热变形温度测试方法

热变形温度测试方法
热变形温度测试方法

负载热变形温度的测试方法

资料简介负载热变形温度的测试方法

1. 试样准备

试样为一矩形样条.

模塑材料:长120mm,宽 10 mm,高 9.8~15 mm;

板材:长120mm,宽 3~13 mm,高9.8~15 mm。

每组至少二个试样。

当板材原始厚度大于13 mm时,应在其一面机械加工至符合要求。

当采用压塑的方法制备试样时,模塑压力方向应垂直于试样的高这一侧面,模塑条件对测定结果有较大影响,应按有关材料标准的要求或与有关方面商定。

试样表面应平整光滑,无气泡、无锯切痕迹、凹痕或飞边等缺陷。

试样预处理可按产品标准规定,无规定时可直接进行测定。

2.试验标准

2.1升温速率12±1℃/6min。

2.2负荷力的计算

在本型号的设备中,只要输入了试样的尺寸,负荷力会自动给出.

由于试样尺寸可在一定范围内变化,因此,为保证在试样形成某一表面弯曲应力,应根据精确测量(精确至0.05mm以内)所得的试样尺寸,由下式计算出负荷力的大小:

负荷力 F=2σbh2/3l

式中: F-负荷力,N;

σ-试样最大弯曲正应力(1.81N/mm2或0.45N/mm2);

b-试样的宽度,mm;

h-试样的高度,mm;

l-两搁条中心间距离,100mm;

然后再求出重力负荷F所对应的砝码质量M:

M=1000 F/g

式中: M-砝码质量, g(克);

g-重力加速度,9.81m/s2

得出的砝码质量,由砝码、负载杆组件及位移传感器对负载杆的作用力组成。实际使用的负荷力与计算值相差应在±2.5%以内,当计算值小于能施加负荷力的最小值时,应考虑使用大的弯曲正应力来计算。2.3负载热变形温度记录的标准

当位移量达到下表中的相对变形量时(相对变形量与试样高度有关),此时的试样所处的温度即为负载热变形温度:

表试样高度同标准变形量的关系

试样高度 mm 标准变形 mm 试样高度 mm 标准变形 mm

9.8~9.9 0.33 12.4~12.7 0.26

10.0~10.3 0.32 12.8~13.2 0.25

10.4~10.6 0.31 13.3~13.7 0.24

10.7~10.9 0.30 13.8~14.1 0.23

11.0~11.4 0.29 14.2~14.6 0.22

11.5~11.9 0.28 14.7~15.0 0.21

12.0~12.3 0.27

在本型号的设备中,将由软件自动设置.

3.样品的放置

3.1取出测试单元,搁置在浴槽面板上;

3.2提起负载杆,把试样均衡地放在搁条上(见图二),放下负载杆,使变形压头位于试样中心;

3.3将测试单元浸入油槽,加上选定的负荷(砝码)

3.4将温度传感器和水银温度计各顺斜孔插入(水银温度计仅供校对使用,可以不用);

3.5调节位移传感器的上下位置,使传感器检测行程位于总行程的中间位置。

4.位移传感器的调整

位移传感器的调整比较简单,一般,位移传感器选用的量程为3~5mm,只要调节位移传感器的上下位置,使行程大约处于量程的中间即可。

5.参数设置

从电脑界面上的菜单选项中,点击测试仪,出现下拉菜单,点击参数设定,出现以下界面:

参数设定×

仪器设定单元1 单元2 单元3

升温速率[摄氏度/小时]:〇 50 〇120

上限温度[摄氏度]: ×××.×

参与算术平均值计算:□单元1 □单元2 □单元3

在升温速率中,确定升温速率。

在上限温度栏,输入上限温度(保证系统安全工作)。当温度上升至上限温度时,系统将停止加热。注意:在温控器中,也有上限温度的设置,其上限温度应大于此参数设置的上限温度,以形成上限温度的双重保护又不影响测试(见"?温度控制器的操作"一节)。

选择测试单元。如选择测试单元2,点击在上界面仪器设定后面的单元2,在选中该单元进行测试前的方框里打“√”,同时,出现“测试类型”菜单,点击负荷热变形,进入负载热变形参数设置:

负载热变形参数设置

样品编号××××──设置值

样品宽度b2[毫米] ××.××──设置值

样品高度h2[毫米] ××.××──设置值

支点间距l2[毫米] 100.0 ──固定值

最大弯曲正应力σ2

[牛顿/平方毫米] ××.××──选标准值也可另行设置

负荷力F2[牛顿] ×××.××──计算值,非设置

砝码质量M2[克] ××××.×──计算值,非设置

标准变形量δo2[毫米] ×.××──计算值,非设置

如果同时测试二个或三个相同的样品,测试条件是一致的,那未,只需在设置了一个单元的参数后,在参与算术平均值计算后面,点击需测试的单元,再点击确定即可。测试结束,测试结果将对上述的测试值作平均值处理。

测试单元放妥,参数设置完毕,即可进入测试阶段。

6.测试

测试架各就各位,传感器调整结束,参数设置完毕,就可以随时开始测试了。

测试过程与“维卡软化点测试方法”中的“测试”部分是一致的:

点击测试仪菜单中的“启动测试”,出现“现在就进行测试确认吗?”中点击确定,系统进入测试程序。搅拌器运转,5min后,位移传感器输出的位移量自动清零,屏幕上坐标更新,将此时的温

度与位移作为新的坐标原点。

在预先设置并启动温控器的情况下,温度按预定的速率上升,位移量在经过一段相当的静止期后,开始发生变化。当位移量达到预置的变形量时,该测试样品对应的坐标上的光点将醒目的显示出来,并且在光点一侧出现温度与位移的数值(即该点的坐标值)。

在测试过程中,系统将自动参照原空白试验数据,扣除测试架自身的变形影响。

当预设的待测单元的样品检测全部结束,在接口控制箱中,将有提示音告知操作者,同时,加热器停止工作。

上传人账号上海思尔达科学仪器有限公司

上传时间2008-5-20 14:02:33

热变形温度测试方法的总结(20130106)

