直升机的空气动力学原理

空气动力学基础及飞行原理

M8空气动力学基础及飞行原理 1、绝对温度的零度是 A、-273℉ B、-273K C、-273℃ D、32℉ 2、空气的组成为 A、78%氮,20%氢和2%其他气体 B、90%氧,6%氮和4%其他气体 C、78%氮,21%氧和1%其他气体 D、21%氮,78%氧和1%其他气体 3、流体的粘性系数与温度之间的关系是? A、液体的粘性系数随温度的升高而增大。 B、气体的粘性系数随温度的升高而增大。 C、液体的粘性系数与温度无关。 D、气体的粘性系数随温度的升高而降低。 4、空气的物理性质主要包括A、空气的粘性 B、空气的压缩性 C、空气的粘性和压缩性 D、空气的可朔性 5、下列不是影响空气粘性的因素是 A、空气的流动位置 B、气流的流速 C、空气的粘性系数 D、与空气的接触面积 6、气体的压力

、密度<ρ>、温度三者之间的变化关系是 A、ρ=PRT B、T=PRρ C、P=Rρ/ T D、P=RρT 7、在大气层内,大气密度 A、在同温层内随高度增加保持不变。 B、随高度增加而增加。 C、随高度增加而减小。 D、随高度增加可能增加,也可能减小。 8、在大气层内,大气压强 A、随高度增加而增加。 B、随高度增加而减小。 C、在同温层内随高度增加保持

不变。 D、随高度增加可能增加,也可能减小。 9、空气的密度 A、与压力成正比。 B、与压力成反比。 C、与压力无关。 D、与温度成正比。 10、影响空气粘性力的主要因素: A、空气清洁度 B、速度剃度 C、空气温度 D、相对湿度 11、对于空气密度如下说法正确的是 A、空气密度正比于压力和绝对温度 B、空气密度正比于压力,反比于绝对温度 C、空气密度反比于压力,正比于绝对温度 D、空气密度反比于压力和绝对温度 12、对于音速.如下说法正确的是: A、只要空气密度大,音速就大 B、只要空气压力大,音速就大 C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 13、假设其他条件不变,空气湿度大 A、空气密度大,起飞滑跑距离长 B、空气密度小,起飞滑跑距离长 C、空气密度大,起飞滑跑距离短 D、空气密度小,起飞滑跑距离短 14、一定体积的容器中,空气压力 A、与空气密度和空气温度乘积成正比 B、与空气密度和空气温度乘积成反比 C、与空气密度和空气绝对湿度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 15、一定体积的容器中.空气压力 A、与空气密度和摄氏温度乘积成正比

飞机空气动力学复习

实用标准文案 飞机空气动力学复习 一.概念: 1.升力、翼型分离、压差阻力、压力中心和失速P116-120 2. 机翼展向压强变化P135-136 3.马蹄涡系、下洗与诱导阻力P137-140 4. 声速、马赫数、马赫线、马赫角和马赫锥P187-200 5. 亚声速、超声速与截面积关系P197-201 6. 亚声速小扰动理论P273-282 7. 跨声速翼型气动特性284-294 8. 超声速翼型P314-321 9. 超声速机翼P330-335,338-340 10.高超声速流P363-371 二.论述: 1.低速翼型气流分离的原因?论述后缘分离对压强分布的影响,并绘图示意。 P129-130 2.低速翼型的前缘气泡?论述产生前缘气泡的原因,并绘图示意前缘气泡对压强分布的影响。P130-131 3.分别论述后掠翼的前、后缘是亚声速流还是超声速流?并画出各机翼中某翼型处的压强系数与翼弦的分布示意图。P330-331,338 4.分别论述高超声速有粘性干扰的边界层和激波,并画出流动简图和压强分布图。P363-364 5. 论述超音速机翼锥形流法的含义,描述机翼前后缘均为超声速后掠机翼锥形流理论的处理方法,画出用锥形流法处理的区域示意图。P334 三.计算 1.已知某机翼平板二维机翼翼型参数,求二维机翼翼型升力及升力系数。 2.已知单翼椭圆机翼飞机飞行状态,求诱导阻力及根部剖面处的环量。 3.机翼为椭圆机翼低速平飞,已知重量、速度和翼展、展弦比,求飞机的升力系数﹑阻力系数和阻力。 4.一架飞机以某马赫数高速飞行,求飞机的飞行速度和皮托管测出的总压。 5.翼型以某马赫数和迎角运动,已知翼型参数, 用线化理论算翼型的升力系数和波阻系数。 精彩文档

飞机的空气动力学.

低速、亚音速飞机的空气动力 环境c091 王亚飞 飞机上的空气动力学和现在的流体力学有着相同的特点,研究空气动力学可以间接的学习流体力学,而空气动学上的最突出的应用就是飞机,所以现在着重讲述下飞机的空气学特点, 翼型的升力和阻力 飞机之所以能在空中飞行,最基本的事实是,有一股力量克服了它的重量把它托举在空中。而这种力量主要是靠飞机的机翼与空气的相对运动产生的。 迎角的概念飞行速度(飞机质心相对于未受飞机流场影响的空气的速度)在飞机参考平面上的投影与某一固定基准线(一般取机翼翼根弦线或机身轴线)之间的夹角,称为迎角(图2.3.5(a)),用α表示。当飞行速度沿机体坐标系(见2.4.1节)竖轴的分量为正时,迎角为正。 如果按照相对气流(未受飞机流场影响的气流)方向,则相对气流速度(未受飞机流场影响的空气相对于飞机质心的运动速度)在飞机参考平面上的投影与某一固定基准线之间的夹角就是迎角,且当相对速度沿机体坐标系竖轴的分量为负时,迎角为正(图2.3.5(b))。

