷要求,同时保证锅炉的经济、安全运行。为适应蒸汽负荷的变化,应及时调节燃料量。为完全燃烧,应控制燃烧量与空气的比值,使过剩的空气系数满足要求,为防止燃烧过程中火焰或烟气外喷,应控制炉膛的负压。这三项控制任务互相影响,应消除或削弱它们的关联。此外,从安全考虑,需设置防喷嘴背压过低的回火和防喷嘴背压过高的脱火措施。

2.3.1 锅炉汽压的调整

锅炉运行时主蒸汽压力的控制是通过锅炉出力与汽轮机蒸汽进汽量的平衡来实现的,当两者平衡时,对于定压运行的机组,便能稳定工况、变工况或各种扰动下均保持

主蒸汽压力的稳定;对于变压运行的机组,便能始终保持主蒸汽压力按负荷对应的关系进行变化。

锅炉在运行时,汽压总是被作为被监视和控制的主要参数之一,汽压降低会减少蒸汽在汽轮机中膨胀作功的焓降,使蒸汽作功能力降低,在外界负荷不变情况下,汽耗量也随之增大,从而降低发电厂的经济性;同时汽轮机的轴向推力增加容易发生推力轴瓦烧坏等事故。如果蒸汽压力降低过多会使汽轮机被迫不能保持额定负荷。汽压过高,使汽轮机转子以及汽缸、锅炉承压管道那机械应力过大,将危及机炉和蒸汽管道的安全。锅炉汽压高低对于汽包水位、汽温等主要运行参数也有很大影响,当汽压降低由于对应的饱和温度降低,使部分炉水蒸发,会引起炉水体积膨胀,故汽包水位要上升,反之则炉水体积要收缩,汽包水位下降,引起虚假水位。汽压变化对汽温的影响,一般是汽压升高时,过热蒸汽的温度也升高,这是因为,当气压升高时对应的饱和温度的焓值增大,在燃料消耗量未改变时,锅炉的蒸发量要瞬间减小,在传热系数传热面积和传热温压基本不变的情况下,平均每公斤蒸汽的吸热量必然增大,导致过热蒸汽温度升高。

汽压变化的速度表明了锅炉保持及恢复汽压的能力,汽压的变化速度影响因素是:负荷的变化速度、锅炉的储热能力及燃烧设备的惯性等。负荷变化是主动也是影响最大的因素,负荷变化速度越快,引起汽压变化的速度也越快,对于单元制机组而言,汽轮机负荷的变化幅度将直接影响锅炉主蒸汽压力的变化。锅炉储热能力是指当外界负荷变化而燃烧工况不变时,锅炉能够放出或者吸收热量的能力,锅炉的储热能力对汽压的变化是一个缓冲作用。燃烧设备的惯性是指从燃料量开始变化到炉内建立新的热负荷所需要的时间,在锅炉运行时,燃烧设备惯性越大,负荷变化时,汽压变化的速度就越慢。

汽压变化反应了锅炉蒸发量与外界负荷之间的平衡,由于外界负荷、炉内燃烧工况、换热情况以及锅炉内工作情况经常变化,引起锅炉蒸发量的不断变化,所以汽压的变化与波动是必然的,汽压稳定只是相对的。

引起锅炉汽压的变化原因很多,主要有两方面:一是锅炉内部因素,一是锅炉外部因素。外部因素是指非锅炉设备本身的原因造成的扰动,主要有外界负荷的变化;高压加热器因故障退出运行;给水压力变化。内部因素主要是指炉内燃烧工况的变动和锅炉内工作情况的异常。当外界负荷不变时,汽压的稳定主要取决于炉内燃烧工况,此外,锅炉换热状况的改变也会影响汽压的稳定。对于判断汽压变化的原因主要可以考虑:当蒸汽压力与蒸汽流量的变化方向相反时,是由外部因素造成的;若汽压与蒸汽流量的变化一致时,通常是由于内部扰动的影响。当汽压下降时蒸汽流量下降,说明燃料燃烧的供热量不足,当汽压上升的同时,蒸汽流量增加,说明燃烧供热量偏多。

3锅炉燃烧控制系统设计

锅炉的燃烧控制对于锅炉的安全、高效运行和节能降耗都具有重要意义,其控制和管理随之要求也越来越高。燃料控制的任务在于进入锅炉的燃料量随时与蒸汽压力要求相适应。因为蒸汽压力是衡量锅炉热量平衡的标志,燃料又是影响蒸汽压力的主要因素,因此蒸汽压力可以作为燃料控制系统的被调量。

锅炉蒸汽压力是燃烧过程调节对象的主要被控量,引起蒸汽压力变化的因素有很多,如燃料量、送风量、给水量、蒸汽流量以及各种使燃烧工况发生变化的原因。它受到的主要扰动分为内扰(燃料的变化)和外扰(蒸汽流量的改变)。由于每个系统的输入输出之间都一定的系统延迟,即当输入变化的时候系统输出不能够马上反应其变化从而是系统的控制不及时。

3.1 锅炉燃烧系统蒸汽压力控制

蒸汽压力控制器的输出同时作为燃料和空气流量控制器的设定值。这样可以保持蒸汽压力恒定,同时燃料流量和空气的比例是通过燃料控制器和送风控制器的正确动作而得到间接保证的。

同时采用比值控制系统中的单闭环比值控制系统,不仅能使从动量的流量跟随主动量的变化而变化,实现主、从动量的精确流量比值,还能克服进入从动量控制回路扰动影响。单闭环比值控制系统的结构形式简单,所增加的仪表投资少,实施起来亦较为方便,而控制品质却有很大的提高,而且被大量的用于生产控制过程中。

3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制

选择串级控制系统的理由:

(1)从回路的个数分析,由于串级控制系统是一个双回路系统,因此能迅速克服进入副回路的干扰,从某个角度讲,副回路起到了快速“粗调”作用,主回路则担当进一步“细调”的功能,所以应设法让主要扰动的进入点位于副回路内。(2)能改善被控对象的特性,提高系统克服干扰的能力。由于副回路等效被控对象的时间常数比副对象的时间常数小很多,因而由于副回路的引入而使对象的动态特性有了很大的改善,有利于提高系统克服干扰的能力。

(3)提高了系统的控制精度。因此具有一定的自适应能力,可用于负荷和操作条件有较大变化的场合。

以蒸汽压力为被调节量,以燃料量为调节量的串级控制系统设计如图所示。

图3.1 蒸汽出口压力控制方框系统

主变量的选择应遵循以下原则:

副变量的选择应遵循以下原则:

1)应尽量包含生产过程中主要的、变化剧烈、频繁的和幅度大的扰动,并力求包含尽可能多的扰动;

2)应使主、副对象的时间常数匹配;

3)应考虑工艺上的合理性、可能性和经济型

串级系统,实质上是把两个调节器串接起来,通过它们的协调工作,使一个被控量准确地保持为给定值。通常串级系统副环的对象惯性小,工作频率高,而主环惯性大,工作频率低。为了提高系统的控制性能,希望主副环的工作频率相差三倍以上,以免频率相近时发生共振现象面破坏正常工作。串级控制系统可以看作一个闭合的副回路代替了原来的一部分对象,起了改善对象特征的作用。除了克服落在副环内的扰动外,还提高了系统的工作频率,加快过渡过程。

串级控制系统的主回路是一个定值控制系统,在副回路确定后,相当于一个单回路系统,外扰——蒸汽压力扰动可以在此回路中得到有效抑制。副回路是一个随动系统,能够快速有效地克服二次扰动的影响,因此内扰——给煤扰动可以在副回路中得到有效地抑制。同时提高了对一次扰动的克服能力和对回路参数变化的自适应能力,改善了被控过程的动态特性,提高了系统的工作频率。

一般来说,一个设计合理的串级控制系统,当干扰从副回路进入时,其最大偏差将会较小到控制系统的十分之一至一百分之一,即便是干扰从主回路进入,最大偏差也会缩小到单回路控制系统的三分之一至五分之一。但是,如果串级控制系统设计得不合理,其优越性就不能够充分体现。因此,串级控制系统的设计合理性十分重要。) D6 p9 |0 d$ p

这种方案蒸汽压力的主要扰动是蒸汽负荷的变化与燃料量的波动。当蒸汽负荷及燃料量波动较小时,可以采用蒸汽压力来控制燃料量的单回路控制系统;而当燃料量波动较大时,可组成整齐压力对燃料流量的串级控制系统。燃料流量是随蒸汽负荷而变化的,因而作为主流量,与空气流量组成比值控制系统,使燃料与空气保持一定的比例,获得良好的燃烧,这是燃烧过程的基本控制方案。

图3.2 蒸汽出口压力控制系统

此串级控制系统中燃料与空气是变量,因而采用比值控制系统中的单闭环比值控制系统来控制燃料与空气的比值,进而控制蒸汽压力的扰动。下面为单闭环控制系统的方框图和原理图:

图3.3

单闭环控制系统方框图

图3.4 单闭环控制系统系统图

3.2燃烧过程中烟气氧含量闭环控制

燃烧过程控制保证了燃料和空气的比值关系,但并不能保证燃料的完全燃烧,让了的完全燃烧与燃料的质量(含水量、灰粉等)、热值等因素有关。不同的锅炉负荷下,燃料量和空气量的最佳比值会不同,因此,需要有一个检查燃料完全燃烧的控制指标,并根据该指标控制送风量的大小。衡量燃烧过程是否完全燃烧的常用控制指标是烟气中的含氧量。

它在前述方案中基础上,加入了烟道气中氧含量的控制回路。这是一个以烟道气中氧含量为控制目标的燃料流量与空气流量的变比值控制系统,也称烟气氧含量的闭环控制系统。此方案可以保证锅炉的最经济燃烧。前述方案一,虽然也考虑了燃料与空气流量的比值控制,但它不能在整个生产过程中始终保证最经济燃烧。因为其一,在不同的负荷下,两流量的最优比值是不同的;其二,燃料的成分有可能会变化;其三,流量的不准确。这些因素都会不同程度的影响到燃料的不完全燃烧或空气的过量,造成炉子热效率下降。这就是燃料流量定比值控制系统的缺点。为了改善这一情况,最好有一指标来闭环修正两流量的比值。目前最常用的是烟气中的氧含量。

3.2.1 锅炉的热效率

锅炉的热效率主要反映在烟气成分(主要是含氧量)和烟气温度上。烟气中各种成分例如:氧气、二氧化碳、一氧化碳和未燃烧烃含量基本可反映燃料的燃烧情况。常用的含氧量用Ao表示。

理论空气量Qt是根据燃烧反应方程式,计算出的完全燃烧时所需的空气量。实际空气量Qp是实际燃烧过程的中所需的空气量,。超过理论空气量的这部分空气量称为过剩空气量。过剩空气量增大,炉膛温度降低越多,烟气中带走的热损失也越大。不同的空气量有最佳值(对于液体,过剩空气量约为8%~15%),如下图:

图3.5 过剩空气量与能量损失的关系

过剩空气系数a表示过剩空气量,定义为:

a=

过剩空气系数很难直接测量,它与烟气中氧量有关。

工业锅炉控制系统设计

工业锅炉控制系统设计 The following text is amended on 12 November 2020.