一、外壳测试标准 参考《GB 20641-2006低压成套开关设备和控制设备空壳体的一般要求(GBT)》 9.8绝缘材料性能 9.8.1 热稳定性验证 根据GB/T 2423.2-2001所给出的方法进行试验。 对于没有技术意义,只用于装饰目的的部件不进行此项试验。 用下列试验进行检查: 将一个如同正常使用时一样安装的壳体放在加热箱中进行试验,加热箱带有混合大气和大气压力而且自然通风,如果加热箱的容积与壳体的尺寸不匹配,试验可在一个有代表性的壳体样品上进行。 1、加热箱内部的温度应为(70+2)℃。 2、壳体或样品应在加热箱放置7d(168h)。 3、建议使用电加热箱。 4、在加热箱的壁上留一个自然通风孔。 5、然后,将壳体或样品从加热箱移出,置于环境温度下,相对湿度在45%-55%之间,至少存放4d(96h)。 目测壳体或样品应没有可见的裂缝或无新裂缝,其材料不应变成粘性或油脂性,用下列方法进行。 判断: 在食指上裹一片干粗布,以5N力按压样品。 注:5N力可用下面方法获得:将样品放在天平的一个秤盘上,天平的另一称盘加载的质量等于样品的质量+500g,在食指上裹一片粗糙的干布按在样品上使天平平衡。 样品和壳体材料上应没有布的痕迹或样品和布不相粘连。

二、实验室塑料热稳定性测试方法 1、维卡热变形温度 《GB/T 1633-2000 热塑性塑料维卡软化温度的测定》 当匀速升温时,测定在第1章中给出的某一种负荷条件下标准压针刺人热塑性塑料试样表面1m m深时的温度。 2、马丁耐热温度 《GB 1035-70塑料耐热性(马丁)试验方法》 本方法是试样在等速升温环境中,在一定静弯曲力矩作用下,测定达到一定弯曲变形时的温度,以示耐热性。本方法不适用于耐热性低于60℃的塑料。 3、热变形温度 《GB/T 1634-2004 负荷变形温度的测定》 塑料试样放在跨距为100mm的支座上,将其放在一种合适的液体传热介质中,并在两支座的中点处,对其施加特定的静弯曲负荷,形成三点式简支梁式静弯曲,在等速升温条件下,在负载下试样弯曲变形达到规定值时的温度,为热变形温度。 三、分析:哪种实验室方法更贴近标准要求 马丁耐热,不用介质,不用针刺。

实验七塑料热变形温度的测定

实验七聚合物耐热性的测定 、实验目的 1.测定塑料热变形温度 2.掌握塑料热变形温度测定仪的使用方法 二、实验原理 负荷热变形温度是衡量塑料耐热性的主要指标之一,现在世界各国的大部分塑料产品的标准中,都有负荷变形温度这一指标作为产品质量控制,但它不是最高使用温度,最高使用温度应根据制品的受力情况及使用要求等因素来确定。 原理塑料试样放在跨距为100mm勺支座上,将其放在一种合适的液体传热介质中, 并在两支座的中点处,对其施加特定的静弯曲负荷,形成三点式简支梁式静弯曲,在等速升温条件下,在负载下试样弯曲变形达到规定值时的温度,为热变形温度。 三、实验设备 热变形温度试验仪RW--3 型 四、实验试样 试样是截面为矩形的长方体。长:L,宽:b,高:h,单位为mm 1)模塑试样:长X宽X高=120mrH lOmmX l5mm 2)板材试样:长X 宽 X 高=120mrX (3-13)mmX l5mm 3)特殊情况:长 X 宽 X 高=120mX (3-13)mmX (9.8-15)mm 试样表面平整、光滑、无气泡、无锯齿切割痕迹、凹痕和飞边等缺陷。 本实验长方体试样尺寸为: LX bX h=120mmX l0mmX l5mm 五、实验条件 1.温度:本实验升温速率为 120C /h(12 ±「C /6min).

2.荷重的选择:本实验加载砝码为负载杆+托盘+ A+ B+ C砝码。 3.试样弯曲变形量:本实验为 0. 21nlm(可参考表4— 1)。 4.每组试样为 2 个,同时测定。 六、实验步骤 1.升温,并开动搅拌器慢速搅拌。起始温度应低于该材料软化点温度 50C。 2.试样的安装:将试样水平放在未加负荷的负载杆压头下,与支架底座接触的试样表面应平整。 3.插入温度计,使温度计水银球与试样相距在3mm以内,但不能接触试样。 4.将支架小心浸入浴糟内,试样位于液面下 35mm以下,但不能接触浴糟底(此时要停止搅拌,待确定放好了支架以后,再进行搅拌。 5.加砝码A+C+D调节变形测量装置,百分表轻轻接触到砝码盘下,记下百分表的初始读数或调为 0。 6.按下升温速度旋钮正 2,以 120C /h(12 C/6min) 升温速度均匀升温,慢慢旋动搅拌 器开关,让搅拌速度加快,以液体不产生剧烈振动为准。 7.当百分表显示弯曲变形量达到 0.21mm时,应迅速记录此时的温度。此温度则为该材料的热变形温度。 七、实验数据处理 1.试样的热变形温度以两个试样的算术平均值表示。如果同组试样测定结果之差大于 2C时,则实验无效,必须重做。 2.试样高度与试样变形量关系,如表 7-1

塑胶热变形温度

常用塑料的耐热性能(未经改性的) 热变形温度----------维卡软化点------------马丁耐热 HDPE 80-------------------120 -----------------------\ LDPE 50--------------------95-------------------------\ EV A \-------------------- 64-------------------------\ PP 102-------------------150------------------------\ PS 85--------------------105----------------------- PMMA 100-------------------120------------------------\ PTFE 260-------------------110------------------------\ ABS 86--------------------160-----------------------75 PSF 185-------------------180----------------------150 POM 98--------------------141----------------------55 PC 134--------------------153----------------------112 PA6 58--------------------180-----------------------48 PA66 60--------------------217-----------------------50 PA1010 55---------------------159-----------------------44 PET 70-----------------------\-------------------------80 PBT 66---------------------177-----------------------49 PPS 240---------------------\-------------------------102 PPO 172---------------------\-------------------------110 PI 360-------------------300-------------------------\ LCP 315--------------------\---------------------------\ ABS塑料 特点: 1、综合性能较好,冲击强度较高,化学稳定性,电性能良好. 2、与372有机玻璃的熔接性良好,制成双色塑件,且可表面镀铬,喷漆处理. 3、有高抗冲、高耐热、阻燃、增强、透明等级别。 4、流动性比HIPS差一点,比PMMA、PC等好,柔韧性好。 ABS工程塑料具有优良的综合性能,有极好的冲击强度、尺寸稳定性好、电性能、耐磨性、抗化学药品性、染色性,成型加工和机械加工较好。ABS树脂耐水、无机盐、碱和酸类,不溶于大部分醇类和烃类溶剂,而容易溶于醛、酮、酯和某些氯代烃中。 ABS工程塑料的缺点:热变形温度较低,可燃,耐候性较差。 用途:适于制作一般机械零件,减磨耐磨零件,传动零件和电讯零件. ABS+PC, 俗称ABS加聚碳。是国内少数几种可能透用的合料之一,不能自燃,外火燃烧时,表面有象聚碳燃烧一样的小颗粒析出,黑色低于ABS,常见于电器件、机械零配件等

