改性异氰酸酯技术说明书

改性异氰酸酯技术说明书

改性异氰酸酯

(modified isocyanate)

理化性质:棕红色液体,有刺激性气味。易与醇类、胺类发生反应,易与水发生反应,生成不溶性的脲类化合物并放出二氧化碳。

理化性能:

产品说明:250Kg/桶

广泛用于采用冷模塑工艺成型的高回弹冷熟化聚氨酯泡沫塑料制品的生产,生产效率高、耗能低。广泛应用于汽车、摩托车、火车、高铁、飞机、家具等行业,用于坐垫、靠背、床垫、头枕等产品的生产。1、本品具有稳定的产品性能,可广泛应用于高回弹聚氨酯泡沫的生产。

2、本产品具有较低的凝固点(-10℃),对天气温度变化具有更好地适应性。

3、采用本产品生产的聚氨酯产品具有机械性能好,回弹性好、舒适性好、耐用等特点。

安全使用说明:

1、本品易吸潮变质,开封后应尽快用完;如不能一次用完,需以氮气置换

后密封。原装贮存期为六个月。

2、若出现红棕色固体颗粒时,应尽量过滤后使用,且注意包装桶

的密封,有条件的通干燥氮气保护。

3、在低温条件下(低于-10℃)储存可导致产生结晶,在出现结晶时,应尽

快在70-80℃加热使其熔化,然后充分搅拌,确保其均匀,待冷却后再使用。熔化温度无须超过80℃。

甲苯二异氰酸酯化学品安全技术说明书正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 甲苯二异氰酸酯化学品安全技术说明书正式版

甲苯二异氰酸酯化学品安全技术说明 书正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 第一部分:化学品名称 1.1 化学品中文名称:甲苯二异氰酸酯 1.2 化学品英文名称: Toluene diisocyanate 1.3 中文名称2: 1.4 分子式: C9H6N2O2 1.5 分子量:174.16 第二部分:成分/组成信息 2.1 主要成分: 2,4-甲苯二异氰酸酯 2.2 含量:

2.3 CAS No. 584-84-9 第三部分:危险性概述 3.1 危险性类别: 3.2 侵入途径:主要经呼吸道吸入,不能经无损皮肤吸收。 3.3 健康危害:对皮肤、眼睛和呼吸道有强烈刺激作用,对甲苯二异氰酸酯过敏者,可能引起气喘、伴气喘、呼吸困难和咳嗽。 第四部分:急救措施 4.1 皮肤接触:液体与皮肤接触可引起皮炎。 4.2 眼睛接触:液体与眼睛接触可引起严重刺激作用,如果不加以治疗,可能导致永久性损伤。

高性能、易分散水性多异氰酸酯固化剂的合成与应用研究

高性能、易分散水性多异氰酸酯固化剂的合成与应用研究前言 水分散多聚异氰酸酯可以大致分为两类:非离子型和离子型。非离子型改性聚异氰酸酯采用聚醚进行亲水改性,虽然这种固化剂在大多数应用领域得到了市场的广泛认可,但是其也存在很多缺点:由于聚醚带来的亲水性有限,需要使用大量的聚醚才能赋予聚异氰酸酯较好的水分散性能,这极大地降低了聚异氰酸酯体系中的异氰酸根的浓度,其次改性的聚异氰酸酯需要借助较大的剪切力才能够在水中完全分散,并且大量的聚醚会一直存在体系中,这将永远影响涂膜的耐水性能[1]。 H · 舍费尔[2]等提出了使用4-氨基甲苯-2-磺酸来改性聚异氰酸酯的方法,这类改性聚异氰酸酯中和以后能够非常容易地溶解在水中。但是此方法需要同时使用一定量的聚醚,造成涂膜耐水性能的降低,此外使用的磺酸含有苯环,这将使涂膜耐黄性能降低。Hans-Josef Laas[3]等使用环己胺基丙磺酸和环己氨基乙磺酸来制备改性聚异氰酸酯,取得了巨大成功,磺酸改性的聚异氰酸酯不需要高剪切力就能够在水中均匀分散,叔胺中和的磺酸改性聚异氰酸酯体系具有很好的贮存稳定性。但是专利指出适用于此体系的磺酸单体种类只有两种,甚至指出其他与环己胺基丙磺酸结构类似的磺酸单体即使在更高的条件下也不能参与反应。 本文通过对市售磺酸单体与多异氰酸酯的反应进行研究,发现目前市售的磺酸单体除了环己胺基丙磺酸和环己氨基乙磺酸以外,未找到可以与多异氰酸酯反应的磺酸单体。于是试验室合成了一些新型的磺酸单体,研究发现这些新型磺酸单体在一定条件下可以与多异氰酸酯反应,来制备高性能、易分散的水性多异氰酸酯固化剂,从而为行业研究者提供了理论参考。通过对试验室合成的磺酸改性多异氰酸酯固化剂与市场化某跨国公司的同类产品的比较,发现试验室合成的固化剂性能与跨国公司产品性能基本一致,从而为行业提供了更多的磺酸改性固化剂选择。 1 试验部分 1.1 试验主要原料 聚氨酯合成: HDI三聚体[HT100, w(—NCO)= 21.9%]、羟基丙烯酸树脂[Antkote? 2033,w(—OH)= 3.3%]、固化剂B,万华化学;磺酸固化剂A,市售;氨基磺酸,试验室自制;N,N-二甲基环己胺,阿拉丁试剂。 1.2 水分散多异氰酸酯的制备 在装有机械搅拌器、回流管、温度计和氮气进出口的四口圆底烧瓶中,将氨基磺酸和二甲基环己胺加入到HDI三聚体中,加热到100 ℃反应,测试体系中—NCO含量达到理论值时,停止反应,冷却体系至40 ℃,出料。通过改变氨基磺酸的加入量来研究不同磺酸含量的改性聚异氰酸酯的水分散关系。通过改变二甲基环己胺的加入量来研究中和剂使用量对整个反应进程的影响。