工业锅炉控制方案设计 学生学号: 学生姓名:曹新龙 专业班级:自动化12102班指导老师:赵莹萍 目录

引言 锅炉是国民经济中主要的供热设备之一。电力,机械,冶金,化工,纺织,造纸,食品等工业和民用采暖都需要锅炉供给大量的蒸汽。各种工业的生产性质与规模不同,工业和民用采暖的规模大小也不一样,因此所需的锅炉容量,蒸汽参数,结构,性能方面也不尽相同。锅炉是供热之源,锅炉机器设备的任务在于安全,可靠,有效地把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。为了提高热量及效率,锅炉向着高压,高温和大容量等方向发展。供热锅炉,除了生产工艺有特殊要求外,所生产的热水不需要过高温的压力和温度,容量也无需很大。 随着生产的发展,锅炉日益广泛的应用于工业生产的各个领域,成为发展国民经济的重要热工设备之一。在现代化的建设中,能源的需求是非常大的,然而我国的能源利用率极低,所以提高锅炉的热效率,具有极为重要的实际意义。此外,锅炉是否能应地制宜地有效地燃用地方燃料,并满足环境保护的各项要求而努力解决烟尘污染问题,以提高操作管理水平,减轻劳动强度,保证锅炉额定运行及运行效率,安全可靠地供热等课题。 锅炉微机控制,是近年来开发的一项新技术,它是微型机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物。工业锅炉数量大、分布广,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的1/3,大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。因此,提高热效率,提高自动化水平及防止环境污染, 降低耗煤量与耗电量,均是设计工业锅炉需考虑的重要因素。用微机进行控制是一件具有深远意义的工作。 本课题的主要方向就是采用过程控制对工业锅炉进行控制,采用先进的控制算法,以达到优化技术指标、提高经济效益和社会效益、提高劳动生产率、节约能源、改善劳动条件、保护环境卫生、提高市场竞争能力的作用。

锅炉压力控制系统

1 绪论 1.1 锅炉控制系统发展概述和国内外研究现状 21世纪到来,人类将进入一个以知识经济为特征的信息时代,检测技术、计算机技术和通讯技术一起构成现代信息的三大基础。 有的专家认为:在计算机和自动化领域,80年代的热点是个人计算机,90年代是算机,而21世纪第一个10年的热点必将是传感、执行与检测。锅炉自动化控制系统作为传感、执行与检测技术的一个应用方面也必将跨入数字化、网络化利智能化时代。 锅炉控制系统的发展过程与其它事物一样,也经历由简单到复杂、由机械到电子的过程。在我国,锅炉的控制大致经历四个阶段,叫手工控制阶段、专用仪表控制阶段、电动单元组合控制阶段和机算机控制阶段。 纵观国内外,总的来说,60年代,锅炉的控制还只是实行人工操作,锅炉的燃烧完全是凭司炉人的经验,几乎谈不到动控制。到了70—80年代,尤其是1972年能源危机之前,对锅炉的运行控制人多是注重安全性和可靠性。在越来越重视节约能源和环境保护的今天,人们则更注重于实现最佳燃烧控制,即把燃烧过程的热损失控制在最小,使热效率最高,且对环境污染最小的所谓最佳燃烧状态,因此,国内外相继对燃煤锅炉实行自动控制。逐步出现了由常规检测仪表和调节仪表构成的模拟控制系统,它具有可靠性高,成本低,易于操作利维护等优点,在大、中、小工业企业中得到了厂泛应用,解决了不少自动化方面的问题。 但是,随着生产向连续化、大型化发展,对自动化技术的要求越来越高,模拟自动控制系统越来越表现出它的局限性。主要表现在:(l)难以实现复杂的、多变

量控制规律,如最优控制、自适应控制、模糊控制以及实时控制等;(2)控制参数一旦确定后就难以修改,要改变控制方案比较困难;(3)一组仪表只能控制一条回路,难以实现密集的监视、管理和操作;(4)一次性投资较大;(5)各个系统间不便进行通讯联系,难以实现多级控制。 到了90年代,出现了以计算机作为自动化的过程控制技术,计算机控制系统运算速度快,控制精度高,并且具有分时操作功能,一台计算机可代替多台常规装置,计算机具有较强的记忆功能和逻辑判断功能,在环境或过程参数发生变化时,能及时做出判惭,选择最优控制决策,这是模拟控制装置所不能达到的。总的来说用计算机取代常规仪表具有以下优点:(1)信息存储量大,可以同时临视、检测多个回路,处理人量的数据,由此提高整个系统的临时控制能力,并且可以组成计算机监控网,便于全局管理;(2)硬件体积小,工作量少,便于以后的技术成果推广及系统的维护:(3)能用软件实现各种复杂的控制规律,以便合成新的算法;(4)具有分时分步操作的能力,一台计算机可以替代许多常规仪表,(5)一次性投资少,可靠性和性价比高(6)改善了工作环境,有利于减轻劳动强度,有利于文明生产。到了21世纪,计算机网络飞速发展,任何事物都已经没有了地域限制,把锅炉控制系统通过网络联系在一起,形成锅炉控制系统的集成化管理、网络化控制,这又将是锅炉控制系统发展的又一个里程碑。 随着电厂锅炉机组越来越向着高参数、大容量的方向发展,对热工自动控制系统的控制品质的要求也越来越高。从30年代起,锅炉控制中就采用了PID控制器。目前,国内的锅炉燃烧控制仍然大多采用常规PID控制器,或者为了改善控制效果,加一些前馈控制。控制方法远远落后于国外的控制技术,尤其是北欧国家和德国。

锅炉控制系统的组态设计

; 济南铁道职业技术学院 电气工程系 毕业设计指导书 课题名称: 锅炉控制系统的组态设计《 专业电气自动化 班级电气0831 姓名 cmy ~ 设计日期至 指导教师 ly ? 2010、11