常见的塑料检测标准和方法

常见的塑料检测标准和方法 检测产品/类别检测项目/参数 检测标准(方法)名称及编号(含年号)序 号 名称 塑料1 光源暴露试验方 法通则 塑料实验室光源暴露试验方法第1部分:通则ISO 4892-1:1999 2 氙弧灯光老化 汽车外饰材料的氙弧灯加速暴露试验SAE J2527:2004 汽车内饰材料的氙弧灯加速暴露试验SAE J2412:2004 塑料实验室光源暴露试验方法第2部分:氙弧灯ISO 4892-2:2006 /Amd 1:2009 室内用塑料氙弧光暴露试验方法ASTM D4459-06 非金属材料氙弧灯老化的仪器操作方法ASTM G155-05a 塑料暴露试验用有水或无水氙弧型曝光装置的操作ASTM D2565-99(2008) 3 荧光紫外灯老化 塑料实验室光源暴露试验方法第3部分:荧光紫外灯ISO 4892-3:2006 汽车外饰材料UV快速老化测试SAE J2020:2003 塑料紫外光暴露试验方法ASTM D4329-05 非金属材料UV老化的仪器操作方法ASTM G154-06 4 碳弧灯老化 塑料实验室光源暴露试验方法第4部分:开放式碳弧灯 ISO 4892-4:2004/ CORR 1:2005 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯 GB/T16422.4-1996 5 荧光紫外灯老化 机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法荧 光紫外灯GB/T14522-2008 6 热老化 无负荷塑料制品的热老化 ASTM D3045-92(2010) 塑料热老化试验方法GB/T7141-2008 7 湿热老化 塑料暴露于湿热、水溅和盐雾效应的测定ISO4611:2008 塑料暴露于湿热、水喷雾和盐雾中影响的测定GB/T12000-2003 塑料8 拉伸性能塑料拉伸性能的测定第1部分:总则GB/T1040.1-2006

热变形温度测定

热变形温度测定 实验目的 了解高分子材料弯曲负载热变形温度测定的基本原理。 掌握高分子材料弯曲负载热变形温度的测定方法。 实验原理 测定高分子材料试样浸在一种等速升温的合适液体传热介质中,在简支梁式的弯曲负载作用下,试样弯曲变形达到规定值时的温度,即弯曲负载热变形温度。 液体传热介质在试验过程中与试样相容性好,即不造成溶胀、软化、开裂等影响的液体。通常选用硅油比较合适。温度计及形变测定仪应定期进行校正。 热变形温度适用于控制质量和作为鉴定新材料热性能的一个指标,不代表使用温度。 本方法适用于在常温下是硬质的模塑材料和板材。 实验主要原材料及设备 实验原料PS 666D 样条尺寸 长:120mm 宽:10mm 高:15mm 实验仪器 RW-3塑料热变形温度测试仪 由架、负荷压头、硅码、中点形变测定 仪、温度计及可程序升温的保温浴槽组成,其 基本结构如图所示。 实验条件 在试样高度变化时相对应形变量的变化表中查出本实验的相对变形量为0.21mm 应加砝码质量由下式计算: W=2σbh 3l—R—T W:砝码质量,g σ:试样最大弯曲正应力,N b:试样宽度,mm h:试样高度,mm l:两支座中心距离,mm R:负载杆、压头质量,g T:变形测量的附加力,N 计算的砝码质量为2626g 选择A+C+D三个砝码 实验步骤 1.测量试样中心附近的高度h 和宽度b 精确至0 .05mm 。 2.把试样对称地放在试样支座上,高度方向(h =15mm ) 必须垂直放置,拧紧负载杆和压头的固定螺钉,压头对正试样中心。 3.插入温度计,使水银球在试样中心点附近约3mm 以内、但不能触及试样或压头。 4.把装好试样的支架小心放入保温液槽内,试样应在距液面35mm 以下。加上砝码,

中文ASTMD648塑料热变形温度

ASTM D 648-07 塑料侧立式弯曲负荷下变形温度的标准测试方法 1 范围 1.1本试验方法适用于测试在特定的条件下试样发生特定变形时的温度。 1.2 本试验方法适用于测试在常温下刚性或者半刚性的,厚度在3mm[1/8in]或以上的模具成型或者薄片的试样。 注1:薄片厚度少于3mm [0.125in]但大于1mm [0.040in]可以用几片薄片复合试样来测试,但最小厚度为3mm。一种制备复合试样的方式是用砂纸把薄片的面打磨平,用胶水粘合。施加载荷的方向需垂直于每个薄片的边缘。 1.3 在SI的单位的评估值将视为标准。给定值仅提供一些信息。 1.4 本标准无意涉及所有使用过程中的安全问题。本标准是帮助用户建立适当的安全标准和卫生管理办法,并且在规定的期限内使用。 注2:这个测试方法描述为本测试办法的B方法,在技术上,方法Ae和Be分别与ISO 75-1 和ISO 75-2,1993,等价。 2 参考文献 2.1 ASTM标准D 618 测试用塑料调质实施规范。 D 883 塑料相关术语。 D 1898 塑料抽样实施规范。 D 5947 固体塑料试样外形尺寸测试方法。 E1 在液体中的玻璃温度计ASTM说明。 E77 温度计的检查和检验测试方法。 E608/E608M 矿物隔热,金属屏蔽的基体金属热电偶。 E691 为测定试验方法精密度开展的实验室间研究的实施规范。 E1137/E1137M 工业用铂阻尼式温度计。 2.2 ISO标准ISO 75-1 塑料-负荷变形温度的测定-第1部分:通用试验方法。 ISO 75-2 塑料-负荷变形温度的测定-第2部分:塑料和硬橡胶。 2.3 NIST文件NBS特别出版250-22。 3 术语 3.1 通常-本测试方法定义的塑料是跟D 883 中标准一样,除非另外说明。 4 检测方法简介 4.1 将矩形截面的试样按侧立式方式,放在载荷作用在中间的简支梁上,载荷的最大压力为0.455Mpa [66psi] 或1.82Mpa [264psi](注3)。将试样在有载荷的作用下,浸入升温速度为2 士0.2℃/min的传

