土木工程计算公式大全~常用图形求面积公式~多面体的体积和表面积

土木工程计算公式大全~常用图形求面积公式~多面体的体积和表面积
土木工程计算公式大全~常用图形求面积公式~多面体的体积和表面积

常见几何体的体积和表面积公式及三视图

常见几何体的体积和表面积公式及三视图 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

常见几何体的体积和表面积公式及三视图谨记常见几何体的三视图特点:一般情况下,(1)视图中有两个是矩形的几何体是柱体;(2)视图中有两个是三角形的几何体是锥体;(3)视图有两个是梯形的几何体是台体;(4)视图中有两个是圆的几何体是球. (2016年全国II高考)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(2016年山东高考)有一个半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为 【2011全国新课标,理6】在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为( )【2017浙江,3】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是 【2013课标全国Ⅰ,理8】某几何体的三视图如图所示,则该几何体的体积为(2016年浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 cm2,体积是 cm3. (2016年全国I高考)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是 28π3,则它的表面积是 【2017山东,理13】由一个长方体和两个1 4 圆柱体构成的几何体的三视图如右图,则该 几何体的体积为 . 【2014课标Ⅰ,理12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为 【2017课标1,理7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为【2017课标II,理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()

多面体欧拉公式的发现(一)

●教学时间 第九课时 ●课题 §9.9.1 研究性课题:多面体欧拉公式的发现(一) ●教学目标 (一)教学知识点 1.简单多面体的V、E、F关系的发现. 2.欧拉公式的猜想. 3.欧拉公式的证明. (二)能力训练要求 1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律. 2.使学生能通过进一步观察验证所得的规律. 3.使学生能从拓扑的角度认识简单多面体的本质. 4.使学生能通过归纳得出关于欧拉公式的猜想. 5.使学生了解欧拉公式的一种证明思路. (三)德育渗透目标 1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求. 2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力. ●教学重点 欧拉公式的发现. ●教学难点 使学生从中体会和学习数学大师研究数学的方法. ●教学方法 指导学生自学法 首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识从中寻找规律,问题2让学生作进一步观察、验证得出规律,问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现规律的证明. 以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的思想和方法. ●教具准备 投影片三张 第一张:课本P56的问题1及表1(记作§9.9.1 A) 第二张:课本P57的问题2及表2(记作§9.9.1 B) 第三张:课本P57的问题3及P58的问题4(记作§9.9.1 C) ●教学过程 Ⅰ.课题导入 瑞士著名的数学家,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支.比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方 程、欧拉常数、欧拉方法、欧拉猜想等.其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别

四棱台体积计算公式

四棱台体积公式: ①、[S上+S下+√(S上×S下)]*h /3 (可以用于四棱锥) [上面面积+下面面积+根号(上面面积×下面面积)]×高÷2 ②、(S上+S下)*h/2 (不能用于四棱锥) (上面面积+下面面积)x高÷2 第②个最简便的公式,可以把正方体当作四棱台验证。 注意:如果把四棱锥可以看成上面面积为0的四棱台,第①个公式仍然可以用,但是四棱锥不能用第②个公式,切记!!!!!!!!。 拟棱台: 对于一个多面体,如果有两个面互相平行,而其余的面均为顶点全在这两个平行面上的三角形、平行四边形或梯形,这样的多面体叫拟棱台。 若上下底面和中截面的面积分别是S1、S2、S0,高为H,则体积V=1/6(s1+s2+4s0)H 正四棱台体积V=底面积S×高H 圆锥体体积=底×高÷3 长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积=长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 的体积=底面积×高 平面图形 名称符号周长C和面积S 正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b)