济南铁道职业技术学院电气工程系 毕业设计指导书 2010、11 一、设计课题: ! 锅炉控制系统的组态设计 锅炉设备是工业生产中典型的控制对象,而组态控制技术是当今自动化系统应用广泛的技术之一。本课题采用组态王组态软件设计上位机监控画面,实时监控液位参数,并采用实时趋势曲线显示液位的实时变化。由此组成一个简单的液位控制系统。 二、设计目的: 通过本课题的设计,培养学生利用组态软件、PLC设计控制系统的能力,理解、掌握工业中最常用的PID控制算法,有利于进一步加深《自动控制原理》、《组态软件》和《过程控制》等课程的理解,为今后工作打好基础。 三、设计内容: 掌握锅炉生产工艺,实现锅炉自动控制的手段,利用“组态王”软件做出上位机监控程序,具体有主监控画面、实时曲线、历史曲线;掌握PID参数调整方法。 — 四、设计要求及方法步骤: 1.设计要求: (1)监控系统要有主监控画面和各分系统的控制画面,包括实时曲线、历史曲线和报表等。 (2)各控制画面要有手/自动切换。

(3)掌握PID控制算法。 2.运用的相关知识 (1)组态控制技术。 (2)过程控制技术。 ~ 3.设计步骤: (1)熟悉、掌握锅炉的生产工艺。 (2)设计各分系统的控制方案。 (3)构思系统主监控画面和分画面,包括实时曲线、历史曲线和报表等。 (4)编写设计论文。 五、设计时间的安排: 熟悉题目、准备资料 1周 @ 锅炉控制系统的工艺了解 1周 监控画面的设计 2周 控制算法的编制和系统调试 3周 论文的编写 2周 准备毕业设计答辩 1周 六、成绩的考核 在规定时间内,学生完成全部的设计工作,包括相关资料的整理,然后提交给指导教师,指导教师审阅学生设计的全部资料并初步通过后,学生方可进入毕业答辩环节,若不符合设计要求,指导教师有权要求学生重做。 … 答辩时,设计者首先对自己的设计进行10分钟左右的讲解,然后进行答辩,时间一般为30分钟。 成绩根据学生平时的理论基础、设计水平、论文质量和答辩的情况综合考虑而定。 成绩按优秀、良好、中、及格、不及格五个等级进行评定。

锅炉燃烧控制系统仿真

锅炉燃烧过程控制系统仿真 目的:通过该项目的训练,掌握串级控制、比值控制、前馈控制在锅炉燃烧过程控制系统的综合应用。 原理简述: 燃烧过程控制系统:燃油锅炉的燃烧过程控制主要由三个子系统构成:蒸汽压力控制系统、燃料空气比值控制系统以及炉膛负压控制系统。 1 、蒸汽压力控制和燃料空气比值控制系统 锅炉燃烧的目的是生产蒸汽供其他生产环节使用。一般生产过程中蒸汽的控制是通过压力实现的,后续环节对蒸汽的生产用量不同,反映在蒸汽锅炉环节就是蒸汽压力的波动。维持蒸汽压力恒定是保证生产正常进行的首要条件。 保证蒸汽压力恒定的主要手段是随着蒸汽压力波动及时调节燃烧产生的热量,而燃烧产生热量的调节是通过控制所供应的燃料量以及适当比例的助燃空气的控制实现的。 因此,蒸汽压力是最终被控制量,可以根据生成情况确定; 燃料量是根据蒸汽压力确定的;空气供应量根据空气量与燃料量的合理比值确定。 2 、炉膛负压控制系统 锅炉炉膛负压过小时,炉膛内的热烟、热气会外溢,造成热量损失,影响设备安全运行甚至会危及工作人员安全;当炉膛负压太大时,会增加燃料损失、热量损失和降低热效率。 使外部大量冷空气进入炉膛,改变燃料和空气比值,

控制方案: 某锅炉燃烧系统要求对系统进行蒸汽压力控制。本项目采用燃烧炉蒸汽压力控制和燃料空气比值控制系统,并辅以炉膛负压控制的方案,控制系统框图如图所示。 已知控制系统传递函数: 燃料流量系统的数学模型:G(s)=s e s 31 122-+

空气流量模型:G(s)=s e s 21102-+ 引风量与负压关系模型:G(s)=s e s -+156 送风量对负压的干扰模型:G(s)=122 +s 并取: 燃料流量至蒸汽压力关系约为:G(s)=4 蒸汽压力至燃料流量关系约为:G(s)=1/4 燃料流量与控制流量比值:G(s)=2 空气流量与燃料流量比值:G(s)=1 实现步骤: 1、系统稳定性分析 作出伯德图,如果相角裕度Pm>0°或幅值裕度Gm>1,表示系统稳定。 (1) 燃料流量系统数学模型:G(s)=s e s 31122-+的伯德图: 空气流量数学模型G(s)=s e s 21102 -+的伯德图:

基于DCS的锅炉控制系统设计

DCS控制系统设计 一.被控对象: 图1 锅炉设备工艺 二.工艺要求 燃料和热空气按一定比例送入燃烧室燃烧,生成热量传递给蒸汽发生系统,产生饱和蒸汽Ds,然后经过热器,形成一定气温的过热蒸汽D,汇集至蒸汽母管。压力为Ph的过热蒸汽经负荷设备调节阀供给生产设备负荷用。与此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱,排入大气。 三.DCS选型 本控制系统选择浙大中控Webfield JX-300XP系统。 四.硬件 ①控制站硬件 1.机柜:SP202 结构:拼装 尺寸:2100*800*600 ESD:防静电手腕 散热:两风扇散热 接地:工作接地,安全接地 2.机笼 电源机笼:四个电源模块,型号:XP521 I/O机笼:20个槽位,用于固定卡件 3.接线端子板 冗余端子板:XP520R 4.端子转接板 5.主控卡:XP243X 地址范围:2到127。 后备锂电池模块:JP2,保持参数不丢失。 6.数据转发卡:XP233