常用塑料参数

一:聚丙烯 (Polypropylene)是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotaetic polyprolene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯(syndiotatic polypropylene)三种。聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0. 90--"0. 91g/rm,是所有塑料中最轻的品种之 密度:0.91g/cm3 熔点:164~170℃ PP的收缩率相当高,一般为1.0~2.5%。 物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0. 90--"0. 91g/m3,是所有塑料中最轻的品种之一。它对水特别稳定,在水中的吸水率仅为0. 01%,分子量约8万一15万。成型性好,但因收缩率大(为1%~2.5%).厚壁制品易凹陷,对一些尺寸精度较高零件,还难于达到要求,制品表面光泽好,易于着色。 力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能。聚丙烯力学性能的绝对值高于聚乙烯,但在塑料材料中仍属于偏低的品种,其拉伸强度仅可达到30 MPa 或稍高的水平。等规指数较大的聚丙烯具有较高的拉伸强度,但随等规指数的提高,材料的冲击强度有所下降,但下降至某一数值后不再变化。 温度和加载速率对聚丙烯的韧性影响很大。当温度高于玻璃化温度时,冲击破坏呈韧性断裂,低于玻璃化温度呈脆性断裂,且冲击强度值大幅度下降。提高加载速率,可使韧性断裂向脆性断裂转变的温度上升。聚丙烯具有优异的抗弯曲疲劳性,其制品在常温下可弯折106次而不损坏。 但在室温和低温下,由于本身的分子结构规整度高,所以抗冲击强度较差。聚丙烯最突出的性能就是抗弯曲疲劳性,俗称百折胶。 耐热性能:聚丙烯具有良好的耐热性,制品能在100℃以上温度进行消毒灭菌,在不受外力的条件下,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。对于聚丙烯玻璃化温度的报道值有一18qC, 0qC, 5℃等,这也是由于人们采用不同试样,其中所含晶相与无定形相的比例不同,使分子链中无定形部分链长不同所致。聚

玻璃化转变温度、熔融指数、热变形温度

玻璃化转变温度、熔融指数、热变形温度有什麼区别? 对于高分子量聚合物,玻璃化转变温度就是聚合物材料从玻璃态到高弹态的转变温度:对于低分子量聚合物,玻璃化转变温度就是聚合物从玻璃态到粘流态的转变温度。 熔融指数:热塑性塑料在一定温度和压力下,熔体在十分钟内通过标准毛细管的重量值。热变形温度是指对浸在120℃/h的升温速率升温的导热的液体介质中的一定尺寸的矩形树脂试样施以规定负荷(1.81N/mm2或0.45 N/mm2),试样中点的变形量达到与试样高度相对应的规定值时的温度。 从上述定义可知:熔融指数是重量值;玻璃化转变温度/热变形温度是温度值;玻璃化转变温度是相态完全转化所对应温度,热变形温度是相态转化到一定程度所对应温度。 熔融 常温下是固体的物质在达到一定温度后熔化,成为液态,称为熔融状态。 也是液态,只是在常温下不稳定。 分低共熔与共熔 低共熔——指的在相图中的低共熔点处,具体是指几个相降温到开始共熔的点处的共熔, 而共熔——一起熔融的意思. 熔融:原指纤维的着火点、燃烧热、火焰温度和限氧指数等指标,对易燃程度,火势的蔓延与扩大,有决定作用。有的纤维在燃烧的同时,受热熔化,象蜡烛油一样脱离火源。它对燃烧,起到釜底抽薪的缓解作用,但熔融物若与皮肤接触,会造成难以剥离的严重烫伤。 合成纤维存在熔融问题,与纤维素纤维混纺的织物,在测试中可以做到不滴熔融物,但粘搭烫伤皮肤的问题依然存在,经过阻燃整理,或在合成纤维纺丝液中加入阻燃剂,可以使合纤达到阻燃要求,但融点改变不大。 聚对苯二甲酸乙二醇酯polyethylene terephthalate,简称PET。 PET 是乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽。在较宽的温度范围内具有优良的物理机械性能,长期使用温度可达120℃,电绝缘性优良,甚至在高温高频下,其电性能仍较好,但耐电晕性较差,抗蠕变性,耐疲劳性,耐摩擦性、尺寸稳定性都很好。PET历史:于1941年首先由英国J.tt.Whinfield与J.T.Dickon研制成功。PET作为纤维原料已有53年的历史,英国帝国化学公司(1.c.I)于1946年以涤纶(Teleron)纤维投入生产,继而美国杜邦公司(Dupent)于1948年以“代春纶”(Dacron)纤维投入生产。 PET分类及用途:PET主要原料对二甲苯和对苯二甲酸(PTA)大量用作纤维,可分为非工程塑料级和工程塑料级两大类。 PET具有优良的特性(耐热性、耐化学药品性。强韧性、电绝缘性、安全性等),价格便宜,所以广泛用做纤维、薄膜、工程塑料、聚酯瓶等。国际上聚酯类热塑性塑料工业化产品有以下6个方面(已形成工业化的有商品出售)。 (1)液晶聚合物(2)聚对苯二甲酸丁二醇酯(PBT) (3)聚萘二甲酸乙二醇酯(PEN) (4)聚对苯二甲酸乙二醇酯工程级PET (5)聚对苯二甲酸乙二醇酯标准级PET (6)聚对苯二甲酸乙二醇酯回收级PET(包括共混物及100%回收料) 非工程塑料级主要用于纤维、瓶、薄膜、片材、耐烘烤食品容器等。 工程塑料级PET 耐有机溶剂、耐候性好。缺点是结晶速率慢,成型加工困难,模塑温度高,生产周期长,冲击性能差。一般通过增强、填充、共混等方法改进其加工性和物性,以玻璃纤维增强效果明显,提高树脂刚性、耐热性、耐药品性、电气性能和耐候性。采取添加成核剂和结晶促进剂等手段,改进结晶速度慢的弊病。加阻燃剂和防燃滴落剂可改进PET阻燃