各种构件体积的计算公式资料

(一)基础 1.带形基础 (1)外墙基础体积=外墙基础中心线长度×基础断面面积 (2)内墙基础体积=内墙基础底净长度×基础断面面积+T形接头搭接体积 其中T形接头搭接部分如图示。 V=V1+V2=(L搭×b×H)+ L搭〔bh1/2+2(B-b/2×h1/2×1/3)〕=L搭〔b× H+h1(2b+B)/6〕 式中:V——内外墙T形接头搭接部分的体积; V1——长方形体积,如T形接头搭接示意图上部所示,无梁式时V1=0; V2——由两个三棱锥加半个长方形体积,如T形接头搭接示意图下部所示,无梁式时V= V2 ; H——长方体厚度,无梁式时H=0; 2.独立基础(砼独立基础与柱在基础上表面分界) (1)矩形基础: V=长×宽×高 (2)阶梯形基础: V=∑各阶(长×宽×高) (3)截头方锥形基础: V=V1+V2=H1/6×[A×B+(A+a)(B+b)+a×b]+A×B×h2 截头方锥形基础图示 式中:V1——基础上部棱台部分的体积( m3 ) V2——基础下部矩形部分的体积( m3 ) A,B——棱台下底两边或V2矩形部分的两边边长(m) a,b——棱台上底两边边长(m) h1——棱台部分的高(m) h2——基座底部矩形部分的高(m) (4)杯形基础 基础杯颈部分体积( m3 ) V3=abh3 式中:h3——杯颈高度 V3_——杯口槽体积( m3 ) V4= h4/6+[A×B+(A+a)(B+b)+a×b] 式中:h4—杯口槽深度(m)。 杯形基础体积如图7—6所示: V=V1+V2+V3-V4 式中:V1,V2,V3,V4为以上计算公式所得。 3. 满堂基础(筏形基础) 有梁式满堂基础体积=(基础板面积×板厚)+(梁截面面积×梁长) 无梁式满堂基础体积=底板长×底板宽×板厚 4. 箱形基础 箱形基础体积=顶板体积+底板体积+墙体体积 5.砼基础垫层 基础垫层工程量=垫层长度×垫层宽度×垫层厚度 (二)柱

专题18多面体的表面积和体积(解析版)

1 8 专题18 多面体的表面积和体积(解析版) 多面体,因其具有考查直观想象、逻辑推理、数学抽象的素养的特性,越来越引起出题专家组的青睐。 易错点1:基础知识不扎实 (1)对立几中一些常见结论要做到了然于胸,如:关于三棱锥中顶点在底面三角形上的射影问题的相关条件和结论要在理解的基础上加以熟记; (2)在思维受阻时,要养成回头看条件的习惯,问一问自己条件是否都用了呢? 易错点2:平面化处理意识不强,简单的组合体画不出适当的截面图致误 易错点3:“想图、画图、识图、解图”能力的欠缺,多面体与几何体的结构特征不清楚导致计算错误 易错点4:空间想象能力欠缺 题组一 1.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三 视图,则该多面体的表面积为 A .18+ B .54+ C .90 D .81 【解析】由三视图可得该几何体是平行六面体,上下底面是边长为3的正方形,故面积都是 9,前后两个侧面是平行四边形,一边长为3、该边上的高为6,故面积都为18,左右 两个侧面是矩形,边长为3 ,故面积都为,则该几何体的表面积为2(9 +18+ 2.(2016全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积 为

2 8 A .20π B .24π C .28π D .32π 【解析】该几何体是圆锥与圆柱的组合体, 设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h . 由图得2r =,2π4πc r ==,由勾股定理得:( ) 2 2223 4l =+=, 21 π2 S r ch cl =++表4π16π8π=++28π=,故选C . 3.(2015新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几 何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r = A .1 B .2 C .4 D .8 【解析】由三视图可知,此组合体是由半个圆柱与半个球体组合而成,其表面积为 22222422016r r r r ππππ+++=+,所以2r =. 题组二 4.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视 图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为