图2.3.5 迎角图2.3.6小迎角α下翼剖面上的空气动力 1—压力中心 2—前缘 3—后缘 4—翼弦 升力和阻力的产生根据我们已经讨论过的运动的转换原理,可以认为在空中飞行的飞机是不动的,而空气以同样的速度流过飞机。如图2.3.6所示,当气流流过翼型时,由于翼型的上表面凸些,这里的流线变密,流管变细,相反翼型的下表面平坦些,这里的流线变化不大(与远前方流线相比)。根据连续性定理和伯努利定理可知,在翼型的上表面,由于流管变细,即流管截面积减小,气流速度增大,故压强减小;而翼型的下表面,由于流管变化不大使压强基本不变。这样,翼型上下表面产生了压强差,形成了总空气动力R,R的方向向后向上。根据它们实际所起的作用,可把R分成两个分力:一个与气流速度v垂直,起支托飞机重量的作用,就是升力L;另一个与流速v平行,起阻碍飞机前进的作用,就是阻力D。此时产生的阻力除了摩擦阻力外,还有一部分是由于翼型前后压强不等引起的,称之为压差阻力。总空气动力R与翼弦的交点叫做压力中心(见图 2.3.6)。好像整个空气动力都集中在这一点上,作用在翼型上。 根据翼型上下表面各处的压强,可以绘制出翼型的压强分布图(压力分布图),如图 2.3.7(a)所示。图中自表面向外指的箭头,代表吸力;指向表面的箭头,代表压力。箭头都与表面垂直,其长短表示负压(与吸力对应)或正压(与压力对应)的大小。由图可看出,上表面的吸力占升力的大部分。靠近前缘处稀薄度最大,即这里的吸力最大。

南航直升机空气动力学习题集17页

直升机空气动力学习题集 绪论 (0-1)试计算Z-8直升机的旋翼实度σ、桨尖速度ΩR和海平面标准大气条件下的桨尖M数。 (0-2)Z-9直升机的旋翼桨叶为线性负扭转。试画出以桨距Ф7=11。作悬停飞行的桨叶上r=(0.29~1.0)一段的剖面安装角()rφ→分布。 (0-3)关于反扭矩的是非题: a) 尾桨拉力用以平衡发动机的反扭矩,所以尾桨的位置要比发动机高。() b) 尾桨拉力用以平衡旋翼的反扭矩,所以尾桨位置距旋翼轴很远。() c)双旋翼直升机的两付旋翼总是彼此反向旋转的。() d) 尾桨没有反扭矩。() (0-4) 关于旋翼参数的是非题: a)旋翼的半径就是桨叶的长度。() b) 测量桨叶的根部宽度及尖部宽度,就可以得到桨叶的根梢比。() c) 测量桨叶的根部及尖部之间的倾斜角之差,就得到桨叶的扭度。()

d) 台式电风扇实度接近1。 ( ) (0-5) 假定Y-2直升机在某飞行状态下,旋翼拉力T=1200公斤,试计算 其C T 值。(海平面标准大气) 第一章 (1-1) 论证在垂直上升状态旋翼的滑流形状是图(a )而不是图(b ) (1-2) 假定Y-2直升机在垂直飞行状态发动机的功率有84%传递给旋翼, 且悬停时悬疑的 型阻功率为诱导功率的一半,桨端损失系数к=0.92; a) 求在海平面标准大气条件下悬停时桨盘外的诱导速度; b) 求在海平面标准大气条件下悬停时的诱导功率、相对效率和直升机的单位马力载 荷; c) 若以V 0=(1/3)v 10的速度作垂直爬升,此时桨盘处的诱导速度多大?诱导功率多大? 若型阻功率与悬停时相同,旋翼消耗的总功率多大? (1-3) 上题中,若飞行重量增大20%,除增大桨距外保持其他条件及型阻 功率不变,那么其悬停诱导功率及相对效率将是多大? (1-4) 既然 a) 是否可以认为,只要把旋翼直径做得很大,就可以用很小功率的 发动机做成重型直升机? b) 直升机的发展趋势为什么是p 趋向增大? (1-5) 试根据0η的定义导出0η与桨盘载荷p 的关系。假定型阻功率与p