地址范围:0到15 7.I/O卡件 (a)I/O点数计算 Ⅰ.锅炉控制系统中数字量输入点数: 启动;停止;点火;手动关闭蒸汽阀 以上共计四个数字量输入。 Ⅱ.锅炉控制系统中数字量输出点数: 给风;1号风机;给燃料;2号风机;蒸汽阀 以上共计五个数字量输出。 Ⅲ.锅炉控制系统中模拟量输入点数: 汽包液位、温度、压力。 以上共有三个模拟量输入(为了使模拟信号可以远传,变送器均选择电压式)。 (b)卡件选择 Ⅰ.XP363:触点型开关量输入卡。8路输入,统一隔离。 Ⅱ.XP362:触点型开关量输出卡。8路输出,统一隔离。 Ⅲ.SP314X:电压信号输入卡。4 路输入,点点隔离,可冗余 Ⅳ.XP221:电源指示灯。 ②操作员站硬件 1.PC机: 显示器;主机;操作员键盘,鼠标;操作员站狗; 2.Windows XP操作系统 3.安装Advan Trol-Pro实时监控软件。 ③工程师站硬件 1.PC机 显示器;主机;工程师键盘,鼠标;工程师站狗 2.工程师站硬件可以取代操作员站硬件 3.Windows XP操作系统 4.安装Advan Trol-Pro实时监控软件 5.安装组态软件包 ④通信网络 (a)信息管理网 通讯介质:双绞线(星形连接),50Ω细同轴电缆、50Ω粗同轴电缆(总线形连接,带终端匹配器),光纤等; 通讯距离:最大 10km; 传输方式:曼彻斯特编码方式; (b)过程控制网络(SCnet Ⅱ网) 传输方式:曼彻斯特编码方式; 通讯控制:符合 TCP/IP 和 IEEE802.3 标准协议; 通讯速率:10Mbps; 节点容量:最多 15个控制站,32个操作站、工程师站或多功能站; 通讯介质:双绞线,50Ω细同轴电缆、50Ω粗同轴电缆、光缆;

发电厂燃煤锅炉燃烧PLC控制系统设计说明

发电厂燃煤锅炉燃烧控制系统设计 摘要 在热电厂中,以单位机组为控制对象有:锅炉汽包水位控制、燃烧过程控制以及过热蒸汽温度,过热蒸汽温度控制又包括过热蒸汽温度控制和再热蒸汽温度控制。其中,热电厂锅炉的燃烧控制对整个发电过程的安全性与经济性起着重要的作用,所以对它高效率的控制是现在热电厂的一个重要任务。 本文以一台工业控制机作为上位机,以西门子S7-300可编程控制机为下位机,系统通过变频器控制电机的启动,运行和调速。上位机监控采用WinCC设计,主要完成系统操作界面设计,实现系统启停控制,参数设定,报警联动,历史数据查询等功能。下位机控制程序采用西门子公司的STEP7编程软件设计,主要完成模拟量信号的处理,温度和压力信号的PID控制等功能,并接受上位机的控制指令以完成风机启停控制,参数设定,循环泵的控制和其余电动机的控制。 关键词:热电厂;锅炉燃烧;单片机;控制 Coal-fired power boilers burning single chip control system design Abstract Thermal power plant boiler combustion control plays an important role in security and economy of the entire power generation process, the control of its high efficiency thermal power plant is an important task. In this paper, the analysis and study of the entire combustion system,

锅炉燃烧控制系统_毕业设计

锅炉燃烧控制系统 摘要 锅炉的燃烧控制对于锅炉的安全、高效运行和节能降耗都具有重要意义,其控制和管理随之要求也越来越高。本设计主要针对锅炉燃烧控制系统的工作原理,根据控制要求,设计了一套基于PLC的锅炉燃烧控制系统。 在控制算法上,综合运用了单回路控制、串级控制、比值控制、前馈控制等控制方式,实现了燃料量控制调节蒸汽压力、送风量控制调节烟气含氧量、引风量控制炉膛负压,并有效地克服了彼此的扰动,使整个系统稳定的运行。 在可编程控制器的选择上,采用了AB公司Logix5000系列PLC,设计了控制系统的硬件配置图、I/O模块接线图,并用其编程软件编写了实现控制算法的梯形图。同时,采用RSView32设计监控界面,使得在上位机上能够实时监控系统的运行状况并可以设置系统的工作参数,使对系统的控制简单易行。 关键词:锅炉燃烧控制系统,控制方式,PLC,监控

ABSTRACT The control of the boiler combustion which is for boilers safe, efficient operation and energy saving are of great significance, and its subsequent control and management is getting higher and higher requirements. According to the control requirements and the working principle, we design a system of a PLC based on the boiler combustion control system. In the control algorithm, we integratedly applied the single-loop control, cascade control, ratio control, feed-forward control and so on which is moded the control to achieve a fuel vapor pressure control regulator, air-conditioning of flue gas oxygen content control, citing the negative air volume control of the furnace pressure.It also effectively overcome the disturbance of each other, so that the operation of the entire system is stable. Choice in the programmable logic controller, we choose AB, Logix5000 series PLC, and applied it to the design of the control system hardware configuration diagram and I / O module wiring diagram. Then we use the preparation of its programming software control algorithm to achieve the ladder. At the same time, the use of RSView32 interface to design monitor makes PC can run real-time monitoring of system status and can set the system parameters, so that the system is easy to control. Keywords: boiler combustion control system, control, PLC ,supervisory control