多面体欧拉公式的发现(二)共9页

●教学时间 第十课时 ●课题 §9.9.2 研究性课题:多面体欧拉公式的发现(二) ●教学目标 (一)教学知识点 1.欧拉公式的证明. 2.欧拉公式的应用. (二)能力训练要求 1.使学生能理解多面体欧拉公式的证明过程并能叙述其证明思路. 2.使学生掌握多面体欧拉公式并灵活地将其应用于解题中. (三)德育渗透目标 继续培养学生寻求规律、发现规律、认识规律、并利用规律解决问题的能力. ●教学重点 欧拉公式的应用. ●教学难点 欧拉公式的证明思路. ●教学方法 学导式 本节课继续上节课对欧拉公式的研究活动,遵循寻求规律——发现规律——认识规律——应用规律的学习过程,对上节课已猜想出的欧拉公式

进一步深入研究,探索它的证明思路,让学生了解这种证明思想,进而达到熟练掌握欧拉公式的目标,以便于学生得心应手地将欧拉公式应用到各种问题的解决中. ●教具准备 投影片三张 问题5(1)(2)(记作§9.9.2 A) 第一张:课本P 59 第二张:本课时教案例1(记作§9.9.2 B) 第三张:本课时教案例2(记作§9.9.2 C) ●教学过程 Ⅰ.课题导入 [师]上节课我们已经猜想出了欧拉公式并且同学们也已自学了它的证明过程,这节课我们继续对它的证明方法及其重要应用进行学习和探讨. Ⅱ.讲授新课 的欧拉公式的证明进行了自学,那么,[师]上节课我们已对课本P 58 谁能说一下课本中的证明思路和关键是什么? [生]将立体图形转化为平面图形. [师]好,前面,我们经常使用把不在同一平面中的几何图形的问题转化为同一平面中图形的问题,所以此处如果能把求一个简单多面体的V、F、E三者之间的关系问题,转化为平面中的问题就会前进一大步了. 那么课本中是怎样实现转化的呢? [生]把多面体想成是用橡皮膜做成的,即课本P 图9—85的多面体, 58

最常用的面积体积计算公式

用求面积、体积公式 1 平面图形面积 平面图形面积见表1-73。 平面图形面积表1-73 2 多面体的体积和表面积 多面体的体积和表面积见表1-74。 多面体的体积和表面积表1-74 3 物料堆体积计算 物料堆体积计算见表1-75。 物料堆体积计算表1-75 4 壳体表面积、侧面积计算 1-3-4-1 圆球形薄壳(图1-1) 图1-1 圆球形薄壳计算图 4-2 椭圆抛物面扁壳(图1-2) 图1-2 椭圆抛物面扁壳计算图1-3-4-3 椭圆抛物面扁壳系数计算 见图1-2,壳表面积(A)计算公式:

A=S x ·S y =2a×系数K a ×2b×系数K b 式中 K a 、K b ——椭圆抛物面扁壳系数,可按表1-76查得。 椭圆抛物面扁壳系数表表1-76 查表说明 [例]已知2a=24.0m,2b=16.0m,h x =3.0m,h y =2.8m,试求椭圆抛物面扁壳表面 积A。 先求出h x /2a=3.0/24.0=0.125 h y /2b=2.8/16.0=0.175 分别查表得系数K a 为1.0402和系数K b 为1.0765,则扁壳表面积A=24.0×1.0402× 16.0×1.0765=429.99m2 1-3-4-4 圆抛物面扁壳(图1-3) 图1-3 圆抛物面扁壳计算图 1-3-4-5 单、双曲拱展开面积 1.单曲拱展开面积=单曲拱系数×水平投影面积。 2.双曲拱展开面积=双曲拱系数(大曲拱系数×小曲拱系数)×水平投影面积。 单、双曲拱展开面积系数见表1-77。单双曲拱展开面积计算图见图1-4。 图1-4 单、双曲拱展开面积计算图