塑料硬度检测标准

塑料硬度检测塑料邵氏硬度洛氏硬度巴氏硬度检测:硬度塑料硬度测定第二部分:洛氏硬度GB/T3398.2-2008 热变形温度塑料负荷变形温度的测定第1部分:通用试验方法GB/T1634.1-2004 在挠曲负荷下塑料的挠曲温度的试验方法ASTM D648-07 塑料载荷下挠曲温度的测定第1部分:一般试验方法ISO 75-1:2004 塑料载荷下挠曲温度的测定第2部分:塑料和硬橡胶ISO 75-2:2004 维卡软化温度热塑性塑料维卡软化温度(VST)的测定GB/T1633-2000 塑料维卡(Vicat)软化温度的测试方法ASTM D1525-09 塑料热塑材料维卡软化温度的测定ISO 306:2004 压缩性能塑料压缩性能的测定GB/T1041-2008 塑料压缩性能试验方法ISO 604:2002 硬塑料的压缩特性试验方法ASTM D695-10 撕裂性能塑料直角撕裂性能试验方法QB/T1130-1991 体积电阻率/表面 电阻率固体绝缘材料体积电阻率和表面电阻率试验方法GB/T1410-2006 绝缘材料表面电阻和体积电阻试验方法IEC 60093:1980 绝缘材料直流电阻或电导试验方法ASTM D257-07 大气暴露 塑料大气暴露试验方法GB/T3681-2000 塑料暴露于太阳辐射的方法第一部分:通则ISO877-1:2009 时间—温度极限 塑料长期热暴露后时间—温度极限测定GB/T7142-2002 聚合物长期性能评价简介UL746B-1997 塑料老化评价 塑料在玻璃下日光、自然气候或实验室光源暴露后颜色和性能变化的测定GB/T15596-2009 塑料暴露于玻璃下日光或自然气候或人工光后颜色和性能变化的测定ISO4582:2007 变色评定纺织品色牢度试验评定变色用灰色样卡GB/T250-2008 熔融指数热塑性塑料熔体质量流动速率和熔体体积流动速率的测定GB/T3682-2000 击穿电压绝缘材料电气强度试验方法第一部分:工频下试验GB/T1408.1-2006 热应力开裂电线电缆用黑色聚乙烯塑料GB/T15065-2009附录A 环境应力开裂 聚乙烯环境应力开裂试验方法GB/T1842-2008 聚乙烯环境应力开裂试验方法ASTM D1693-05 垂直与水平燃烧 设备和器具部件用塑料材料易燃性的试验UL 94-1996REV.9:2009 塑料燃烧性能的测定水平法和垂直法GB/T2408-2008

塑料测试方法(中文版)

拉伸强度和拉伸模量 ASTM D 638, ISO R527, DIN 53455, DIN53457 了解材料对负载的响应程度是了解材料性能的基础。通过测试在一定应力下材料的变形程度(应变),设计者可以预测材料在其工作环境下的应用(如图1)。 图1 拉伸应力-应变曲线 A:弹性形变的极限值 B:屈服点 C:最大强度 O-A:屈服区域,发生弹性形变 超过A点:塑性变形 图2:ASTM D 6, 拉伸试样的尺寸 模量:应力/应变 Mpa

屈服应力:开始发生塑性变形的应力 Mpa 断裂应力发生断裂时的应力 Mpa 断裂伸长率材料发生断裂时的应变% 弹性极限开始发生弹性形变的终点 弹性模量发生在塑性变形时的模量 Mpa 测试速度: A速度:1mm/mm 拉伸模量 B速度:5mm/mm 填充材料 的拉伸应力/应变 C速度:50mm/mm 为填充材料的拉伸应力/应变 弯曲强度和弯曲模量 ASTM D 790, ISO 178, DIN 53452 弯曲强度是用来测量材料抵制挠曲变形的能力或者是测试材料的刚性。与拉伸负载不同的是,在测试弯曲时,所有的应力加载在一个方向上。用压头压在试样的中部使其形成一个3点的负载,在标准测试仪上,恒定的压缩速度为2mm/mm. 通过计算机收集的数据,测绘出试样的压缩负荷-变形曲线,来计算压缩模量。在曲线的线性区域至少取5个点的负载和变形。 弯曲模量(应力与应变的比值)是表征材料弯曲性能的重要指标。压缩模量是指在应力-应变的曲线的线性范围内,压缩应力与压缩应变之比。 压缩应力与压缩应变的单位都是Mpa。 图3:弯曲测试示意图 耐磨性能测试

塑料热变形温度测试实验

塑料热变形温度测试实验 一、实验目的 1.掌握塑料热变形温度的测试原理和测试方法; 2.测定热塑性塑料的热变形温度。 二、实验原理 负荷热变形温度是衡量塑料耐热性的主要指标之一,现在世界各国的大部分塑料产品的标准中,都有负荷变形温度这一产品质量控制指标。塑料热变形温度测定的是在规定的载荷大小、施力方式、升温速度下到达规定的变形值的温度,它不是材料的最高使用温度。 1.仪器 图1 负荷变形温度测定典型设备 负荷热变形温度侧定仪由试样支架、负荷压头、砝码、中点形变测定仪、温度计及能恒速升温的加热浴箱组成,其基本结构如图1所示。试样支架两支点的距离即跨度,通常为100±2mm,负荷压头位于支架的中央,支架及负荷压头与试样接触的部位是半径 3.0mm±0.2mm的圆角。加热浴箱中的液体热介质,应选取在试验过程中对试样不造成溶胀、软化、开裂等影响的液体,对于大部分塑料,选用硅油较合适。温度计及形变测定仪应定期进行校正。 2.试样

试样为一矩形样条,可采用两种放置方式:平放式和侧立式。对于平放试验,要求使用尺寸为80mm ×10mm ×4mm 的试样,对侧立试样没有严格的规定。使用80mm ×10mm ×4mm 的ISO 样条具有以下优点:试样的热膨胀对试验结果的影响较小;斜角不会影响试验结果,不会以侧棱为底立住试样;可以更严格地规定模塑参数和试样尺寸。平放方式是实验优选。实验跨度设定为:平放64±1mm ,侧立100±2mm 。 3. 测定 这个试验方法的最大特点是试样尺寸可以在一定范围内变化,因此在侧定之前,先要精确侧量试样的尺寸,再根据试样实际的尺寸计算出负荷力的大小,计算公式为: 2 23bd F L σ= 式1 式中:F ——负荷,N ; σ——试样表面承受的弯曲正应力,MPa ; b ——试样宽度,mm ; d ——实验厚度,mm ; L ——支座间距离(跨度),mm 。 施加的弯曲正应力σ应为下列三者之一:1.80MPa (A 法),0.45MPa (B 法),8.00MPa (C 法)。测量b 和d 时,应精确到0.1mm ;测量L 时,应精确到0.5mm 。根据计算出来的负荷力,调节试样的负荷,实验设备中的负载杆及变形测量装置的附加力都应计入总负荷之中。因此,应加砝码重量W : 12/W F g m m =-- 式2 式中:W ——应加砝码重量,g ; F ——由式1计算所得的负荷力,N ; g ——重力加速度,9.8N/g ; m 1——负载杆、压头和托盘等的质量,g ; m 2——变形测量装置的附加重量,g 。 其后按规定进行升温,当试样中点的变形量达到规定值时,选取的温度即为