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

锅炉温度控制系统设计方案

锅炉温度控制系统设计方案 第1章绪论 1.1课题背景及研究的意义 锅炉是工业生产中最常用的能量转换设备之一,它通过转化燃料中的化学能或利用电能转化为能,成为人们广为依赖的采暖工具。在电锅炉中,利用电阻在通电流状态下发热的原理,通过对电流的大小的控制对温度的控制。由于电流易控制的特点,电锅炉在小型锅炉和精密控温的到使用者的青睐。但是,在大部分城市中,由于国家实行“西气东输”计划,燃气价格为普通人家所接受,经数据统计和计算,燃气锅炉更便宜,比电锅炉应用更受欢迎。 锅炉温度的稳定是锅炉性能的一项重要指标,温度过高和温度过低都会给锅炉的稳定运行和生产造成重大的的影响,甚至发生安全事故。温度过高,导致锅炉金属材料和相关部件的超温过热,加速管材金属氧化,降低锅炉和相关部件的使用寿命;温度过低,假定在保持锅炉蒸发量不变的情况下,锅炉的损耗将大幅上升,能源利用率因此下降,而且负荷也将受到限制。所以,限定锅炉在安全温度成为每一个温度控制系统的核心部分。 随着科技发展,人们对采暖方式和热水方式渐渐发生变化,家用燃气锅炉进入寻常百姓家,但是国燃气锅炉的开发与应用还处于较落后的阶段,市场上的大多数此类商品还是以国外为主,所以燃气锅炉依然有广大市场与研究价值。 本设计以家用燃气锅炉为研究目标,使用AT89C51单片机为控制核心组成温度控制系统,采用热电阻感应温度的变化,单片机实现收集数据、处理数据、发送控制命令的功能,从各方面详细的说明单片机在温度控制的应用。 1.2 温度传感技术 自工业时代以来,随着大型机械的出现和广泛应用,温度对机械工作性能的影响越来越被人们所重视,对温度的未知可能造成机械损坏或发生重大事故。于是温度传感器便应运而生。温度传感器用在生活的方方面面,从冶金行业到每一个人身边中的一部分,它已经随着时代的步伐在进步。 目前使用的较为先进的温度传感器是数字传感器。数字传感器的优点是不需要像传统方式一样加入转换部分,利用当今成熟的集成技术,在其部已经集成了感应温度系统和温度转换系统,尤其是它单端数据输出的功能,极大减少对主控

锅炉燃烧过程控制系统设计毕业论文

锅炉燃烧过程控制系统设计毕业论文

毕业论文 锅炉燃烧过程控制系统设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

辅锅炉燃烧模拟控制系统设计

学校 毕业论文 题目:辅锅炉燃烧模拟控制系统设计Auxiliary boiler combustion control system simulation 系别: 专业: 班级: 姓名: 学号: 指导教师: 2011年月日

目录 前言 (3) 摘要 (3) 1 可编程序控制器的基本特点 (4) 2系统设计要求 (5) 2.1水位控制 (5) 2.2燃烧程序自动控制 (5) 2.3蒸汽压力控制 (7) 2.4自动保护和报警 (7) 3控制部分的设计 (7) 3.1硬件设计 (8) 3.2控制部分的软件设计 (9) 一、控制系统流程图 (10) 二、时序图 (11) 三、控制程序 (12) 四、控制程序的说明 (15) 4 结束语 (16) 参考文献 (16)

前言 在内燃机动力装置的船舶上,锅炉是船舶的重要辅机设备,主要产生蒸汽用于加热燃油、主机暖缸、驱动辅助机械及生活杂用。当前船舶机舱自动化的要求越来越高,锅炉的自动控制在实现无人机舱中是必不可少的。但是目前我国船舶(特别在远洋渔船)上,虽有一定程度的自动化控制,但控制系统基本上是采用接触器—继电器系统, 系统线路复杂、可靠性差、维护工作量大。为改造船舶设备,改善船员劳动强度,提高生产效率, 采用可编程序控制器来实现锅炉的自动控制, 可以使线路简单、可靠性提高、维护方便且容易实现现场调试等。可编程序控制器控制系统的经济性能比高于接触器—继电器控制系统。 随着船舶技术的发展,船舶自动化的程度越来越高,而PLC因其可靠性高、运用灵活,在自动控制领域获得了广泛的应用。目前,在船舶自动化设备中,船舶电站自动化、分油机自动控制、锅炉自动控制等领域,都已成功地应用了可编程序控制器,相信随着市场的发展和技术的进步,PLC技术在船上会有更广阔的前景。 船舶辅锅炉是一个多输入、多输出且相互关联的复杂的控制对象,其实际操作必须遵循严格的步骤,在实习和教学环节中,实现每个人都进行实际操作有难度。因燃油运行成本且可能出现操作失误,会给实习和教学带来一定的困难和不安全因素。随着虚拟现实技术的产生,这些问题将逐步得到解决。以下将会用PLC设计一个辅锅炉模拟控制系统。 摘要 目前我国船舶自动化控制程度较低,控制系统基本上是采用接触器—继电器系统, 系统线路复杂、可靠性差、维护工作量大。为改造船舶设备,改善船员劳动强度,提高生产效率, 采用可编程序控制器来实现锅炉的自动控制, 可以使线路简单、可靠性提高、维护方便且容易实现现场调试等。随着船舶自动化的发展,PLC技术越来越多的在船舶中得到应用。本文分析了PLC的特点以及在船用辅锅炉自动控制系统的应用,主要应用在船用辅锅炉锅炉水位自动控制、蒸汽压力自动控制、燃烧程序的自动控制、保护与报警,使锅炉实现自动控制,逐渐达到无人机舱的目的。 本文主要包括以下几方面内容:一、介绍可编程序控制器(PLC)的基本特点,使人了解PLC工作原理及方式;二、说明该控制系统的设计要求,也就是本文用S7—200 PLC实现自动锅炉控制要达到的目的;三、是本文最重要的一环,系统自动控制的设计包括硬件和软件方面。