棱台体体积公式推导

正棱台体公式推导(1)将正四棱台切割成九部分(如下图) C A G H B F E D I (鸟瞰图)(立体切面图) E在棱台体中间位置,是一个方形体; B、D、H、F是四个三棱柱,分别位于在方形体的四周位置; A、C、G、I 是四个四棱锥,分别位于棱台体的四个角的位置。 (2)用字母表示图形部位 顶面棱长为,底面棱长为a,棱台体高为h。 (3)体积的计算 (1)一个方形体E,其底面是边长为b、高为h的方形体,体积为h b2; (图V1) (2)四个四棱锥A、C、G、I,用其中三个可以拼合成一个底边两直角边都是为 2 b a- 、高为h的方形体。 (四棱锥)(三个四棱锥拼合图形)(多出一个四棱锥) 方形体的体积为( 2 b a- )2h。其中一个四棱锥的体积就是 3 1 ( 2 b a- )2 h。四个四棱锥的体积和则 为 3 4 ( 2 b a- )2 h。 化简可得: 3 1 (b a-)2 h (3)四个直角三棱柱B、D、F、H,可以拼成两个长、宽、高分别为b、 2 ) (b a- 、h的长方体,体积和为 b(a-b)h。

(三棱柱) (拼合图形) (4)四棱台的体积 四棱台的体积等于上述三项(九个部分)之和 V=h b 2+3 1(b a -)2h+ b (a-b )h 解:V= [b 2 +31(b a -)2+ b (a-b )] h 截面积组成: 方形体的截面积:顶面的边长乘以边长; 字母表示 b 2 四个三棱柱截面积和: 字母表示b(a-b) 一个三棱柱截面积等于方形体底面积一半。 四个四棱锥截面积和: 字母表示3 1(b a -)2 一个四棱锥截面积等于方形体底面积的三分之一。 化简可得 h b ab a V )(3122++=

多面体的体积和表面积计算公式大全

多面体的体积和表面积 「-一个蛆含三馅形的面积 M -粗合三角形的个数 u-惟底备嗣角皤交点 S = Q71+ 气+ 0 Si=an 国荏: 矿=*?』 5 = 2?cfi ? h +3寂。 6 ■ 2trR * h 空心直回柱: F =双中T 气=由耕 s= Mjnmdj?顼) 尺寸符号 体税(/)底面积(月 表面税(罚刨表面积(用) 『 =(? 4 =物' 长 方 体 A 棱 住 V V =a*b*h S = + a ? fi +b * h) d 三J/w*十护 V = ^F*h 3 S 二刀?丁 ■+ F 3\= ?!?/

矿?上如 3 § = 2上'七= ftr/ s 4 7 ntf‘ 5 V - _q ------------- 0.52W 3 3 6 h H =/ni 2 H ■三仲电曜44鬼 3 5=号伽+tn = 157g+d) GUX 员=使儡+AJ 矿.晋.(炉+ F + &) & M H?侦廿)

方-球缺的高 「-球缺半径 《-平切圆直径跖 =曲面面积『球缺 表面积 成-球半径 出。-底面半径 有-腰局 & -球心。至带底回心3)的距离 为-中间断面直径 I-底直径 [-桶高 a,b,c-半轴 r—圈注半役 tJ-?柱长F = *(『_鸟 3 43 $?点仲小) 芥=飒为-的) 矿小snfw’ S-4^2Ry?/以■明4无阳 矿.史(3爬+3词+殆 S = +西村 +的) 对于胭物嬲形棉体 J/ =史(2户+应4■兰占。 15 4 对于圆形橘体 4君渺十户) p = H]_

冬5-下底边长m-上底迓长卜上、下底遭距离(高) 尺寸符号V- -[(2^ +flj)& +口灼+a)6J 6 二一[口8 H 口中口U(b+ 四)+豹刀 6 fl = /? = 0.77^ 4 = 1414? =1.414./? J郭L+勺 -'血 fin er 2 常用图形求面积公式 田-边长 b-对角投 d"厂对墙恭 Ct-对龟钱夹侑 面积(F)表面积(S)