实验七塑料热变形温度的测定

精心整理 实验七聚合物耐热性的测定 一、实验目的 1.测定塑料热变形温度 2.掌握塑料热变形温度测定仪的使用方法 二、实验原理 负荷热变形温度是衡量塑料耐热性的主要指标之一,现在世界各国的大部分塑料产品的标准中,都有负荷变形温度这一指标作为产品质量控制,但它不是最高使用温度,最高使用温度应根据制品在负1)2)3)123412整。 3.插入温度计,使温度计水银球与试样相距在3mm 以内,但不能接触试样。 4.将支架小心浸入浴糟内,试样位于液面下35mm 以下,但不能接触浴糟底(此时要停止搅拌,待确定放好了支架以后,再进行搅拌。 5.加砝码A+C+D ,调节变形测量装置,百分表轻轻接触到砝码盘下,记下百分表的初始读数或调为0。 6.按下升温速度旋钮正2,以120℃/h(12℃/6min)升温速度均匀升温,慢慢旋动搅拌器开关,让搅拌速度加快,以液体不产生剧烈振动为准。 7.当百分表显示弯曲变形量达到0.21mm 时,应迅速记录此时的温度。此温度则为该材料的

热变形温度。 七、实验数据处理 1.试样的热变形温度以两个试样的算术平均值表示。如果同组试样测定结果之差大于2℃时,则实验无效,必须重做。 2.试样高度与试样变形量关系,如表7-1 反 对于某 3.实验设备 4.实验试样 5.原始记录及实验结果 6.现象分析、讨论

实验六PVC及PP的热老化试验 一、实验目的 1.掌握塑料热空气老化试验方法的基本要求 2.学会热空气老化试验的一般方法 二、实验原理 塑料(材料)在加工成型、贮存、运输和使用过程中都不可避免地要在空气环境中受到热与氧的作用,致使发生热氧老化,导致其性能降低,以致完全丧失使用价值。热空气曝露试验是用于评定材料耐热老化性能的一种简便的人工模似加速环境试验方法,目的是在较短时间内评定材料对高温的适应性以及材料高温适应性的相互比较。 1 2 3 4 5 6 (1) (2) 1.调节试验箱根据有关标准对试样的要求调节试验温度、均匀性,平均风速及换气率等参数。 2.在老化试验前,需对试样统一编号、按性能测试方法标准中的规定测量尺寸。 3.安置试样将试样挂置于试验箱的网板或试样架上,试样间距不小于l0mm。 4,升温计时老化箱温度逐渐升至试验温度后开始计时。若已知温度突变对试样无有害影响及对试验结果无明显影响者,亦可将热老化箱的温度升至老化试验温度并恒温后,再把已挂好试样的旋转架放入试验箱中,待温度恢复至规定值时开始计时。 5.周期取样按规定或预定的试验周期依次从试验箱中取样、直至试验结束.取样要快。并暂停通风,尽可能减少箱内温度变化。 6.性能检测根据所选定的项目,按有关塑料性能测试方法,检测暴露前、后试样性能的变化。如:拉伸强度,断裂伸长率,冲击强度等性能的变化。

常用塑料注塑工艺参数表:资料

常用塑料注塑工艺参数表:

常用塑料注塑工艺参数(2) 2010-06-16 20:02:13| 分类:个人日记| 标签:|字号大中小订阅 聚甲醛加工参数聚甲醛的成型收缩率聚甲醛的后收缩九、PC注塑工艺特性与工艺参数的设定1、聚集态特性属于无定型塑料,Tg为149~150℃;Tf为215~225℃;成型温度为250~310℃; 2、热稳定性较好,并随分子量的增大而提高。但PC高温下遇水易降解,成型时要求水分含量在0.02%以下。高温下水分对PC特别有害。在成型前,PC树脂必须进行充分干燥(并且应当充分注意防止干燥过的物料再吸湿)。干燥效果的快速检验法,是在注塑机上采用“对空注射”。 3、熔体粘度高,流动性较差,其流动特性接近于牛顿流体,熔体粘度受剪切速率影响较小,而对温度的变化十分敏感,在适宜的成型加工温度范围内调节加工温度,能有效地控制PC的粘度。4、由于粘度高,注射压力较高,一般控制在80~120MPa。对于薄壁长流程、形状复杂、浇口尺寸较小的制品,为使熔体顺利、及时充模,注射压力要适当提高至120~150MPa。保压压力为80~100MPa。 5、成型时,冷却固化快,为延迟物料冷凝,需控制模温为80~120℃。6、PC分子主链中有大量苯环,分子链的刚性大,注塑中易产生较大的内应力,使制品开裂或影响制品的尺寸稳定性;(在100℃以上作长时间热处理,它的刚硬性增加,内应力降低)。PC的典型干燥曲