空气动力学基本概念

第一章 一、大气的物理参数 1、大气的(7个)物理参数的概念 2、理想流体的概念 3、流体粘性随温度变化的规律 4、大气密度随高度变化规律 5、大气压力随高度变化规律 6、影响音速大小的主要因素 二、大气的构造 1、大气的构造(根据热状态的特征) 2、对流层的位置和特点 3、平流层的位置和特点 三、国际标准大气(ISA) 1、国际标准大气(ISA)的概念和基本内容 四、气象对飞行活动的影响 1、阵风分类对飞机飞行的影响(垂直阵风和水平阵风*) 2、什么是稳定风场? 3、低空风切变的概念和对飞行的影响 五、大气状况对飞机机体腐蚀的影响 1、大气湿度对机体有什么影响? 2、临界相对湿度值的概念 3、大气的温度和温差对机体的影响 第二章 1、相对运动原理 2、连续性假设 3、流场、定常流和非定常流 4、流线、流线谱、流管 5、体积流量、质量流量的概念和计算公式。 二、流体流动的基本规律 1、连续方程的含义和几种表达式(注意适用条件) 2、连续方程的结论:对于低速、不可压缩的定常流动,流管变细,流线变密,流速变快;流管变粗,流线变疏,流速变慢。 3、伯努利方程的含义和表达式 4、动压、静压和总压 5、伯努利方程的结论:对于不可压缩的定常流动,流速小的地方,压力大;而流速大的地方压力小。(这里的压力是指静压) 重点伯努利方程的适用条件:1)定常流动。2)研究的是在同一条流线上,或同一条流管上的不同截面。3)流动的空气与外界没有能量交换,即空气是绝热的。4)空气没有粘性,不可压缩——理想流体。 三、机体几何外形和参数 1、什么是机翼翼型; 2、翼型的主要几何参数; 3、翼型的几个基本特征参数 4、表示机翼平面形状的参数(6个) 5、机翼相对机身的角度(3个) 6、表示机身几何形状的参数四、作用在飞机上的空气动力 1、什么是空气动力? 2、升力和阻力的概念 3、应用连续方程和伯努利方程解释机翼产生升力的原理 4、迎角的概念 5、低速飞行中飞机上的废阻力的种类、产生的原因和减少的方法; 6、诱导阻力的概念和产生的原因和减少的方法; 7、附面层的概念、分类和比较;附面层分离的原因 8、低速飞行时,不同速度下两类阻力的比较 9、升力与阻力的计算和影响因素 10、大气密度减小对飞行的影响 11、升力系数和升力系数曲线(会画出升力系数曲线、掌握升力随迎角的变化关系,零升力迎角和失速迎角的概念) 12、阻力系数和阻力系数曲线 13、掌握升阻比的概念 14、改变迎角引起的变化(升力、阻力、机翼的压力中心、失速等) 15、飞机大迎角失速和大迎角失速时的速度 16、机翼的压力中心和焦点概念和区别 六、高速飞行的一些特点 1、什么是空气的可压缩性? 2、飞行马赫数的含义 3、流速、空气密度、流管截面积之间关系 4、对于“超音速流通过流管扩张来加速”的理解 5、小扰动在空气中的传播及其传播速度 6、什么是激波?激波的分类 7、气流通过激波后参数的变化 8、什么是波阻 9、什么是膨胀波?气流通过膨胀波后参数的变化 10、临界马赫数和临界速度的概念 11、激波失速和大迎角失速的区别 12、激波分离 13、亚音速、跨音速和超音速飞行的划分* 14、采用后掠机翼的优缺点比较 第三章 一、飞机重心、机体坐标和飞机在空中运动的自由度 1、机体坐标系的建立 2、飞机在空中运动的6个自由度 二、飞行时作用在飞机上的外载荷及其平衡方程 外载荷组成平衡力系的2个条件*: ①、外载荷的合力等于零(外载荷在三个坐标轴投影之和分别等于零)∑x = 0 ∑Y = 0 ∑Z = 0 ②、外载荷的合力矩等于零(外载荷对三个坐标轴力矩之和分别等于零) ∑Mx=0 ∑My= 0 ∑Mz= 0 1、什么是定常飞行和非定常飞行? 2、定常飞行时,作用在飞机上的载荷平衡条件和平衡方程组

飞行空气动力学

第三章 - 飞行空气动力学 飞行空气动力学介绍作用于飞机上的力的相互关系和由相关力产生的效应。作用于飞机的力 至少在某些方面,飞行中飞行员做的多好取决于计划和对动力使用的协调以及为改变推力,阻力,升力和重力的飞行控制能力。飞行员必须控制的是这些力之间的平衡。对这些力和控制他们的方法的理解越好,飞行员执行时的技能就更好。 下面定义和平直飞行(未加速的飞行)相关的力。 推力是由发动机或者螺旋桨产生的向前力量。它和阻力相反。作为一个通用规则,纵轴上的力是成对作用的。然而在后面的解释中也不总是这样的情况。 阻力是向后的阻力,由机翼和机身以及其他突出的部分对气流的破坏而产生。阻力和推力相反,和气流相对机身的方向并行。 重力由机身自己的负荷,乘客,燃油,以及货物或者行礼组成。由于地球引力导致重量向下压飞机。和升力相反,它垂直向下地作用于飞机的重心位置。 升力和向下的重力相反,它由作用于机翼的气流动力学效果产生。它垂直向上的作用于机翼的升力中心。 在稳定的飞行中,这些相反作用的力的总和等于零。在稳定直飞中没有不平衡的力(牛顿第三定律)。无论水平飞行还是爬升或者下降这都是对的。也不等于说四个力总是相等的。这仅仅是说成对的反作用力大小相等,因此各自抵消对方的效果。这点经常被忽视,而导致四个力之间的关系经常被错误的解释或阐明。例如,考虑下一页的图3-1。在上一幅图中的推力,阻力,升力和重力四个力矢量大小相等。象下一幅图显示的通常解释说明(不保证推力和阻力就不等于重力和升

力)推力等于阻力,升力等于重力。必须理解这个基本正确的表述,否则可能误解。一定要明白在直线的,水平的,非加速飞行状态中,相反作用的升力和重力是相等的,但是它们也大于相反作用的推力和阻力。简而言之,非加速的飞行状态下是推力和阻力大小相等,而不是说推力和阻力的大小和升力重力相等,基本上重力比推力更大。必须强调的是,这是在稳定飞行中的力平衡关系。总结如下: ?向上力的总和等于向下力的总和 ?向前力的总和等于向后力的总和 对旧的“推力等于阻力,升力等于重力”公式的提炼考虑了这样的事实,在爬升中,推力的一部分方向向上,表现为升力,重力的一部分方向向后,表现为阻力。在滑翔中,重力矢量的一部分方向向前,因此表现为推力。换句话说,在飞机航迹不水平的任何时刻,升力,重力,推力和阻力每一个都会分解为两个分力。如图3-2

空气动力学基础及飞行原理笔试题

空气动力学基础及飞行原理笔试题 1绝对温度的零度是: C A -273℉ B -273K C -273℃ D 32℉ 2 空气的组成为 C A 78%氮,20%氢和2%其他气体 B 90%氧,6%氮和4%其他气体 C78%氮,21%氧和1%其他气体 D 21%氮,78%氧和1%其他气体 3 流体的粘性系数与温度之间的关系是 B A液体的粘性系数随温度的升高而增大。 B气体的粘性系数随温度的升高而增大。 C液体的粘性系数与温度无关。 D气体的粘性系数随温度的升高而降低。 4 在大气层内,大气密度: C A在同温层内随高度增加保持不变。 B随高度增加而增加。 C随高度增加而减小。 D随高度增加可能增加,也可能减小。 5 在大气层内,大气压强: B