PLC在工业锅炉自动控制系统中的应用

1 引言 锅炉是发电厂及其它工业企业中最普遍的动力设备之一,它的功能是把燃料中的贮能,通过燃烧转化成热能,以蒸汽或热水的形式输向各种设备。目前,国内大多数工业锅炉都是人工控制的,或简单的仪表单回路调节系统,燃料浪费很大。工业锅炉作为一个设备总体,有许多被控制量与控制量,扰动因数也很多,许多参数之间明显地存在着复杂的耦合关系。对于工业锅炉这个复杂的系统,由于其内部能量转换机理过于复杂,采用常规的方式进行控制,难以达到理想的控制效果,因此,必须采用智能控制方式控制,才能获得最佳控制效果。 2 系统的组成 系统运行的示意图如图1所示。 图1 系统运行示意图 由图1可知,燃料和空气按一定比例进入燃烧室燃烧,产生的热量传递给蒸汽发生系统,产生饱和蒸汽,经负荷设备调节阀供给负荷设备使用。与此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱排入大气。 锅炉是个较复杂的调节对象,为保证提供合格的蒸汽以适应负荷的需要,生产过程各主要工艺参数必须加以严格控制。主要调节项目有;负荷、锅炉给水、燃烧量、减温水、送风等。主要输出量是:汽包水位、蒸汽压力、过热蒸汽温度、炉膛负压、过剩空气等。这些输入量与输出量之间是互相制约的,例如,蒸汽负荷变化时,必然会引起汽包水位、蒸汽压力和过热蒸汽温度的变化;燃料量的变化不仅影响蒸汽压力,同时还会影响汽包水位、过热蒸汽温度、空气量和炉膛负压等。对于这样复杂的对象,工程处理上作了一些简化,将锅炉控制系统划分为若干个调节系统。主要的调节系统有: (1) 汽包水位调节系统 被调量是汽包水位,调节量是给水流量,它主要考虑汽包内部物料平衡,使给水量适应锅炉的蒸发量,维持汽包水位在工艺允许范围内。 (2) 过热蒸汽温度调节系统 维持过热器出口温度在允许范围之内,并保证管壁温度不超过允许工作温度。 (3) 燃烧调节系统

锅炉燃烧系统的控制系统设计解析

目录 1锅炉工艺简介 (1) 1.1锅炉的基本结构 (1) 1.2工艺流程 (2) 1.2煤粉制备常用系统 (3) 2 锅炉燃烧控制 (4) 2.1燃烧控制系统简介 (4) 2.2燃料控制 (4) 2.2.1燃料燃烧的调整 (4) 2.2.2燃烧调节的目的 (5) 2.2.3直吹式制粉系统锅炉的燃料量的调节 (6) 2.2.4影响炉内燃烧的因素 (7) 2.3锅炉燃烧的控制要求 (11) 2.3.1 锅炉汽压的调整 (11) 3锅炉燃烧控制系统设计 (14) 3.1锅炉燃烧系统蒸汽压力控制 (14) 3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14) 3.2燃烧过程中烟气氧含量闭环控制 (17) 3.2.1 锅炉的热效率 (18) 3.2.2反作用及控制阀的开闭形式选择 (20) 3.2.3 控制系统参数整定 (20) 3.3炉膛的负压控制与有关安全保护保护系统 (21) 3.3.1炉膛负压控制系统 (22) 3.3.2防止回火的连锁控制系统 (23) 3.3.3防止脱火的选择控制系统 (24) 3.4控制系统单元元件的选择(选型) (24) 3.4.1蒸汽压力变送器选择 (24) 3.4.2 燃料流量变送器的选用 (25) 4 DCS控制系统控制锅炉燃烧 (26) 4.1DCS集散控制系统 (26) 4.2基本构成 (28)

锅炉燃烧系统的控制 4.3锅炉自动燃烧控制系统 (31) 总结 (34) 致谢 (35) 参考文献 (36)

1锅炉工艺简介 1.1锅炉的基本结构 锅炉整体的结构包括锅炉本体和辅助设备两大部分。 1、锅炉本体 锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。 炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。炉膛的横截面一般为正方形或矩形。燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。当炉内的温度超过灰熔点时,灰便呈熔融状态。熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。粘结的灰粒逐渐增多,遂形成渣块,称为结渣。结渣会降低锅炉受热面的传热效果。严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。炉排热负荷过高会使飞灰大大增加。炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。 锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

【精品】热电厂锅炉蒸汽压力控制系统设计课程设计

内蒙古科技大学过程控制课程设计论文 题目:热电厂锅炉蒸汽压力 控制系统设计 学生姓名:张春霞 学号:0867112218 专业:测控技术与仪器 班级:测控08—2班 指导教师:李忠虎教授

2011年8月30日 热电厂锅炉蒸汽压力控制系统设计 摘要 本设计以包钢热电厂的锅炉蒸汽压力控制部分为研究对象,应用所学专业知识设计控制系统。热电厂的三大主机包括:锅炉、汽轮机、汽轮发电机。热电厂锅炉主要任务是加热蒸汽,蒸汽可直接进入生产系统或者进入汽轮机发电。蒸汽压力是衡量锅炉的蒸汽生产量与负荷设备的蒸汽消耗量是否平衡的重要指标,是蒸汽的重要工艺参数.蒸汽压力过低或过高,对于金属导管和负荷设备都是不利的。压力过高,会导致锅炉受损;压力过低,就不可能提供给负荷设备负荷质量的蒸汽;因此,控制蒸汽压力是安全生产的需要,也是保证燃烧经济性的需要。