线台湾奇美典型牌号加工参数:十、PA及玻纤增强PA注塑工艺特性与工艺参数设定 1、常用品种及其熔点:q 品种:尼龙-66;尼龙-610;尼龙-1010;尼龙-1212;尼龙-46尼龙-6;尼龙-7;尼龙-9;尼龙-11;尼龙-12;尼龙-66/6、尼龙-66/610;尼龙-6∕66∕1010;尼龙-66/6/610q 熔点:尼龙n系列:尼龙-6 215~220℃;尼龙-12为178℃;尼龙m,n系列:尼龙-46 295 ℃;尼龙-66 255~265℃;尼龙-610 215~223℃;尼龙-1010 200℃;共缩聚尼龙:由于分子链的规整性较差,结晶性和熔点一般较低,如尼龙-6∕66∕1010的熔点仅为155~175℃,但其有较好的透明性和弹性。2、熔点高,熔化范围窄(约10℃)。考虑到PA熔点高、热稳定性较差,故加工温度不宜太高,一般高于熔点30℃左右即可。3、吸湿性大,且酰胺基易于高温水解,引起分子量严重降低;(须严格干燥至含水量低于0.05%,尤其是回料使用时更应严格干燥,必要时可添加“增粘剂”。)4、熔体粘度低,表观粘度对温度敏感,由于熔体的冷却速率快,要防止塑料堵塞喷孔、流道、浇口等。为阻止熔体逆流,螺杆头应装有止逆环;另外,为防止喷嘴处熔体的“流涎”现象,应选用自锁式喷嘴。5、注射PA时不需高的注射压力,一般选取范围为70~100MPa,通常不超过120MPa。注射速率宜略快些,这样可防止因冷却速率快而造成波纹及充模不足等问题。 6、模具温度一般控制在40~90℃。模具温度对制品的性能影响较大。 7、酰胺基在高温下对氧敏感,容易发生氧化变色(必要时可添加尼龙专用的热稳定剂); 8、高结晶性,成型收缩率大,易产生结晶应力,并且明显随制品的厚度增大而增加;9、成型后制品的缓慢吸湿易引起尺寸精度的较大变化。这点也被利用来进行调湿处理,通常可在沸水或醋酸钾水溶液(醋酸钾与水的比例为1.25∶1,沸点为121℃)中进行。 10、熔体着色所适用的有机颜料品种较少(酰胺基具有还原性,加之成型温度高)。尼龙吸水率尼龙及玻纤增强尼龙成型温度PA46安全加工温度-时间组合图玻璃纤维增强尼龙(GF-PA)工艺特性1、GF-PA中由于含大量玻纤,注塑中存在四大问题:(1)流动性差。(2)收缩率小,且各向异性明显。(3)制品性能易出现波动。(4)制品表面粗糙度数值大。 2、由于流动性差,且加入玻纤后的熔体冷凝硬化快,需要比未加玻纤时提高温度约10-30 ℃;3、应采用较大的注射速率和较高的注射压力; 4、由于大量玻纤引起的高粘度,增强尼龙可用通用喷嘴;5、对机筒的磨损大;6、为使增强尼龙制品有较高的强度,需要注意尽可能地保护玻纤的长度,减少玻纤损伤;(从螺杆、喷嘴、浇口等装备因素到注塑工艺条件)7、玻纤增强料成型加工中最常有缺陷:“浮纤”或称“玻纤外露”;玻纤取向引起的各向异性;熔接痕处强度特低;纤维取向不同厚度处的取向状况皮-芯效应与熔接痕前锋料遇到障碍后分流-合流-熔接玻纤含量与熔接痕强度十一、PMMA注塑工艺特性与工艺参数的设定 PMMA树脂俗称“压克力”,国内著名商品牌号有372#(实为MS)1、PMMA无定形聚合物,Tg为105℃,熔融温度大于160℃,而分解温度高达270℃以上,成型的温度范围较宽;2、PMMA树脂颗粒易吸收水份,而这些水分的存在,在成型过程中由于受热挥发,导致熔体起泡、膨胀、使制品出现银丝、气泡、透明度变差、有糊斑等问题。PMMA在热风循环干燥设备上的干燥,其干燥工艺参数:温度为70~80℃,时间为2~4h;3、 PMMA熔体粘度对温度变化比较敏感。注射温度的改变对熔体流动长度的影响要比注射压力与比注射速率明显些,更比模具温度显著得多。故在成型时改变PMMA的流动性主要是从注射温度着手。但选用高料温时易受其它工艺参数影响而给制品表面带来变色等问题;4、PMMA熔体粘度较大,流动性比较差,因此,需要较大的注射压力,通常宽浇口、易流动的厚壁制品所选取的注射压力为80~100MPa 之间,而熔体流动较为困难的制品所需的压力要大于140MPa,110~140MPa则适用于大多数制品的成型; 5、注塑PMMA制品时,高速注射往往会使制品的浇口周围模糊不清,从而使制品的透光性大为降低,故在一般情况下最好不要采用高速注射,6、由于透明度高是PMMA的特点,任何杂质的存在都会因光折射关系而在制品上暴露无遗,故要求在加工该材料时必须做好环境的清洁工作。7、温范围为40~60℃,最高不得超过80℃台湾奇美典型牌号PMMA加工参数:十二、PBT的注塑工艺特性与工艺参数的设定 1、PBT是结晶型材料,具有明显的熔点,熔点约为225℃左右; PBT的分解温度为280℃;实际生产中注射温度一般选择在240~265℃之间,未增强品级用较低温度,增强品级用较高温度。2、 PBT在高温下易水降解。注塑前要进行干燥,要将水分含量控制在0.02%以下。采用热风循环干燥时,当温度为105℃、120℃或140℃时,所对应的时间不超过8h、5h、3h;3、 PBT在熔融状态下流动性好,粘度低,仅此于尼龙,在成型易出“流延”现象; 4、由于良好的流动性,一般采用较到中等的注射压力,PBT的注射压力一般为50~100MPa;5、PBT

材料负荷下热变形温度测试

热变形温度 一、定义 热变形温度,英文Heat deflection temperature(简称HDT),热变形温度是衡量材料耐热性能的的重要指标之一,是表达被测物的受热与变形之间关系的参数。对高分子材料或聚合物施加一定的负荷,以一定的速度升温,当达到规定形变时所对应的温度。热变形温度的测试是记录在规定负荷和形变量下的温度。 二、实验原理 聚合物材料的耐热温度是指在一定负荷下,其到达某一规定形变值时的温度。发生形变时的温度通常称为塑料的软化点。。常用维卡耐热和马丁耐热以及热变形温度测试方法测试塑料耐热性能。不同方法的测试结果相互之间无定量关系,它们可用来对不同塑料做相对比较。 维卡软化点是测定热塑性塑料于特定液体传热介质中,在一定的负荷,一定的等速升温条件下,试样被1mm2针头压入1mm时的温度。本方法仅适用于大多数热塑性塑料。 实验测得的热变形温度和维卡软化点仅适用于控制质量和作为鉴定新品种热性能的一个指标,不代表材料的使用温度。 三、实验仪器及试样 1.仪器 本实验采用热变形温度-维卡软化点测定仪。热变形温度测试装置原理如图1所示。加热浴槽选择对试样无影响的传热介质-甲基硅油,室温时粘度较低。可调等速升温速度为(120±10)℃/h。两个试样支架的中心距离为100mm,在支架的中点能对试样施加垂直负载,负载杆的压头与试样接触部分为半圆形,其半径为(3±0.2)mm。实验时必须选用一组大小适合的砝码,使试样受载后的最大弯曲正应力为18.5kg/cm2或4.6 kg/cm2。应加砝码的质量由下式计算:W=(2σbh2/3L)-R-T 式中σ:试样最大弯曲正应力(18.5kg/cm2或4.6 kg/cm2); b:试样宽度,若为标准试样,则试样宽度为10mm;