丙烯酸酯液体改性环氧树脂胶粘剂

丙烯酸酯液体改性环氧树脂胶粘剂 3.2 胶粘剂力学性能 采用环氧基含量为1.2 mmol·g-1的丙烯酸酯液体橡胶增韧环氧树脂胶粘剂,其力学性能见表3。由表3可见,环氧树脂胶粘剂对不同材料有不同的粘接性,但加入丙烯酸酯液体橡胶后拉伸剪切强度都有不同程度的提高,铝合金试片的拉剪强度提高了133%,复合材料试片提高了124%,45#钢试片提高了84%。这是因为加入丙烯酸酯液体橡胶,改善了体系的韧性,降低了固化过程中产生的内应力,胶粘剂拉剪强度增大。下面分别讨论液体橡胶添加量和环氧基含量对拉剪强度的影响。 表3 环氧树脂胶粘剂拉剪强度 拉剪强度每百份环氧树脂中液体橡胶的加入份数 /MPa 0 5 10 15 20 铝合金试片 12.1 20.1 28.2 26.1 22.3 玻璃钢试片 7.2 12.0 16.1 14.0(试片破坏) 14.1(试片破坏) 45#钢试片 9.2 11.2 16.8 16.6 13.2 由表3可见,随液体橡胶添加量的增加,胶粘剂的拉剪强度逐渐增大,当添加量为每百份环氧树脂加10份时,拉剪强度提高幅度最大,分别提高了约133%和124%。这是因为加入液体橡胶,体系成两相结构,由于橡胶相变形和撕裂的阻力对基体开裂有阻碍和钉扎作用,消耗大量的能量,提高了韧性。而这种阻碍作用与橡胶相的体积分数成线性关系,故随液体橡胶添加量的增加,基体的韧性增大,拉伸剪切强度逐渐增大。又由于胶结件在受拉剪载荷时,胶粘剂与胶接件表面粘接作用和胶粘剂本身的强度不同,胶接件的破坏形式也不同。但是若橡胶含量过大,胶粘剂内聚强度降低,试件呈内聚破坏,拉剪强度反而降低。 3.2.1 丙烯酸酯液体橡胶环氧基含量的影响 丙烯酸酯液体橡胶含有的反应性官能团为环氧基,不同环氧基含量的液体橡胶对胶粘剂拉剪强度的影响不同。图4(图略)是体系中分别加入不同环氧基含量(每百份环氧树脂加入10份)的液体橡胶后,胶粘剂拉剪强度与液体橡胶环氧基含量的关系曲线。 由图4(图略)可见,在相同工艺条件下,随着液体橡胶环氧基含量的增加,拉剪强度增加,环氧基含量到一定程度后,拉剪强度又有减小的趋势。环氧基含量为1.2 mmol·g-1的液体橡胶增韧效果最好,拉剪强度提高了133%。由橡胶增韧环氧树脂的机理可知,要使丙烯酸酯液体橡胶有良好的增韧效果,橡胶和环氧树脂在反应前应有良好的相容性,在固化过程中,由于反应的进行分子量变大相容性变差产生分相,形成两相复合体系。不同环氧基含量的丙烯酸酯液体橡胶与环氧树脂的相容性也不同。环氧基含量过低,丙烯酸酯液体橡胶不易溶于环氧基体中;环氧基含量过高,橡胶与基体的的相容性太好,在反应的过程中不易分相,Tomio M.的研究也得出了这一结论。由于相容性的不同,直接导致橡胶在反应分相过程中形成颗粒的粒径及分布的差异,而不同粒径的橡胶粒子,对环氧树脂增韧效果也有区别。Riew的理论表明:小的颗粒主要对剪切变形起作用,大的颗粒能阻止裂纹的增长。因此丙烯酸酯液体橡胶要有良好的增韧效果,环氧基含量要适当。

甲基异氰酸酯

甲基异氰酸酯化学品安全技 术说明书 第一部分:化学品名称化学品中文名称:甲基异氰酸酯 化学品英文名称:methyl isocyanate 技术说明书编码:319CAS No.: 624-83-9 分子式: C 2H 3NO 分子量:57.05第二部分:成分/组成信息 有害物成分含量CAS No.第三部分:危险性概述健康危害:吸入低浓度本品蒸气或雾对呼吸道有刺激性;高浓度吸入可因支气管和喉的炎症、痉挛,严重的肺水肿而致死。蒸气对眼有强烈的刺激性,引起流泪、角膜上皮水肿、角膜云翳。液态对皮肤有强烈的刺激性。口服刺激胃肠道。 燃爆危险:本品易燃,高毒,具强刺激性。第四部分:急救措施皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。食入:用水漱口,给饮牛奶或蛋清。就医。第五部分:消防措施危险特性:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。化学反应性强,易聚合,易吸湿。遇水、酸类或与有机物、氧化剂接触,都可放出大量热而引起剧烈燃烧,并放出有毒和易燃的二氧化硫。遇水或水蒸气反应放出有毒和易燃的气体。在火场中,受热的容器有爆炸危险。有害燃烧产物:一氧化碳、二氧化碳、氧化氮、氰化氢灭火方法:消防人员须戴好防毒面具,在安全距离以外,在上风向灭火。喷水保持火场容器冷却,直至灭火结束。灭火剂:二氧化碳、干粉、砂土。第六部分:泄漏应急处理 有害物成分 含量 CAS No.: 甲基异氰酸酯 624-83-9