A随高度增加而增加。 B随高度增加而减小。 C在同温层内随高度增加保持不变。 C随高度增加可能增加,也可能减小。 6 增出影响空气粘性力的主要因素 B C A空气清洁度 B速度梯度 C空气温度 D相对湿度 7 对于空气密度如下说法正确的是 B A空气密度正比于压力和绝对温度 B空气密度正比于压力,反比于绝对温度C空气密度反比于压力,正比于绝对温度 D空气密度反比于压力和绝对温度 8 “对于音速.如下说法正确的是” C A只要空气密度大,音速就大” B“只要空气压力大,音速就大“ C”只要空气温度高.音速就大” D“只要空气密度小.音速就大” 9 假设其他条件不变,空气湿度大: B A空气密度大,起飞滑跑距离长B空气密度小,起飞滑跑距离长 C空气密度大,起飞滑跑距离短 D空气密度小,起飞滑跑距离短 10一定体积的容器中。空气压力 D A与空气密度和空气温度乘积成正比 B与空气密度和空气温度乘积成反比

空气动力学原理.

空气动力学原理 空气动力学在科学的范畴里是一门艰深的度量科学,一辆汽车在行使时,会对相对静止的空气造成不可避免的冲击,空气会因此向四周流动,而蹿入车底的气流便会被暂时困于车底的各个机械部件之中,空气会被行使中的汽车拉动,所以当一辆汽车飞驰而过之后,地上的纸张和树叶会被卷起。此外,车底的气流会对车头和引擎舱内产生一股浮升力,削弱车轮对地面的下压力,影响汽车的操控表现。 另外,汽车的燃料在燃烧推动机械运转时已经消耗了一大部分动力,而当汽车高速行使时,一部分动力也会被用做克服空气的阻力。所以,空气动力学对于汽车设计的意义不仅仅在于改善汽车的操控性,同时也是降低油耗的一个窍门。 对付浮升力的方法 对付浮升力的方法,其一可以在车底使用扰流板。不过,今天已经很少有量产型汽车使用这项装置了,其主要原因是因为研发和制造的费用实在太过高昂。在近期的量产车中只有FERRARI 360M 、LOTUS ESPRIT 、NISSAN SKYLINE GT-R还使用这样的装置。 另一个主流的做法是在车头下方加装一个坚固而比车头略长的阻流器。它可以将气流引导至引擎盖上,或者穿越水箱格栅和流过车身。至于车尾部分,其课题主要是如何令气流顺畅的流过车身,车尾的气流也要尽量保持整齐。 如果在汽车行驶时,流过车体的气流可以紧贴在车体轮廓之上,我们称之为A TTECHED 或者LAMINAR(即所谓的流线型)。而水滴的形状就是现今我们所知的最为流线的形状了。不过并非汽车非要设计成水滴的形状才能达到最好的LAMINAR,其实传统的汽车形态也可以达到很好的LAMIAR的效果。常用的方法就是将后挡风玻璃的倾斜角控制在25度之内。FERRARI 360M和丰田的SUPRA就是有此特点的双门轿跑车。 其实仔细观察这类轿跑车的侧面,就不难发现从车头至车尾的线条会朝着车顶向上呈弧形,而车底则十分的平坦,其实这个形状类似机翼截面的形状。当气流流过这个机翼形状的物体时,从车体上方流过的气体一定较从车体下方流过的快,如此一来便会产生一股浮升力。随着速度的升高,下压力的损失会逐渐加大。虽然车体上下方的压力差有可能只有一点点,但是由于车体上下的面积较大,微小的压力差便会造成明显的抓着力分别。一般而言,车尾更容易受到浮升力的影响,而车头部分也会因此造成操控稳定性的问题。 传统的房车、旅行车和掀背车这类后挡风玻璃较垂直的汽车,浮升力对它们的影响会较为轻微,因为气流经过垂直的后窗后就已经散落,形成所谓的乱流效果,浮升力因此下降,但是这些乱流也正是气流拉力的来源。有些研究指出像GOLF之类的两厢式掀背车,如车顶和尾窗的夹角在30度之内,它所造成的气流拉力会较超过30度的设计更低。所以有些人就会想当然的认为只要将后窗的和车顶的夹角控制在28至32度之间,就能同时兼顾浮升力和空气拉力的问题。其实问题并没有那么简单,在这个角度范围里气流既不能紧贴在车体上也不足以造成乱流,如此一来将很难预计空气的流动情况。因为汽车在行驶时并非在一个水平面上行驶,随着悬挂系统的上下运动,其实汽车的离地距离是一个变量,而气流在流过车体上下所造成的压力差也会随时改变,同时在车辆过弯时车尾左右的气流动态也会对车尾的

空气动力学基础及飞行原理题库

《空气动力学基础及飞行原理》 1、绝对温度的零度是(C) A、-273℉ B、-273K C、-273℃ D、32℉ 2、空气的组成为(C) A、78%氮,20%氢和2%其他气体 B、90%氧,6%氮和4%其他气体 C、78%氮,21%氧和1%其他气体 D、21%氮,78%氧和1%其他气体 3、流体的粘性系数与温度之间的关系是?(B) A、液体的粘性系数随温度的升高而增大。 B、气体的粘性系数随温度的升高而增大。 C、液体的粘性系数与温度无关。 D、气体的粘性系数随温度的升高而降低。 4、空气的物理性质主要包括(C) A、空气的粘性 B、空气的压缩性 C、空气的粘性和压缩性 D、空气的可朔性 5、下列不是影响空气粘性的因素是(A) A、空气的流动位置 B、气流的流速 C、空气的粘性系数 D、与空气的接触面积 6、气体的压力