关键词:热电厂;锅炉;蒸汽压力;控制系统

目录 摘要 ............................................... 错误!未指定书签。关键词 ............................................. 错误!未指定书签。引言 ............................................... 错误!未指定书签。 第一章工艺流程介绍 ................................. 错误!未指定书签。 1。1热电厂的工艺流程............................ 错误!未指定书签。 1.1.1化学水处理工序......................... 错误!未指定书签。 1.1.2输煤工序............................... 错误!未指定书签。 1。1.3锅炉工序.............................. 错误!未指定书签。 1.1。4汽机工序.............................. 错误!未指定书签。 1.2锅炉的工艺流程............................... 错误!未指定书签。第二章控制方案整体设计思路 ......................... 错误!未指定书签。 2.1锅炉汽包水位控制............................. 错误!未指定书签。 2.2蒸汽过热系统的控制........................... 错误!未指定书签。 2。3锅炉燃烧过程的控制.......................... 错误!未指定书签。第三章蒸汽压力控制方案的设计过程 ................... 错误!未指定书签。 3.1蒸汽压力调节对象的特性....................... 错误!未指定书签。 3。2控制系统的选择.............................. 错误!未指定书签。 3.3系统仪表选型................................. 错误!未指定书签。 3。3.1压力传感器的选择...................... 错误!未指定书签。 3.3。2流量计的选型.......................... 错误!未指定书签。 3.3。3控制器的选择.......................... 错误!未指定书签。 3.3.4控制阀的选择........................... 错误!未指定书签。 3。3。5主副调节器正反作用的选择............. 错误!未指定书签。

基于PLC的锅炉燃烧控制系统

基于PLC的锅炉燃烧控制系统 1、引言 燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同的测量、控制手段来保证经济燃烧和安全燃烧。如图1所示。

图1 燃烧控制系统结构图 2、控制方案 锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉安全经济运行。一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相

协调,才能可靠工作。对给定出水温度的情况,则需要调节鼓风量与给煤量的比例,使锅炉运行在最佳燃烧状态。同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的安全和环境卫生。 2.1 控制系统总体框架设计 燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,对不同的情况与要求,控制系统的设计方案不一样。将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员的操作习惯,又要最大限度的实施燃烧优化控制。控制系统的总体框架如图2所示。

图2 单元机组燃烧过程控制原理图

P为机组负荷热量信号为D+dPbdt。控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸汽压力控制系统采用常规串级PID控制结构。 2.2 燃料量控制系统 当外界对锅炉蒸汽负荷的要求变化时,必须相应的改变锅炉燃烧的燃料量。燃料量控制是锅炉控制中最基本也是最主要的一个系统。因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响。燃料控制可用图3简单表示。

FGR的循环型工业锅炉节能控制系统设计分析

FGR的循环型工业锅炉节能控制系统设计分析 摘要:氮氧化物是雾霾产生的一大成因,也是燃气锅炉排放的主要污染物。已颁布的《北京市锅炉大气污染物排放标准》将工业锅炉氮氧化物的排放标准大幅提高。 关键词:FGR循环型工业锅炉;节能控制系统设计; 工业锅炉是重要的热能动力设备,我国是当今世界锅炉生产和使用最多的国家。我国锅炉制造业特别是改革开放以来随着国民经济的蓬勃发展,全国有千余家持有各级锅炉制造许可证的企业可以生产各种不同等级的锅炉。由于节能环保日益严格,而工业锅炉又处于能耗高、浪费大、环境污染严重的生产运行状态,因此对工业锅炉推广应用各种新技术、新工艺、新管理是实现节能降耗、减少污染的重要途径。随着工业生产规模的不断扩大,生产过程不断强化。 一、烟气循环FGR的主要原理 烟气循环参与再燃烧有两种方式:烟气内部循环和烟气外部再循环。烟气内部循环一般用于普通低氮应用,利用燃烧器喷嘴流速产生卷吸烟气的效应,使少量烟气再次参与燃烧,降低火焰温度,排放目标值为80 mg/m3;而烟气外部再循环是通过风机的机械力量大幅度增加再循环烟气的流量,再循环烟气量可占总烟气量的25%,大幅度降低火焰温度,更低的氮氧化物排放。 二、FGR的循环型工业锅炉节能控制系统设计分析 1.物料出口温度控制。经过分析可知,影响锅炉物料出口温度的因素包括物料流量、燃烧工况以及空气量与燃料量比值等,在控制系统中,物料出口温度是通过改变燃料流量来控制的,但受到燃烧工况、风量的跟随作用以及风量与燃料量的比值影响。为了使物料出口温度稳定在目标温度,必须保证燃料能够充分燃烧,释放出足够的能量,因此选择采用串级控制系统。该控制系统中,物料出口温度控制回路为串级控制系统的主回路。在控制方案中,当物料出口温度由于某种干扰变化时,通过物料出口温度控制器的输出来改变燃料控制器的给定值,使燃料量随之变化。然后通过比值控制器使空气量也发生改变,保持燃料量和空气量的流量比不变。但从动态角度看,因蒸汽出口温度变化首先反应到燃料量给定值的变化,使燃料量随之变化,再经过燃料量测量变送器、比值器,改变空气量控制器的给定值,空气量才发生变化。显然,空气量的变化滞后于燃料量,即动态比值不能得到保证。在实际工业生产中,为了使燃料完全燃烧,在提升负荷时要求先提升空气量,后提升燃料量;在降低负荷时,要求先降低燃料量,后降低空气量,即所谓具有逻辑提降量的比值控制系统。通过增加两个选择器HS、LS 组成具有逻辑提降功能的燃烧过程控制系统,空气量与燃料量的比值。燃烧系统要减少稳态误差,同时由于流量噪声比较大,不能采用微分作用。因此,燃料流量控制器和空气流量控制器均采用控制器。如有微分作用时,一旦主控制器和输出稍有变化,调节阀将大幅度变化,不利于控制,所以副控制器选用控制器,主控制器采用PID 控制器。 2.烟气含氧量闭环控制。烟气含氧量是指燃料燃烧之后排出的烟气中氧气的含量,它主要与燃料的燃烧状况有关。烟气含氧量的影响因素是燃烧工况。燃烧过程的燃料量与空气量比值控制系统存在一个不足,即不能保证两者是最优比,这是由于流量测量的误差以及燃料质量的变化所造成的。为此,文中方案采用烟气氧含量作为送风量的校正信号。锅炉燃烧过程中烟气含氧量的闭环控制方案,烟气含氧量作为被控变量,其设定值是锅炉燃烧效率最高情况下的最优烟气含氧

相关文档
最新文档