异氰酸酯胶粘剂在木材加工中的应用

异氰酸酯胶粘剂在木材加工中的应用 目前,木材加工行业仍主要使用传统的甲醛系列胶粘剂,这己无法满足新形势下原料体系的胶接要求。伴随环境保护要求的日益加强,人们环保意识的提高,开发和使用无公害的高效木材加工用合成树脂胶粘剂己成为人们普遍关注的问题。异氰酸酯胶粘剂中不含有甲醛类有害物质且其分子设计灵活,从化学结构和原料组合出发,可实现异氰酸酯树脂不同的使用性能,在众多领域被广泛应用。 异氰酸酯胶粘剂是由分子链中含有异氰酸基(-NCO)及少量氨酯基(-NHCOO),具有很高极性和活泼性的一类胶粘剂。1848年Wurtz首先用硫酸二乙酯和氰酸钾合成异氰酸酯。19世纪Hofmann和Curtius等著名的化学家都对其性质进行过研究。1869年Gentier初步确定了异氰酸酯的结构。1940年德国法本公司的研究人员发现异氰酸酯具有特殊的胶接性能。并在第二次世界大战期间将4,4一二苯基甲烷二异氰酸酯(MDI)应用于战车的履带胶接上。第二次世界大战以后,拜尔公司开发了DesmodurR系列的多异氰酸酯和Desmocoll系列的端羟基聚酯多元醇,至今仍被广泛应用。 异氰酸酯胶粘剂开发于20世纪50年代,80年代以来发展较快,至今己成为一个品种繁多、应用广泛的行业。1951年Deppe首先将异氰酸酯胶粘剂应用在刨花板的制备上。1973年美国Ellingson Lumber公司试制了用于室外的两面贴单板的MDI刨花板。Wilson J.B和富田文一郎分别对异氰酸酯胶粘剂制造人造板的胶合强度、湿强度、粘弹性等性质进行了较深入的研究。随着异氰酸酯胶粘剂的优点逐渐被发现,其在木材中的应用也越来越广泛。我国已经开发出刨花板用异氰酸酯树脂胶粘剂;人造板用可乳化异氰酸酯树脂胶粘剂;胶接木材用异氰酸酯树脂胶粘剂等系列产品。国内的其它科研工作者也对异氰酸酯胶粘剂在木材中的应用做了大量的工作,北华大学时君友等人将玉米淀粉的酚化产物处理成乳液,在一定酸碱度条件下,与无毒无公害的合成橡胶胶乳共聚制成API胶的主剂,将多异氰酸酯化合物的异氰酸酯基封闭处理后,作为API胶的固化剂,制成双组分无醛耐水的API胶。用该胶压制的三层复合实木地板、机拼细木工板、胶合板及集成材等胶合制品,其理化性能指标完全达到有关标准要求。东北林业大学艾军等人1311用荧光显微技术和Dsc分析方法研究了人造板用异氰酸酯胶粘剂牢固的化学胶接,尤其用于农作物秸杆(麦草、稻草)的胶接可得到符合我国木质A类优等品标准的刨花板。唐朝发等人研究了低成本水

异氰酸酯计算

聚氨酯计算公式中有关术语及计算方法 1.官能度 官能度是指有机化合物结构中反映出特殊性质(即反应活性)的原子团数目。对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。 2.羟值 在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。 从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。 在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即 羟值校正= 羟值分析测得数据+ 酸值 羟值校正= 羟值分析测得数据-碱值 对聚醚来说,因酸值通常很小,故羟值是否校正对化学计算没有什么影响。 但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,务必采用校正羟值。严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。 例,聚酯多元醇测得羟值为224.0,水份含量0.01%,酸值12,求聚酯羟值 羟值校正= 224.0 + 1.0 + 12.0 = 257.0

3. 羟基含量的重量百分率 在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。 羟值 = 羟基含量的重量百分率×33 例,聚酯多元醇的OH%为5,求羟值 羟值 = OH% × 33 = 5 × 33 = 165 4. 分子量 分子量是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总和。 (56.1为氢氧化钾的分子量) 例,聚氧化丙烯甘油醚羟值为50,求其分子量。 对简单化合物来说,分子量为分子中各原子量总和。 如二乙醇胺,其结构式如下: 羟值 官能度分子量1000 1.56??=336650 100031.56=??=分子量

正丁烷安全技术说明书

正丁烷安全技术说明书 第一部分化学品名称 化学品中文名称:正丁烷 化学品英文名称:n-butane 第二部分危险性概述 危险特性:易燃,与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的 危险。与氧化剂接触猛烈反应。气体比空气重,能在较低处扩散到相当远的地方, 遇火源会着火回燃。有害燃烧产物:一氧化碳、二氧化碳。 GHS危险性类别:第2.1 类易燃气体 侵入途径:吸入 健康危害:高浓度有窒息和麻醉作用。急性中毒:主要症状有头晕、头痛、嗜睡 和酒醉状态、严重者可昏迷。慢性影响:接触以正丁烷为主的工人有头晕、头痛、 睡眠不佳、疲倦等。环境危害:对环境可能有害。 急救措施:吸入迅速脱离现场至空气新鲜处,保持呼吸道通畅。如呼吸困难,给 输氧。如呼吸停止,立即进行人工呼吸,就医。 第三部分成分/组成信息 物质/混合物:物质 化学品名称:正丁烷 CASNO:.106-97-8 有害物成分:正丁烷 浓度:≥99% 第四部分急救措施 皮肤接触:如果发生冻伤:将患部浸泡于保持在38~42℃的温水中复温。不要涂擦。不要使用热水或辐射热。使用清洁、干燥的敷料包