简单多面体的欧拉公式优秀教学设计

简单多面体的欧拉公式 新课程倡导教师对学生最重要的价值引导就是“会做数学”比“会说数学”更重要,课堂始终以“做数学”为主旋律,教师不断地创设有意义的问题情境或教学活动,激励学生在解决问题中学习。与传统数学相比,现代数学的巨大变化还表现在,通过观察作出猜想、建立模型、然后进行修改调整,成为现代数学家以及应用数学家、工程技术人员的基本思维。 “研究性课题:多面体欧拉定理的发现”是一个探究式、自主学习的课题,在这节课中,我利用网络资源,不断地创设一系列问题情境,引导学生独立自主地发现问题——解决问题——应用知识,提高了学习的效率。在教学中,我设计了以下几个环节,愿与大家探讨。 一、创设情境提出问题 歌尼斯堡问题是学生在课前搜集相关资料的时候找到的一个相关问题,由于它是平面的问题,比较简单易懂。在课堂上学生积极地向其他同学介绍这个有意思的问题。不仅扩充了课程资源,也渗透了与图形大小、长短无关的一类几何问题,为接下去的学习活动提供了良好的教学情境。 二、问题驱动自主探究 接下来,以网页课件为媒体,开展以下活动: 活动一:问题驱动引出定理 通过一系列问题,引领学生体验从二维到三维的类比推广,把问题引向未研究过的的领域,并通过学生自己的实践(数正多面体的棱数、面数、顶点数)总结出、有价值的规律。学生相互交流思考问题。师生交流后教师给出密码,提供比较完整的问题解答,实现了师生互动与交流。 活动二:实例验证加深理解 学生在知道了欧拉定理后,以正四面体为例,通过课件的提示帮助,体会“平面法”验证欧拉定理的思想。 教师布置任务:以同样的思想方法,以正六面体为例,验证欧拉定理。汇总各小组的研究方案,选代表在黑板上演示,并宜从一些不成立的步骤着手,引导学生找出问题所在,在逐步矫正中,加深学生对“平面法”的理解。 随后由教师提供密码,给出比较完善的方案。 活动三:知识应用解决问题 用欧拉定理解决所提出的问题:正多面体为什么只有五种?由学生自己阅读,教师加以点拨即可。 随后以一些实际应用的例题体会欧拉定理在各学科中的应用。 三、总结提炼拓展延伸 四、反思总结 活动课中让学生探讨一些具有挑战性的问题,引导学生通过观察,进行猜想,进一步验证猜想。通过一系列的思维活动,让学生主动地获取知识,理解数学的思想方法、思维方式;引导学生体会发现规律的过程,体现了课堂教学的实验性、探索性,实现了

棱台体体积计算公式及拟柱体的计算

棱台体体积计算公式: V=(1/3)H(S上+S下+√[S上×S下])H是高,S上和S下分别是上下底面的面积拟柱体的计算实例: 1.按下图计算基坑的挖方量 解:由拟柱体公式得: 上口面积 上口面积 坑底面积 中间截面积 代入上列基坑挖方量计算公式得: 或用公式

2.某建筑外墙采用毛石基础,其断面尺寸如下图所示,地基为粘土,已知 土的可松性系数,。试计算每100m长基槽的挖方量;若留下回填土后,余土要求全部运走,计算预留填土量及弃土量。 解:基槽开挖截面积按梯形计算,即: 每100m长基槽的挖方量: 基础所占的体积: 预留填方量(按原土计算): 弃土量(按松散体积计算): 3.上节例题的基础上算出该场地平整的总挖方量和填方量 解:土方量计算(-为挖方,+为填方): 方格(9)与方格(6)全是挖方,其挖方量为: 方格(9) 方格(6)

方格(1)与方格(4)全是填方,其填方量为: 方格(1) 方格(4) 方格(2)、(3)、(5)、(7)、(8)均为部分挖方部分填方,用近似公式计算,其挖填方量分别为: 方格(2) 方格(3) 方格(5) 方格(7) 方格(8)