、密度<ρ>、温度三者之间的变化关系是(D) A、ρ=PRT B、T=PRρ C、P=Rρ/ T D、P=RρT 7、在大气层内,大气密度(C) A、在同温层内随高度增加保持不变。 B、随高度增加而增加。 C、随高度增加而减小。 D、随高度增加可能增加,也可能减小。 8、在大气层内,大气压强(B) A、随高度增加而增加。 B、随高度增加而减小。 C、在同温层内随高度增加保持不变。 D、随高度增加可能增加,也可能减小。 9、空气的密度(A) A、与压力成正比 B、与压力成反比 C、与压力无关。 D、与温度成正比。 10、影响空气粘性力的主要因素: (BC) A、空气清洁度B速度剃度C空气温度D、相对湿度 11、对于空气密度如下说法正确的是(B) A、空气密度正比于压力和绝对温度 B、空气密度正比于压力,反比于绝对温度 C、空气密度反比于压力,正比于绝对温度 D、空气密度反比于压力和绝对温度 12、对于音速.如下说法正确的是: (C) A、只要空气密度大,音速就大 B、只要空气压力大,音速就大 C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 13、假设其他条件不变,空气湿度大(B) A、空气密度大,起飞滑跑距离长 B、空气密度小,起飞滑跑距离长 C、空气密度大,起飞滑跑距离短 D、空气密度小,起飞滑跑距离短 14、一定体积的容器中,空气压力(D) A、与空气密度和空气温度乘积成正比 B、与空气密度和空气温度乘积成反比 C、与空气密度和空气绝对湿度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 15、一定体积的容器中.空气压力(D) A、与空气密度和摄氏温度乘积成正比 B、与空气密度和华氏温度乘积成反比 C、与空气密度和空气摄氏温度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 16、对于露点温度如下说法正确的是: (BC) A、温度升高,露点温度也升高 B、相对湿度达到100%时的温度是露点温度 C、露点温度下降,绝对湿度下降 D、露点温度下降,绝对湿度升高

空气动力学基础知识及飞行基础原理

-/ M8空气动力学基础及飞行原理 1、绝对温度的零度是 A、-273℉ B、-273K C、-273℃ D、32℉ 2、空气的组成为 A、78%氮,20%氢和2%其他气体 B、90%氧,6%氮和4%其他气体 C、78%氮,21%氧和1%其他气体 D、21%氮,78%氧和1%其他气体 3、流体的粘性系数与温度之间的关系是? A、液体的粘性系数随温度的升高而增大。 B、气体的粘性系数随温度的升高而增大。 C、液体的粘性系数与温度无关。 D、气体的粘性系数随温度的升高而降低。 4、空气的物理性质主要包括 A、空气的粘性 B、空气的压缩性 C、空气的粘性和压缩性 D、空气的可朔性 5、下列不是影响空气粘性的因素是 A、空气的流动位置 B、气流的流速 C、空气的粘性系数 D、与空气的接触面积 6、气体的压力

、密度<ρ>、温度三者之间的变化关系是 A、ρ=PRT B、T=PRρ C、P=Rρ/ T D、P=RρT 7、在大气层内,大气密度 A、在同温层内随高度增加保持不变。 B、随高度增加而增加。 C、随高度增加而减小。 D、随高度增加可能增加,也可能减小。 8、在大气层内,大气压强 A、随高度增加而增加。 B、随高度增加而减小。 C、在同温层内随高度增加保持不变。

-/ D、随高度增加可能增加,也可能减小。 9、空气的密度 A、与压力成正比。 B、与压力成反比。 C、与压力无关。 D、与温度成正比。 10、影响空气粘性力的主要因素: A、空气清洁度 B、速度剃度 C、空气温度 D、相对湿度 11、对于空气密度如下说法正确的是 A、空气密度正比于压力和绝对温度 B、空气密度正比于压力,反比于绝对温度 C、空气密度反比于压力,正比于绝对温度 D、空气密度反比于压力和绝对温度 12、对于音速.如下说法正确的是: A、只要空气密度大,音速就大 B、只要空气压力大,音速就大 C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 13、假设其他条件不变,空气湿度大 A、空气密度大,起飞滑跑距离长 B、空气密度小,起飞滑跑距离长 C、空气密度大,起飞滑跑距离短 D、空气密度小,起飞滑跑距离短 14、一定体积的容器中,空气压力 A、与空气密度和空气温度乘积成正比 B、与空气密度和空气温度乘积成反比 C、与空气密度和空气绝对湿度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 15、一定体积的容器中.空气压力 A、与空气密度和摄氏温度乘积成正比 B、与空气密度和华氏温度乘积成反比 C、与空气密度和空气摄氏温度

空气动力学原理(经典)

空气动力学原理(经典)
空气动力学原理 空气动力学在科学的范畴里是一门艰深的度量科学, 一辆汽车在行使时, 会 对相 对静止的空气造成不可避免的冲击, 空气会因此向四周流动, 而蹿入车底的 气流便会 被暂时困于车底的各个机械部件之中, 空气会被行使中的汽车拉动, 所 以当一辆汽车 飞驰而过之后, 地上的纸张和树叶会被卷起。 此外, 车底的气流会 对车头和引擎舱 内产生一股 浮升力 , 削弱车轮对地面的下压力, 影响汽车的操控 表现。b5E2RGbCAP 另外, 汽车的燃料在燃烧推动机械运转时已经消耗了一大部分动力, 而当汽 车高 速行使时, 一部分动力也会被用做克服空气的阻力。 所以, 空气动力学对于 汽车设 计的意义不仅仅在于改善汽车的 操控性 ,同时也是降低油耗的一个窍门。 对付浮升 力的方法 p1EanqFDPw 对付浮升力的方法,其一可以在车底使用扰流板。不过,今天已经很少有 量产型汽 车使用这项装置了,其主要原因是因为研发和制造的费用实在太过高 昂。在近期的量 产车中只有 FERRARI 360M 、 LOTUS ESPRIT 、 NISSAN SKYLINE GT -R 还使用这样的 装置。DXDiTa9E3d 另一个主流的做法是在车头下方加装一个坚固而比车头略长的阻流器。 它可 以 将气流引导至引擎盖上, 或者穿越水箱格栅和流过车身。 至于车尾部分, 其课 题主 要是如何令气流顺畅的流过车身,车尾的气流也要尽量保持整齐。RTCrpUDGiT 如果在汽车行驶时, 流过车体的气流可以紧贴在车体轮廓之上, 我们称之为 ATTECHED 或者 LAMINAR (即所谓的流线型) 。 而水滴的形状就是现今我们所知的 最 为流线的形状了。不过并非汽车非要设计成水滴的形状才能达到最好的 LAMINAR , 其
1/9