扎。如有不适感,就医。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如 呼吸停止,立即进行人工呼吸。就医。食入:不会通过该途径传播。 急性和迟发效应及主要症状:具有弱刺激和麻醉作用,急性中毒主要 表现为头痛、头晕、嗜睡、恶心、酒醉状态,严重者可出现昏迷。慢 性影响出现头痛、头晕、睡眠不佳、易疲倦。 医生注意事项:对症即可,无特殊处理。如果被大量吸入,立即联系中毒处臵专家。 第五部分消防措施 灭火方法:切断气源。若不能切断气源,则不允许熄灭泄漏处的火焰。在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。 灭火剂:雾状水、泡沫、二氧化碳、干粉。 特殊防护装备:消防人员必须佩戴空气呼吸器、穿全身防火防毒服。 第六部分泄漏应急处理 作业人员防护措施、防护装备和应急处臵程序:建议应急处理人员戴自给正压式呼吸器,穿防静电工作服,使用不易产生火花的工具。迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断泄露源。 环境保护措施:用工业覆盖层或吸附/吸收剂盖住泄漏点附近的下水道等地方,防 止气体进入。 泄露化学品的收容、清除方法及所使用的处理材料:合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。如有可能,将漏出气用排风机送至空旷地方或装设适当喷头烧掉。

(完整版)化学品安全技术说明书大全MSDS

化学品安全技术说明书大全(MSDS)

1,1,1-三氯乙烷化学品安全技术说明书 第一部分:化学品名称 化学品中文名称: 1,1,1-三氯乙烷 化学品英文名称: 1,1,1-trichloroethane 中文名称2:甲基氯仿 英文名称2: methyl chloroform 技术说明书编码: 612 CAS No.: 71-55-6 分子式: C2H3Cl3 分子量: 133.42 第二部分:成分/组成信息 有害物成分含量 CAS No. 1,1,1-三氯乙烷≥95.0% 71-55-6 第三部分:危险性概述 危险性类别: 侵入途径: 健康危害:急性中毒主要损害中枢神经系统。轻者表现为头痛、眩晕、步态蹒跚、共济失调、嗜睡等;重者可出现抽搐,甚至昏迷。可引起心律不齐。对皮肤有轻度脱脂和刺激作用。 环境危害: 燃爆危险:本品可燃,有毒,具刺激性。 - 第四部分:急救措施 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。食入:饮足量温水,催吐。就医。 第五部分:消防措施 危险特性:遇明火、高热能燃烧,并产生剧毒的光气和氯化氢烟雾。与碱金属和碱土金属能发生强烈反应。与活性金属粉末(如镁、铝等)能发生反应, 引起分解。 有害燃烧产物:一氧化碳、二氧化碳、氯化氢、光气。 灭火方法:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。喷水保持火场容器冷却,直至灭火结束。灭火剂:雾状水、泡沫、二氧化碳、砂土。 第六部分:泄漏应急处理 应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。从上风处进入现场。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 第七部分:操作处置与储存 操作注意事项:严加密闭,提供充分的局部排风和全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴直接式防毒面具(半面罩),戴安全防护眼镜,穿防毒物渗透工作服,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、碱类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。保持容器密封。应与氧化剂、碱类、食用化学品分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有泄漏应急处理设备和合适的收容材料。 第八部分:接触控制/个体防护 职业接触限值 中国MAC(mg/m3):未制定标准 前苏联MAC(mg/m3): 20 TLVTN: OSHA 350ppm,1910mg/m3; ACGIH 350ppm,1910mg/m3 TLVWN: ACGIH 450ppm,2460mg/m3 监测方法:气相色谱法 工程控制:严加密闭,提供充分的局部排风和全面通风。 呼吸系统防护:空气中浓度超标时,应该佩戴直接式防毒面具(半面罩)。紧急事态抢救或撤离时,佩戴空气呼吸器。眼睛防护:戴安全防护眼镜。 身体防护:穿防毒物渗透工作服。 手防护:戴防化学品手套。 其他防护:工作现场禁止吸烟、进食和饮水。工作完毕,淋浴更衣。单独存放被毒物污染的衣服,洗后备用。注意个人清洁卫生。 第九部分:理化特性 主要成分:含量: 工业级一级≥95.0%; 二级≥91.0%; 三级≥90.0%。 外观与性状:无色液体。 pH: 熔点(℃): -32.5 沸点(℃): 74.1

环己基异氰酸酯安全技术说明书

异氰酸环己酯 环己基异氰酸酯安全技术说明书 说明书目录 第一部分化学品名称第九部分理化特性 第二部分成分/组成信息第十部分稳定性和反应活性第三部分危险性概述第十一部分毒理学资料 第四部分急救措施第十二部分生态学资料 第五部分消防措施第十三部分废弃处置 第六部分泄漏应急处理第十四部分运输信息 第七部分操作处置与储存第十五部分法规信息 第八部分接触控制/个体防护第十六部分其他信息 第一部分:化学品名称 化学品中文名称:异氰酸环己酯 化学品俗名: 环己基异氰酸酯 化学品英文名称:Cyclohexyl isocyanate; 英文名称: Isocyanic acid, cyelohexyl ester 技术说明书编码:CAS No.: 3173-53-3 生产企业名称: 地址: 生效日期: 第二部分:成分/组成信息 第三部分:危险性概述 危险性类别: 侵入途径: 吸入食入经皮吸收

有毒。吸入、摄入或经皮肤吸收后会中毒。强烈刺激和腐蚀皮肤、眼睛和粘膜。可引起过敏 健康危害: 反应。接触后,出现烧灼感、头痛、头晕、咳嗽、气短、恶心、呕吐等,长时间接触,可引起哮喘。 环境危害: 燃爆危险:

消防器材。储存间内的照明、通风等设施应采用防爆型,开关设在仓外。搬运时要轻装轻卸, 防止包装及容器损坏。分装和搬运作业要注意个人防护。运输按规定路线行驶。

辛醇/水分配系数的对数值: 闪点(C ):35 爆炸上限%(V/V): 引燃温度(C ):爆炸下限%(V/V): 溶解性:微溶于水。 主要用途:用于有机合成。 其它理化性质: 第十部分:稳定性和反应活性 稳定性:稳定 禁配物:强氧化剂、强碱、水、酸类、醇类、胺类。 避免接触的条件:受热、接触潮湿空气。 聚合危害:不能出现 分解产物:一氧化碳、二氧化碳、氮氧化物、氰化氢。 第十一部分:毒理学资料 急性毒性:LD50 : LD50 : 13mg / kg(小鼠腹腔)LC50 : LC50 : 亚急性和慢性毒性: 刺激性: 致敏性: 致突变性: 致畸性: 致癌性: 第十二部分:生态学资料 生态毒理毒性: 生物降解性: 非生物降解性:

异丁烷安全技术说明书

异丁烷化学品安全技术说明书 第一部分化学品及企业标识 化学品中文名称:异丁烷 化学品英文名称:isobutane 第二部分危险性概述 GHS危险性类别: 易燃气体:类别1; 压力下气体:液化气体 标签要素: 象形图: 警示词:危险 危险信息:极易燃气体;含压力下气体,如加热可爆炸 防范说明:防范措施:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止气体泄漏到工作场所空气中。避免与强氧化剂等接触。在传送过程中,钢瓶和容器必须接地和跨接,防止产生静电。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。 事故响应:皮肤接触:不会通过该途径接触;眼睛接触:不会通过该途径接触;吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。食入:不会通过该途径接触。 泄漏应急处置:迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给式正压呼吸器,穿消防防护服。尽可能切断泄漏源。用工业覆盖层或吸附/吸收剂盖住泄漏点附近的小水道等地方,防止气体进入。合理通风,加速扩散,喷雾状水稀释、溶解,构筑围堤或挖坑收容产生的大量废水,如有可能,将漏出气体用排风机送至空旷处或装设适当喷头烧掉,漏气要妥善处理,修复、检验后再用。 灭火方法及灭火剂:切断气源。若不能切断气源,则不允许熄灭正在燃烧的气体。消防人员在上风向灭火。尽可能将容器从火场移至空旷处,喷水保持火场容器冷却,直至灭火结束。雾状水、泡沫、二氧化碳、干粉。 安全储存:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。防止阳光直射,应与强氧化剂等分开存放。储存间采用防爆型照明、通风设施,开关设在仓外。配备相应品种和数量的消防器材。罐储要有防火防爆技术措施。露天贮罐夏季要有降温措施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备。验收时要注意品名,注意验瓶日期,先进仓的先发用。搬运时轻装轻卸,防止钢瓶及附件损坏。 废弃处置:产品:应首先考虑回收利用,然后可考虑按照国家和地方有关法规处置。允许气体安全地扩散到大气中或当做燃料使用。不洁的包装:把倒空的容器归还厂商或按照国家和地方有关法规处置。物理化学危险:易燃气体,与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险。与氧化

丙烯酸酯环氧树脂乳液的合成和性能探讨

丙烯酸酯环氧树脂乳液的合成和性能探讨 将环氧树脂加入到预乳化单体中,采用预乳化半连续种子乳液聚合法合成水性丙烯酸酯环氧树脂乳液,选择合适的催化剂,增加环氧树脂的接枝率,研究了环氧树脂用量、催化剂用量对乳液及其漆膜性能的影响。实验结果表明,当环氧树脂用量为单体量的7%,催化剂用量为单体量的0.3%时,漆膜的附着力和硬度有很大提高,配制涂料的耐盐雾性可达到300h以上。 标签:乳液聚合;环氧树脂;杂化聚合;大分子络合剂 中国分类号:TQ436+.5 文献标识码:A 文章编号:1001-5922(2016)09-0047-05 随着我国对涂料VOC排放标准的严苛,针对涂料使用过程VOC超标收取消费税,加速了工业漆水性化的发展。高性能工业防护漆的市场需求日益增加,以聚合物乳液为成膜物的水性工业漆,以其优越的耐候性、便捷的使用性能、很低的VOC排放等性能,在许多领域广泛使用。 目前水性工业漆丙烯酸聚合物乳液,通过在乳液聚合物体系中加入增加附着力的单体,如丙烯酸、丙烯酸羟乙酯等Ⅲ,来提高聚合物在基材上附着力,但往往给乳液聚合物膜带来较高的吸水性,从而导致在潮湿条件下的附着力下降,还会引起工业漆耐盐雾性变差。 为了提高水性工业漆乳液聚合物性能,可通过在丙烯酸酯乳液合成过程中引入环氧树脂,给予漆膜良好的附着力和致密性,提高漆膜的耐盐雾性能。但是加入环氧树脂容易导致聚合物乳液的稳定性下降,尤其是热稳定性下降,易发生聚合物乳液凝胶,同时由于环氧树脂的分子质量较低,不能有效提高粘接强度,必须增加环氧树脂与乳液粒子内部聚合物的接枝反应,才能充分利用环氧树脂的优点。本实验通过采用催化剂,使丙烯酸聚合物与环氧树脂中的环氧加成,提高环氧树脂在丙烯酸聚合物中的接枝率。通过测定在不同环氧树脂和催化剂用量下的乳液性能,确定催化剂和环氧树脂的最佳用量。 1 实验部分 1.1 原料及仪器 实验原料及仪器见表1~3。 1.2环氧改性丙烯酸酯乳液的合成 向2000mL三口烧瓶中加入计量的去离子水,开启搅拌,加入计量的乳化剂,15min后开始滴加计量好的单体、环氧树脂和催化剂,继续高速搅拌乳化约1h 制得预乳化液;向带有回流冷凝器的3000mL四口烧瓶中加入去离子水,开启搅

异氰酸酯胶(PMDI)