(中文)ASTM D648 塑料热变形温度试验方法

在边缘位置,负荷的情况下塑料温度偏差的标准检测方法1摘要: 1.1本种试验方法覆盖了,在任何人为的测试条件下和任意的变形发生基础上,决定性的温度。 1.2本办法适用于测试材料厚度3毫米或以上,在常温下钢性或者半钢性的铸造成型或者薄片的材料。 1.3在SI的单位下的评估值将视为标准,在插入中间的值只是视为一种信息。 1.4本标准无意涉及所有的安全问题,是否涉及,要视具体使用情况。这个标准是帮助用户建立适当的安全标准和卫生管理办法。并且在规定的时期中的使用。 2参考文献 2.1 ASTM 标准: D 618, D 883, D 1898, D 1999, D 5947, E1, E77, E220, E608, E664, E691, E879, E1137 2.2 ISO 标准 ISO 75-1 ISO 75-2 2.3 NIST 标准 3术语 3.1这里指的塑料是跟D 883 标准下一样。 4.检测方法简介 4.1在边缘的位置,由于简单的横梁在前卫最大的压强下0.455 MPs 或者是1.82 MPa. 这个范例会在中等热传输的压力下,当温度提高俩提高两度,偏差值在0.2度。这个偏差值有0.25的偏差的时候。测试条会有0.25mm的偏差。这个温度的取得是在测试条在变形压力下和温度偏差是取得的。 5这种情况和重要性 5.1 这种测试最适合控制和改进工艺。本测试所获得的数据可能不适合用来衡量塑料在高温下的形状的预测。除非时间,温度,负载和压力等因素跟本测试所要求的条件接近。否则这种数据不可以用在预见塑料在高温下会有这种效果。 6测试矛盾性 6.1 本测试方法一定程度上很决定于流体,测试体和流体传导性的热传输率。

常用塑料耐热温度

项目 14 教学中的必要准备内容 项目 14《六种要求耐热类塑料材料的分析、选择、改性》 具体任务 第一组:请为低耐热塑料的生产选择合适的高分子材料; 第二组:请为中耐热塑料的生产选择合适的高分子材料; 第三组:请为高耐热塑料的生产选择合适的高分子材料; 第四组:请为热变形温度>200℃的塑料制品的生产选择合适的高分子材料; 第五组:请为热变形温度 100℃~180℃的塑料的生产选择合适的高分子材料; 第六组:请为热变形温度>300℃的塑料制品的生产选择合适的高分子材料。 耐热类塑料的选用 一、塑料的耐热性 与金属、陶瓷、玻璃等传统材料相比,塑料的缺点之一为耐热性不高,这往往限制了其在高温场合的 使用。在塑料材料中,不同品种塑料的耐热性能不同;有的耐热很低、有的则较高。耐热类塑料一般是指 热变形温度在 200℃以上的一类塑料制品。 衡量塑料制品耐热性能好坏的指标有热变形温度、马丁耐热温度和维卡软化点三种,其中以热变形温 度最为常用。同一种塑料上述三种耐热性指标的关系如下: 维卡软化点>热变形温度>马丁耐热温度 对 ABS 而言,三种耐热温度的相应值分别为:160℃、86℃和 75℃。 常用塑料的耐热性能 常见的高聚物 热变形温度/℃ 维卡软化点/℃ 马丁耐热温度/℃ LDPE PA1010 PA6 PA66 EV A PBT PET HDPE PS ABS POM PMMA PP PC PPO PSF PPS PTFE LCP PI 50 55 58 60 66 70 80 85 86 98 100 102 134 172 185 240 260 315 360 95 159 180 217 64 177 - 120 105 160 141 120 110 153 - 180 - 110 315 300 - 44 48 50 - 49 80 - - 75 55 - - 112 110 150 102 - - - 按塑料的耐热性大小将塑料分成如下四类。 ①低耐热类塑料 热变形温度小于 100℃的一类树脂。具体品种有:PE、PS、PVC、PET、PBT、ABS 及 PMMA等。 ②中耐热类塑料 热变形温度在 100~200℃之间的一类树脂。具体品种有:PP、PVF、PVDC、PSF、 常见塑料耐热温度

实验七 塑料热变形温度的测定

实验七聚合物耐热性的测定 一、实验目的 1.测定塑料热变形温度 2.掌握塑料热变形温度测定仪的使用方法 二、实验原理 负荷热变形温度是衡量塑料耐热性的主要指标之一,现在世界各国的大部分塑料产品的标准中,都有负荷变形温度这一指标作为产品质量控制,但它不是最高使用温度,最高使用温度应根据制品的受力情况及使用要求等因素来确定。 原理塑料试样放在跨距为100mm的支座上,将其放在一种合适的液体传热介质中,并在两支座的中点处,对其施加特定的静弯曲负荷,形成三点式简支梁式静弯曲,在等速升温条件下,在负载下试样弯曲变形达到规定值时的温度,为热变形温度。 三、实验设备 热变形温度试验仪RW--3型 四、实验试样 试样是截面为矩形的长方体。长:L,宽:b,高:h,单位为mm 1) 模塑试样:长×宽×高=120mm×l0mm×l5mm 2) 板材试样:长×宽×高=120mm×(3-13)mm×l5mm 3) 特殊情况:长×宽×高=120mm×(3-13)mm×(9.8-15)mm 试样表面平整、光滑、无气泡、无锯齿切割痕迹、凹痕和飞边等缺陷。 本实验长方体试样尺寸为:L×b×h=120mm×l0mm×l5mm 五、实验条件 1.温度:本实验升温速率为120℃/h(12±1℃/6min). 2.荷重的选择:本实验加载砝码为负载杆+托盘+A+B+C砝码。 3.试样弯曲变形量:本实验为0.21nlm(可参考表4—1)。 4.每组试样为2个,同时测定。 六、实验步骤 1.升温,并开动搅拌器慢速搅拌。起始温度应低于该材料软化点温度50℃。 2.试样的安装:将试样水平放在未加负荷的负载杆压头下,与支架底座接触的试样表面应平整。 3.插入温度计,使温度计水银球与试样相距在3mm以内,但不能接触试样。 4.将支架小心浸入浴糟内,试样位于液面下35mm以下,但不能接触浴糟

相关文档
最新文档