直升机空气动力学现状和发展趋势

直升机空气动力学现状 二级学院:航空维修工程学院 班级:航修六班 学号:14504604 姓名:李达伦 日期:2015年6月30日

直升机空气动力学现状 (航修六班14504604 李达伦) 摘要:直升机空气动力学是直升机技术研究及型号研制的基础性学科和先进学 科,本文概述了国外的直升机气动理论与方法研究、基于气动理论和方法的应用基础研究、直升机气动试验技术的研究现状。 关键词:空气动力学;直升机 Abstract:Aerodynamics of helicopter is a helicopter technological research and model development of basic disciplines and advanced subject. This paper summarizes the foreign helicopters gas dynamic theory and method of research, based on the aerodynamic theory and methods of applied basic research, helicopter aerodynamic test technology research status. Key word:Air dynamics; helicopter 1 前言 飞行器的设计和研制必须以其空气动力学为主要依据,这是飞行器研制区别 于其它武器平台的典型特征。直升机以旋翼作为主要的升力面、推力面和操纵面, 这种独特的构型和旋翼驱动方式,更使其气动特征具有复杂的非定常特征,其气 动分析和设计技术固定翼飞行器更具挑战性。 直升机气动研究是指认识直升机与空气之间作用规律、解释直升机飞行原 理、获取提升直升机飞行能力和效率的新知识、新原理、新方法的研究活动,其 主要任务是获得直升机的空气动力学特性[1]。由于直升机气动特征性直接决定了 型号飞行性能、振动特性、噪声水平,且是结构设计、寿命评估等的直接依据, 因此直升机气动研究是直升机技术研究的重要方面,更是型号研制的基础。尤其 是要实现舒适、安全、便利、快捷的直升机型号研制目标,直升机空气动力学将 体现其核心推动作用。 2 内容和范围 直升机空气动力学专业发展涵盖的内容和范围主要有直升机气动理论与方 法的研究、基于气动原理的应用基础研究以及气动特性试验研究三大内容。 直升机气动理论与方法的研究重点关注旋翼与周围空气相互作用现象及机 理的分析模型和方法,通过对气动理论和方法的研究,实现对直升机及其流场的 深入了解,以准确地计算其空气动力学特性。 气动应用研究是指基于气动理论和方法,以直升机研制为目标所展开的应用 基础研究,涵盖气动特性、气动弹性、气动噪声、结冰模拟、流动控制等应用领

空气动力学

基于空气动力学的车身设计方法 14车辆卓越雷方龙1408032214 现如今工业技术急速进步,为汽车工业发展创造了良好的契机,汽车变得越来越普及、越来越高速,由此车身空气动力学曲线问题得到诸多研究人员的热点关注。 众所周知,车速越快阻力越大,空气阻力与汽车速度的平方成正比。如果空气阻力占汽车行驶阻力的比率很大,会增加汽车燃油消耗量或严重影响汽车的动力性能。据测试,一辆以100km/h速度行驶的汽车,发动机输出功率的80%将被用来克服空气阻力,减少空气阻力,就能有效地改善汽车的行驶经济性。如图1为空气流动对汽车的各方面影响。 图1 自卡尔·本次在1886年发明生产出世界上第一辆汽车起,汽车已有了百年的发展历史。从汽车造型角度而言,自最初的马车型汽车(无空气动力学阶段),到现如今的复合型汽车(空气动力学高度化阶段),车身空气动力学曲线发展收获了显著的成效[1]。车身空气动力学一方面重要影响着汽车的各式各样关键性能,好比动力性能、安全性能、环保性能以及经济性能等,另一方面也重要影响着汽车的外观转变及审美发展潮流。随着社会经济发展,人们生活水平日益改善,人们对于出行必备交通工具汽车的性能要求愈来愈高,汽车生产商对于车辆的气动特征也越来越关注,气动性能的好坏以转变成汽车行业竞争的关键因素。 汽车在行驶中由于空气阻力的作用,围绕着汽车重心同时产生纵向,侧向和垂直等三个方向的空气动力量,对高速行驶的汽车都会产生不同的影响,其中纵向空气力量是最大的空气阻力,大约占整体空气阻力的80%以上。