异氰酸酯胶(PMDI) 异氰酸酯胶粘剂开发于20世纪50年代,80年代以来发展较快,至今己成为一个品种繁多、应用广泛的行业。1951年Deppe首先将异氰酸酯胶粘剂应用在刨花板的制备上。1973年美国Ellingson Lumber公司试制了用于室外的两面贴单板的MDI刨花板。Wilson J.B 和富田文一郎分别对异氰酸酯胶粘剂制造人造板的胶合强度、湿强度、粘弹性等性质进行了较深入的研究。随着异氰酸酯胶粘剂的优点逐渐被发现,其在木材中的应用也越来越广泛。我国已经开发出刨花板用异氰酸酯树脂胶粘剂;人造板用可乳化异氰酸酯树脂胶粘剂;胶接木材用异氰酸酯树脂胶粘剂等系列产品。国内的其它科研工作者也对异氰酸酯胶粘剂在木材中的应用做了大量的工作,北华大学时君友等人将玉米淀粉的酚化产物处理成乳液,在一定酸碱度条件下,与无毒无公害的合成橡胶胶乳共聚制成API胶的主剂,将多异氰酸酯化合物的异氰酸酯基封闭处理后,作为API胶的固化剂,制成双组分无醛耐水的API胶。用该胶压制的三层复合实木地板、机拼细木工板、胶合板及集成材等胶合制品,其理化性能指标完全达到有关标准要求。东北林业大学艾军等人1311用荧光显微技术和Dsc分析方法研究了人造板用异氰酸酯胶粘剂牢固的化学胶接,尤其用于农作物秸杆(麦草、稻草)的胶接可得到符合我国木质A类优等品标准的刨花板。唐朝发等人研究了低成本水性高分子异氰酸酯胶粘剂,将交联剂所用异氰酸酯用低温亚硫酸氢钠法进行封闭处理,使-NCO封闭率达到50%以上,同时加入一定量的DBP结果表明低成本API胶粘剂能够适应胶合板、细木工板的生产要求,所生产出的胶合板、细木工板性能满足国标要求。徐信武等研究了改性异氰酸酯对于稻草刨花板性能的影响。当密度超过0.75g/cm3时,稻草刨花板抗弯性能达到美国ASTM A208.1标准中M3级木质刨花板的要求。目前研究者们正在研究新型热塑性聚氨酯弹性树脂,干式复合用聚氨酯胶粘剂的研制,反应型阻燃聚氨酯改性酚醛胶粘剂,水基型聚氨酯改性丙烯酸酯系列胶粘剂等。 目前异氰酸酯胶粘剂在木材工业中的应用主要有如下几种形式:水性高分子异氰酸酯胶粘剂(API);异氰酸酯预聚体胶粘剂;异氰酸酯共混复合胶粘剂、最常见的是异氰酸酯与脲醛树脂、单宁等的共混、多异氰酸酯单体直接做为胶粘剂使用,其中以水性高分子一异氰酸酯胶粘剂(API)、异氰酸酯预聚体胶粘剂应用最为广泛。 (l)、水性高分子一异氰酸酯胶粘剂(API)水性高分子一异氰酸酯胶粘剂(API)是以水溶性高分子(通常为醋酸乙烯酯乳液:PVAc),乳液(通常为苯乙烯一丁二烯胶乳:SBR,聚丙烯酸酚乳液,乙酸乙酯一乙烯共聚乳液:EVA等),填料(通常为碳酸钙粉末:CaCO3)为主要成分的主剂,和多官能团的异氰酸酯化合物(通常为P-MDI)为主要成分的交联剂所构成。两者混合产生的三维交联使其胶接耐水性大为提高,因此可将其作为高耐水性木材胶粘剂使用。API 胶粘剂在我国的应用开发较晚,起步于20世纪90年代,目前有生产厂家将其用于拼板胶的

异氰酸酯计算

聚氨酯计算公式中有关术语及计算方法 1. 官能度 官能度是指有机化合物结构中反映出特殊性质(即反应活性)的原子团数目。对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。 2. 羟值 在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。 从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。 在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即 羟值校正 = 羟值分析测得数据 + 酸值 羟值校正 = 羟值分析测得数据 - 碱值 对聚醚来说,因酸值通常很小,故羟值是否校正对化学计算没有什么影响。 但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,务必采用校正羟值。 严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。 例,聚酯多元醇测得羟值为224.0,水份含量0.01%,酸值12,求聚酯羟值 羟值校正 = 224.0 + 1.0 + 12.0 = 257.0 3. 羟基含量的重量百分率 在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。 羟值 = 羟基含量的重量百分率×33 例,聚酯多元醇的OH%为5,求羟值 羟值 = OH% × 33 = 5 × 33 = 165 4. 分子量 分子量是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总和。 (56.1为氢氧化钾的分子量) 例,聚氧化丙烯甘油醚羟值为50,求其分子量。 对简单化合物来说,分子量为分子中各原子量总和。 羟值 官能度分子量1000 1.56??= 3366 50 1000 31.56=??= 分子量

如二乙醇胺,其结构式如下: CH 2CH 2OH HN < CH 2CH 2OH 分子式中,N 原子量为14,C 原子量为12,O 原子量为16,H 原子量为1,则二乙醇胺分子量为:14+4×12+2×16+11×1=105 5. 异氰酸基百分含量 异氰酸基百分含量通常以NCO%表示,对纯TDI 、MDI 来说,可通过分子式算出。 式中42为NCO 的分子量 对预聚体及各种改性TDI 、MDI ,则是通过化学分析方法测得。 有时异氰酸基含量也用胺当量表示,胺当量的定义为:在生成相应的脲时,1克分子胺消耗的异氰酸酯的克数。 胺当量和异氰酸酯百分含量的关系是: 6. 当量值和当量数 当量值是指每一个化合物分子中单位官能度所相应的分子量。 如聚氧化丙烯甘油醚的数均分子量为3000,则其当量值 在聚醚或聚酯产品规格中,羟值是厂方提供的指标,因此,以羟值的数据直接计算当量值比较方便。 %48174 2 42%=?=NCO TDI 的%6.33250 2 42%=?= NCO MDI 的% 4200NCO = 胺当量官能度 数均分子量当量值= 10003 3000 == 聚醚三元醇当量值羟值 当量值56100=