总挖方量: 总填方量: 两者相比较,填方比挖方多4m3,基本平衡。 4.某建筑场地地形图和方格网(边长a=20.0m)布置如图所示。土壤为二类 土,场地地面泄水坡度,。试确定场地设计标高(不考虑土的可松性影响,余土加宽边坡),计算各方格挖、填土方工程量。 解:1) 计算场地设计标高

2) 根据泄水坡度计算各方格角点的设计标高 以场地中心点(几何中心o)为,由式得各角点设计标高为: 其余各角点设计标高均可求出,详见图2.12。 3) 计算各角点的施工高度 得各角点的施工高度(以“+”为填方,“-”为挖方): 各角点施工高度见图2.12。 4) 确定“零线”,即挖、填方的分界线 确定零点的位置,将相邻边线上的零点相连,即为“零线” 。如1-5线上: ,即零点距角点1的距离为0.67m。 5) 计算各方格土方工程量(以“+”为填方,“-”为挖方) ①全填或全挖方格: (+) (+) (+) (-) ②三填一挖或三挖一填方格,由式(2.13): (+) (-) (-) (+) (+) (-) 将计算出的各方格土方工程量按挖、填方分别相加,得场地土方工程量总计: 挖方:503.92m3

各种多面体体积、面积计算公式大全(施工员必备)

多面体的体积和表面积 y = F*h E - (c +b +u)? A + ; F E\=g +&+f ) ? #2 I 評耳+马+应) £ =㈱H ■巧十尽 5j = cm 图形 尺寸符号 体积(町唐面积(F ) 表輪⑸佩俵翻斶) 口-楼 止-寰面积 侧表面积 r = a 3 £=討 商=4a a 长 方 体 A 棱 柱 V 龟以1边按 。-尿面对角线的交点 f 二2仗*方+Q ?丙+B*月) 51 = 2^+^) 棱 锥 棱 厶 务马-两平行底面的面积 h ■麻面间距盅 位-Y 爼台棉殛的面科 皿-殂合梯幣埶 口,冊-述长 b ■高 F -底直积 口 L 底面中钱的敦 f-一①组舍三请形的面枳 腥-组合三轴我的个数 0-镀底各刑第钱交直 棱 柱

覇=时偽十址) 球 V 圆 台 ”克径 BS : r -鹿面半径 用—高 J 世錢长 球 扇 形 A 球 楔 「-碌半径 用-弓形底圆直径 h-弓托高 艮-外芈径 一内半径 !-柱壘厚愛 卩-平均半轻 场=内汁侧面积 R?■-底面半 径 h -奩 廿胪+胖二曲』 r= -^^ = 20^3* 3 屈=吃(联+町=157班価+百 U 岛-棗才'高度 阳-最丸高度 r-底面半孫 £■圖坯+岛)斗寸—(1+—i —) coscr V ■—宀------- 0.5236^ 3 6 S u JrtT 2 - mF 八争(C? Sj = nf(J?+r) 百=$1十试沪十宀 "4学 圆 柱 和 空 心、 圆 柱 A 管 V 斜 线 直 圆 柱 £ = 2?rji ?/] 4-2JC JE^ § = 2n-R * h 空心苴圆柱■ F =锁/—田=2碑朽 £=2机 卫4町;!+2代皿一以) $ =2囲只+H