一、在研究汽车空气动力学的过程中的三种方法。 (1)、理论研究方法理论研究方法通过抓住所分析问题的主要影响因素,抽象出合理的简化理论模型,并根据总结出来的相关物理定律和有关介质性质的试验公式来建立描述介质运动规律的积分或微分方程。然后利用各种数学工具及相应的初始、边界条件解出方程组,通过对解分析来揭示各种物理量的变化规律,包括将它与实验或观察资料对照,确定解的准确度和适用范围。 (2)、数值计算研究方法由于数学发展水平的局限,理论研究只能建立较为简单的近似模型,无法完全满足研究更复杂更符合实际的气流的要求。于是近年来出现了依托快速电子计算机进行有效数值计算的方法CFD,其中包括有限元法、有限差分法等,它属于汽车计算机辅助空气动力学CAA的设计范畴,并已成为与理论分析和实验并列或具有同等重要性的研究方法。其优点是能够用来预测或解决一些理论及实验无法处理的复杂流动问题,取代部分实验环节,省时省工。但它要求事前对问题的物理特性有足够的理解,提炼出较精确的数学方程及相应的初始、边界条件等。但这些都离不开试验和理论方法的支持,并且数值方法通常无法直接反映同类问题中有普遍指导意义的结论或规律。 (3)、试验研究方法试验研究方法在空气动力学研究中占有重要地位,如风洞试验法、道路试验法。它使人们能在与所研究问题相同或相近条件下进行观测,提供建立运动规律及理论模型的依据,检验理论或计算结果的准确性、可靠性和适用范围,其作用是不可替代的。但试验方法受限于试验手段、设备和经费等物质条件,甚至有些问题尚无法在实验室中进行研究。 理论、数值计算和试验三种方法相互促进,彼此影响,取长补短从而推动汽车空气动力学的不断发展。 二、轿车外形设计的两种方法 (1)、局部最优化方法。基本思路是在满足功能、工艺学、人机工程学、安全法规以及美学造型等方面的要求下设计出汽车车身造型,然后再进行空气设计程序。此方法的优点是:操作简单,在流线型较差的车上有较好的效果。通过对原始模型仿真,从结果中得出某细节修改的模型,再重新进行仿真分析。像这样循环反复,最终达到自己预期的目标。这种方法在现实设计中运用广泛。 (2)、整体最优化方法。整体最优化是基于空气动力学原理,在汽车造型设计初期获得极佳的气动特性的理想外形,接着再根据功能结构需求,调整集合的局部外形,使其满足人机工程学、国家安全法规等各个必要因素的汽车[1]。所以,对于这种汽车的空气动力学设

纸飞机的空气动力学

纸飞机的空气动力学 作者:Ken Blac…文章来源:https://www.360docs.net/doc/c87709924.html,点击数:5666 更新时间:2007-2-4 4:41:01 如果图片太小,你可以在图片上面滚动鼠标滑轮来放大图片观察,也可以在图片上单击右键选择〔图片另存为〕保存图片到你的电脑上面再进行查看。 1.介绍 这里打算介绍关于纸飞机的空气动力学知识。如果你想全面了解为什么飞机能飞行,为什么有时坠毁,可以参阅我的《世界记录纸飞机》和《孩童纸飞机》中的任何一本书。本来打算在这里也用一个章节来写一些这方面的知识,但限于篇幅,不能写了。希望这些内容不会过于专业性,其中一些细节可能比较复杂,但大多数原则是很简单明了的。我的目标是高中生能理解大部分内容。我希望能在不久的将来在我的网站上放一个全面的空气动力学介绍 了解纸飞机和真正的飞机飞行的基本原理很重要。它们同样产生升力和拖力,并且同样会因此而稳定或不稳定。但纸飞机不但外形看上去和真飞机不同,它的空气动力原理也和真飞机有不同之处。这些不同点虽然不明显,但确实影响纸飞机的飞行。 2.为什么纸飞机很真飞机外形不同大多数真飞机有机翼、尾翼和机身(来承载飞行员和乘客)。大多数纸飞机只是将纸折出一对翅膀和一个手可以握住、投掷的部分。有以下几点理由来说明这种不同:

2.1 折纸时间 造成纸飞机和真飞机外形不同的主要原因是折纸飞机的人总想又快又简单地折出一个纸飞机。加一个机尾或其他部分总需要将纸折更多次,有时侯还可能需要剪刀、胶带或胶水。最简单的纸飞机就是一个飞行的翅膀。 2.2不需要尾翼真飞机的水平尾翼有一个升降系统,飞行员可以通过旋转该系统使飞机抬头而缓慢飞行,或低头加速飞行。纸飞机通过将翅膀后端边缘的纸折起而达到上升缓慢飞行或下降加速飞行的目的。 有一些真飞机没有尾翼也能成功飞行。Northrop XB-35 and B-2、贺顿兄弟的滑翔机都是很稳定,很好的飞行器。许多人都以为飞机尾翼是必要的稳定器,但上面提到的飞机及成百万的纸飞机都证明没有尾翼飞机也能平稳。

空气动力学部分知识要点

空气动力学及飞行原理课程 空气动力学部分知识要点 一、流体属性与静动力学基础 1、流体与固体在力学特性上最本质的区别在于:二者承受剪应力 和产生剪切变形能力上的不同。 2、静止流体在剪应力作用下(不论所加剪切应力τ多么小,只要 不等于零)将产生持续不断的变形运动(流动),换句话说,静 止流体不能承受剪切应力,将这种特性称为流体的易流性。3、流体受压时其体积发生改变的性质称为流体的压缩性,而抵抗 压缩变形的能力和特性称为弹性。 4、当马赫数小于0.3时,气体的压缩性影响可以忽略不计。 5、流层间阻碍流体相对错动(变形)趋势的能力称为流体的粘性, 相对错动流层间的一对摩擦力即粘性剪切力。 6、流体的剪切变形是指流体质点之间出现相对运动(例如流体层 间的相对运动)流体的粘性是指流体抵抗剪切变形或质点之间 的相对运动的能力。流体的粘性力是抵抗流体质点之间相对运 动(例如流体层间的相对运动)的剪应力或摩擦力。在静止状 态下流体不能承受剪力;但是在运动状态下,流体可以承受剪 力,剪切力大小与流体变形速度梯度有关,而且与流体种类有