162种危险化学品安全技术说明书

化学品安全技术说明书(MSDS)

1,1,1-三氯乙烷化学品安全技术说明书 第一部分:化学品名称 化学品中文名称:1,1,1-三氯乙烷 化学品英文名称:1,1,1-trichloroethane 中文名称2:甲基氯仿 英文名称2:methyl chloroform 技术说明书编码:612 CAS No.:71-55-6 分子式:C2H3Cl3 分子量:133.42 第二部分:成分/组成信息 有害物成分含量CAS No. 1,1,1-三氯乙烷≥95.0% 71-55-6 第三部分:危险性概述 危险性类别: 侵入途径: 健康危害:急性中毒主要损害中枢神经系统。轻者表现为头痛、眩晕、步态蹒跚、共济失调、嗜睡等;重者可出现抽搐,甚至昏迷。可引起心律不齐。对皮肤有轻度脱脂和刺激作用。 环境危害: 燃爆危险:本品可燃,有毒,具刺激性。- 第四部分:急救措施 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。食入:饮足量温水,催吐。就医。 第五部分:消防措施 危险特性:遇明火、高热能燃烧,并产生剧毒的光气和氯化氢烟雾。与碱金属和碱土金属能发生强烈反应。与活性金属粉末(如镁、铝等)能发生反应, 引起分解。 有害燃烧产物:一氧化碳、二氧化碳、氯化氢、光气。 灭火方法:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。喷水保持火场容器冷却,直至灭火结束。灭火剂:雾状水、泡沫、二氧化碳、砂土。 第六部分:泄漏应急处理 应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。从上风处进入现场。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 第七部分:操作处置与储存 操作注意事项:严加密闭,提供充分的局部排风和全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴直接式防毒面具(半面罩),戴安全防护眼镜,穿防毒物渗透工作服,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、碱类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。保持容器密封。应与氧化剂、碱类、食用化学品分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有泄漏应急处理设备和合适的收容材料。 第八部分:接触控制/个体防护 职业接触限值 中国MAC(mg/m3):未制定标准 前苏联MAC(mg/m3):20 TLVTN:OSHA 350ppm,1910mg/m3; ACGIH 350ppm,1910mg/m3 TLVWN:ACGIH 450ppm,2460mg/m3 监测方法:气相色谱法 工程控制:严加密闭,提供充分的局部排风和全面通风。 呼吸系统防护:空气中浓度超标时,应该佩戴直接式防毒面具(半面罩)。紧急事态抢救或撤离时,佩戴空气呼吸器。眼睛防护:戴安全防护眼镜。 身体防护:穿防毒物渗透工作服。 手防护:戴防化学品手套。

甲苯二异氰酸酯化学品安全技术说明书参考文本

甲苯二异氰酸酯化学品安全技术说明书参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

甲苯二异氰酸酯化学品安全技术说明书 参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 第一部分:化学品名称 1.1 化学品中文名称:甲苯二异氰酸酯 1.2 化学品英文名称:Toluene diisocyanate 1.3 中文名称2: 1.4 分子式:C9H6N2O2 1.5 分子量:174.16 第二部分:成分/组成信息 2.1 主要成分:2,4-甲苯二异氰酸酯 2.2 含量: 2.3 CAS No. 584-84-9 第三部分:危险性概述

3.1 危险性类别: 3.2 侵入途径:主要经呼吸道吸入,不能经无损皮肤吸收。 3.3 健康危害:对皮肤、眼睛和呼吸道有强烈刺激作用,对甲苯二异氰酸酯过敏者,可能引起气喘、伴气喘、呼吸困难和咳嗽。 第四部分:急救措施 4.1 皮肤接触:液体与皮肤接触可引起皮炎。 4.2 眼睛接触:液体与眼睛接触可引起严重刺激作用,如果不加以治疗,可能导致永久性损伤。 4.3 吸入:吸入高浓度的甲苯二异氰酸酯蒸气会引起支气管炎、支气管肺炎和肺水肿;长期接触甲苯二异氰酸酯可引起慢性支气管炎。 4.4 食入: 第五部分:消防措施

异氰酸酯化学品安全技术说明书

化学品安全技术说明书 产品名称: 异氰酸酯按照GB/T 16483、GB/T 17519 编制 修订日期: 最初编制日期: 版本: 第1部分化学品及企业标识 化学品中文名: 异氰酸酯 化学品英文名: isocyanic acid 企业名称: 企业地址: 传真: 联系电话: 企业应急电话: 产品推荐及限制用途: For industry use only.。 第2部分危险性概述 紧急情况概述: 吞咽有害。皮肤接触有害。造成严重皮肤灼伤和眼损伤。吸入有害。吸入可能导致过敏或哮喘病症状或呼吸困难。可引起呼吸道刺激。 GHS危险性类别: 急性经口毒性类别 4 急性经皮肤毒性类别 4 皮肤腐蚀/ 刺激类别1B 急性吸入毒性类别 4 呼吸道致敏物类别 1 特异性靶器官毒性一次接触类别 3 标签要素: 象形图: 警示词: 危险 危险性说明: H302 吞咽有害。 H312 皮肤接触有害。 H314 造成严重皮肤灼伤和眼损伤。 H332 吸入有害。

H334 吸入可能导致过敏或哮喘病症状或呼吸困难。 H335 可引起呼吸道刺激。 防范说明: ?预防措施: ?P264 作业后彻底清洗。 ?P270 使用本产品时不要进食、饮水或吸烟。 ?P280 戴防护手套/穿防护服/戴防护眼罩/戴防护面具。 ?P260 不要吸入粉尘/烟/气体/烟雾/蒸气/喷雾。 ?P261 避免吸入粉尘/烟/气体/烟雾/蒸气/喷雾。 ?P271 只能在室外或通风良好处使用。 ?P284 [在通风不足的情况下] 戴呼吸防护装置 ?事故响应: ?P301+P312 如误吞咽:如感觉不适,呼叫解毒中心/ 医生 ?P330 漱口。 ?P302+P352 如皮肤沾染:用水充分清洗。 ?P312 如感觉不适,呼叫解毒中心/医生 ?P321 具体治疗 ( 见本标签上的…… )。 ?P362+P364 脱掉沾染的衣服,清洗后方可重新使用 ?P301+P330+P331 如误吞咽:漱口。不要诱导呕吐。 ?P303+P361+P353 如皮肤(或头发)沾染:立即脱掉所有沾染的衣服。用水清洗皮肤/淋浴。 ?P363 沾染的衣服清洗后方可重新使用。 ?P304+P340 如误吸入:将人转移到空气新鲜处,保持呼吸舒适体位。 ?P310 立即呼叫解毒中心/医生 ?P305+P351+P338 如进入眼睛:用水小心冲洗几分钟。如戴隐形眼镜并可方便地取出,取出隐形眼镜。继续冲洗。 ?P342+P311 如有呼吸系统病症:呼叫解毒中心/医生/…… ?安全储存: ?P405 存放处须加锁。 ?P403+P233 存放在通风良好的地方。保持容器密闭。 ?废弃处置: ?P501 按当地法规处置内装物/容器。 物理和化学危险: 无资料 健康危害: 吞咽有害。皮肤接触有害。造成严重皮肤灼伤和眼损伤。吸入有害。吸入可能导致过敏或哮喘病症状或呼吸困难。可引起呼吸道刺激。 环境危害: 无资料 第3部分成分/组成信息

氰酸酯树脂增韧改性

氰酸酯树脂增韧改性 【摘要】氰酸酯树脂(CE)的优良力学性能、电性能、热性能等,使其在尖端领域具有极大的潜力。但是由于其结晶度高,交联密度大,韧性差,限制了氰酸酯树脂的发展。本文从增韧改性CE角度出发,介绍了近几年增韧改性氰酸酯树脂的的方法及研究成果。包括(热固性树脂改性CE、热塑性树脂改性CE、橡胶弹性体改性CE和纳米无机材料改性CE等),并着重阐述了其增韧机理。 【关键词】氰酸酯树脂,增韧改性,增韧机理 1,引言 氰酸酯(CE)是20世纪60年代由一些学者从立构受阻酚中分离得到的一类有机单体,之后人们陆续开发出一系列人工合成的芳基CE和烷基CE,并对此领域进行了大量研究。氰酸酯是指分子中含有两个或两个以上氰酸酯官能团(-OCN)的酚类衍生物,结构通式为NCO-R-OCN,其中R为直链烷基或含有苯环的烷基,由于结构中的氧原子、氮原子的电负性接近,其结构是共振结构:-OCN,碳、氮原子之间的Π键的键能较低,易断裂,故-OCN具有较高的活性。氰酸酯树脂常温下多为固态或半固态,可溶于常见的溶剂(如丙酮、氯仿、四氢呋喃、丁酮等)且与增强纤维(如玻璃纤维、kevlar纤维、碳纤维、石英纤维以及晶须等)有良好的浸润性、表现出良好的粘结性、涂覆性以及流变学特性。氰酸酯树脂收缩率较低,吸湿率小于1.5 %,电学性能好,介电损耗角正切值低,仅为0.002~0.008,介电常数为2.8~3.2,具有良好的阻燃性。此外氰酸酯树脂还具有优良的力学性能,其弯曲强度和弯曲模量高于双官能团环氧树脂,弯曲模量介于双马来酰亚胺和多官能团环氧树脂之间,玻璃化转变变温度(Tg)较高,为240~280 ℃,并且改性后可以在170 ℃左右进行固化。所以氰酸酯树脂经常用于尖端领域,如航空航天、印刷电路板、雷达罩、医学器材、工程结构、粘胶剂、导弹材料等。 尽管氰酸酯树脂具有很多优异的性能,但是由于氰酸酯树脂网络结构中含有大量的芳香环,结晶度高,交联密度大,所以其固化物脆性较大,在作为结构材料(尤其是主受力结构材料)使用时,其韧性(包括相应复合材料的损伤容限)常常不能满足要求,限制了氰酸酯树脂的推广,急需增韧改性。本文介绍了近年来CE树脂增韧改性的研究进展,热塑性树脂[如聚苯醚(PES)、聚碳酸酯(PC)等]改性,热固性树脂[如环氧树脂(EP)、双马来酰亚胺树脂(BMI)、有机硅树脂等]改性,橡胶弹性体改性和纳米无机材料改性等。 2,CE树脂增韧改性方法 2.1,热塑性树脂增韧改性 热塑性树脂对氰酸酯树脂的玻璃化温度影响较小,可以增韧,增韧后树脂耐热性降低。由于热塑性树脂的分子量较大,粘度较大,加工工艺性变差。通常大多采用热熔共混法进行改性,树脂由均相变成相分离,形成半互穿聚合物网络。随着热塑性树脂含量的增加,固化体系出现了相分离(CE为连续相,热塑性树脂为连续相)、共连续相及相反转(热塑性树脂为连续相,CE为分散相),热塑性树脂由于在CE中富集或形成连续相从而有效地阻止了微裂纹的产生和扩展,故能有效地改善CE体系的韧性。通常选择玻璃化温度高、力学性能优良的非晶态的热塑性树脂与氰酸酯树脂进行共混,从而达到增韧的目的。 Lin Chao[1]等人利用带有羟基和氨基基团的聚苯醚环氧微球对双酚A氰酸酯树脂进行增韧。发现当聚苯醚环氧微球的含量达到5 wt%的时候,BADCy/MS的冲击强度和弯曲强

相关文档
最新文档