关 7、按照作用力的性质和作用方式,可分为彻体力和表面力(面力) 两类。例如重力,惯性力和磁流体具有的电磁力等都属于彻体 力,彻体力也称为体积力或质量力。 8、表面力:相邻流体或物体作用于所研究流体团块外表面,大小 与流体团块表面积成正比的接触力。由于按面积分布,故用接 触应力表示,并可将其分解为法向应力和切向应力: 9、理想和静止流体中的法向应力称为压强,其指向沿着表面的内 法线方向,压强的量纲是[力]/[长度]2 10、标准大气规定在海平面上,大气温度为15℃或T0= 288.15K ,压强p0 = 760 毫米汞柱= 101325牛/米2,密度ρ0 = 1.225千克/米3 11、从基准面到11 km 的高空称为对流层,在对流层内大气密度和 温度随高度有明显变化,温度随高度增加而下降,高度每增加 1km,温度下降6.5 K。从11 km 到21km 的高空大气温度基 本不变,称为同温层或平流层,在同温层内温度保持为216.5 K。 普通飞机主要在对流层和平流层里活动。 12、散度、旋度、有旋流、无旋流。 13、描述流体运动的方程。低速不可压缩理想流体:连续方程+动量 方程(欧拉方程);低速不可压缩粘性流体:连续方程+动量方

纸飞机的空气动力学

纸飞机的空气动力学 1.介绍 这里打算介绍关于纸飞机的空气动力学知识。如果你想全面了解为什么飞机能飞行,为什么 有时坠毁,可以参阅我的《世界记录纸飞机》和《孩童纸飞机》中的任何一本书。本来打算 在这里也用一个章节来写一些这方面的知识,但限于篇幅,不能写了。希望这些内容不会过 于专业性,其中一些细节可能比较复杂,但大多数原则是很简单明了的。我的目标是高中生 能理解大部分内容。我希望能在不久的将来在我的网站上放一个全面的空气动力学介绍 了解纸飞机和真正的飞机飞行的基本原理很重要。它们同样产生升力和拖力,并且同样会因 此而稳定或不稳定。但纸飞机不但外形看上去和真飞机不同,它的空气动力原理也和真飞机 有不同之处。这些不同点虽然不明显,但确实影响纸飞机的飞行。 2.为什么纸飞机很真飞机外形不同大多数真飞机有机翼、尾翼和机身(来承载飞行员和乘 客)。大多数纸飞机只是将纸折出一对翅膀和一个手可以握住、投掷的部分。有以下几点理 由来说明这种不同:

2.1 折纸时间 造成纸飞机和真飞机外形不同的主要原因是折纸飞机的人总想又快又简单地折出一个纸飞 机。加一个机尾或其他部分总需要将纸折更多次,有时侯还可能需要剪刀、胶带或胶水。最 简单的纸飞机就是一个飞行的翅膀。 2.2不需要尾翼真飞机的水平尾翼有一个升降系统,飞行员可以通过旋转该系统使飞机抬头 而缓慢飞行,或低头加速飞行。纸飞机通过将翅膀后端边缘的纸折起而达到上升缓慢飞行或 下降加速飞行的目的。

有一些真飞机没有尾翼也能成功飞行。Northrop XB-35 and B-2、贺顿兄弟的滑翔机都是很稳定,很好的飞行器。许多人都以为飞机尾翼是必要的稳定器,但上面提到的飞机及成百万的纸飞机都证明没有尾翼 飞机也能平稳。 飞机通过尾翼向前后不同的方向倾斜来保持飞机的稳定性。飞机只有在重心点上时才能保持平衡,而这 个重心点会因承载的人员和货物的多少,甚至燃料的多少而前后移动。如果飞机的重心移到飞机的中点 之后,飞机会不平稳,如果重心移到中点之前,又会过于平稳,需要更多的升力。升降系统安装在尾翼 比在机翼上更有效。所以有尾翼的飞机比没有尾翼的飞机更好控制重心。纸飞机的重心不移动,所以不 需要尾翼。

汽车空气动力学学习,绝对有用

空气动力学日常应用知识 空气动力学在科学的范畴里是一门艰深的度量科学,一辆汽车在行使时,会对相对静止的空气造成不可避免的冲击,空气会因此向四周流动,而蹿入车底的气流便会被暂时困于车底的各个机械部件之中,空气会被行使中的汽车拉动,所以当一辆汽车飞驰而过之后,地上的纸张和树叶会被卷起。此外,车底的气流会对车头和引擎舱内产生一股浮升力,削弱车轮对地面的下压力,影响汽车的操控表现。 另外,汽车的燃料在燃烧推动机械运转时已经消耗了一大部分动力,而当汽车高速行使时,一部分动力也会被用做克服空气的阻力。所以,空气动力学对于汽车设计的意义不仅仅在于改善汽车的操控性,同时也是降低油耗的一个窍门。 对付浮升力的方法 对付浮升力的方法,其一可以在车底使用扰流板。不过,今天已经很少有量产型汽车使用这项装置了,其主要原因是因为研发和制造的费用实在太过高昂。在近期的量产车中只有FERRARI 360M 、LOTUS ESPRIT 、NISSAN SKYLINE GT -R还使用这样的装置。 另一个主流的做法是在车头下方加装一个坚固而比车头略长的阻流器。它可以将气流引导至引擎盖上,或者穿越水箱格栅和流过车身。至于车尾部分,其课题主要是如何令气流顺畅的流过车身,车尾的气流也要尽量保持整齐。 如果在汽车行驶时,流过车体的气流可以紧贴在车体轮廓之上,我们称之为ATTECHED或者LAMINAR(即所谓的流线型)。而水滴的形状就是现今我们所知的最为流线的形状了。不过并非汽车非要设计成水滴的形状才能达到最好的LAMINAR,其实传统的汽车形态也可以达到很好的LAMIAR的效果。常用的方法就是将后挡风玻璃的倾斜角控制在25度之内。FERRARI 360M和丰田的SUPRA就是有此特点的双门轿跑车。 其实仔细观察这类轿跑车的侧面,就不难发现从车头至车尾的线条会朝着车顶向上呈弧形,而车底则十分的平坦,其实这个形状类似机翼截面的形状。当气流流过这个机翼形状的物体时,从车体上方流过的气体一定较从车体下方流过的快,如此一来便会产生一股浮升力。随着速度的升高,下压力的损失会逐渐加大。

相关文档
最新文档