多面体欧拉公式与球

第 48 讲 多面体、欧拉公式与球 (第课时) 多面体、欧拉公式与球 ????? ????? ? ? ?? ? ? ????? ????? ???????多面体的内切球 体积面积计算球面距离截面球的性质球的概念球正多面体的概念欧拉公式多面体的概念 多面体 2.欧拉公式;3.球的概念和性质。 2.了解多面体的欧拉公式;3.了解球的概念,掌握球 2.有关球的考查一般以小题出现。 围成多面体的各个多边形叫做面,两个面的公共边叫棱,棱的端点叫顶点,不在同一个面内的两个顶点间的线段叫对角线。有n 个面的多面体叫n 面体(4≥n )。 凸多面体:若把一个多面体的任意一个面沿展成平面,其余各面都在这个平面的同侧时,则称这个多面体为凸多面体。 简单多面体:表面能通过连续变形变为球面的多面体,叫做简单多面体。 2.欧拉公式 对于简单多面体,有: 顶点数(V )+面数(F)-棱数(E )= 2 。 例.一个正n 面体共有8个顶点,每个顶点处共有3条棱,则n 等于 ( ) A . 4 ; B . 5 ; C . 6 ; D . 7 。 分析: 先计算正n 面体的棱数,然后应用欧拉公式来解。

解:由题意有 8=V ,122 8 3=?= E ,则 682122=-+=-+=V E F ,故选C 。 例.已知铜的单晶的外形是简单几何体,单晶铜有三角形和八边形两种晶面,如果铜的单晶有24个顶点,每个顶点处都有3条棱,计算单晶铜的两种晶面的数目。 解 设:三角形晶面有x 个,八边形晶面有y 个。 3.正多面体 ⑴ 定义:每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的凸多面体,叫做正多面体。 ⑵ 名称 面的形状 每个顶点的棱 顶点数(V ) 面数(F) 棱数(E) 正四面体 正三角形 3 4 4 6 正六面体 正方形 3 8 6 12 正八面体 正三角形 4 6 8 12 正十二面体 正五边形 3 20 12 30 正二十面体 正三角形 5 12 20 30 4.球 ⑴ 定义 ① 球面: 半圆绕它的直径旋转一周所生成的曲面叫做球面。 ② 球: 球面围成的几何体叫球。 ③球面距离:经过球面两点的大圆在这两点间的劣弧的长叫做这两点的球面距离。 ⑵ 性质 ① 球的任意截面都是圆。其中过球心的截面叫大圆,不过球心的截面叫小圆。 ② 球心和截面圆心的连线垂直于截面,并且球心到截面的距离 2 2 r R d -= ,其中R 是球半径,r 是截面半径。 ⑶ 面积公式 球面的面积:等于球的大圆面积的4倍,即 24R S π=球面 ,其中R 是球半径。 ⑷ 体积公式 球的体积:等于三分之四乘以3R π,即 33 4 R V π=球 ,其中R 是球半径。 ⑸ 球的直观图的画法 ① 如图,画三条坐标轴x 、y 、z ;

研究性课题 多面体欧拉公式的发现

研究性课题 多面体欧拉公式的发现 【教材分析】 教材结合9.8节关于多面体的分类而编,目的在于以学生主动参与的发现式学习活动,培养他们通过观察发现规律并证明所得猜想的能力。 【学情分析】 该公式的证明较抽象,前后知识的联系较少,学生理解上有较大难度。但在前面立 几教学中学生已有将空间问题转化为平面问题来研究的降维思想和转化策略的基础,所以本节课采用多媒体辅助教学,降低空间想象的难度,突破降维过程中的变与不变的难点,从而达到降低教学难度的目的。 【教学目标】 1、知识目标:培养学生观察,归纳,大胆猜想的能力,了解欧拉公式的发现及其 法。 2、能力目标 掌握公式证明体现的思想方法。使学生领悟转化、化归思想,从空 间到平面的降维策略,学会从一般到特殊和特殊到一般的分析问题和解决问题的方法,增强学生应用数学知识解决实际问题的的意识和能力。 3、情意目标 通过教学使学生了解和感知欧拉公式发现的历程,激发学生热爱科学 勤奋学习热情,培养学生勇于探索的创新意识。 【教学重点】 欧拉公式和它的证明,证明的思想方法是重点。 【教学难点】 证明过程是难点。 【教学过程】 问题1:下面6个多面体,分别数出它们的顶点数V 、面数F 和棱数E ,并填出表1。 (1) (2) (3) (4) (5) (6) D 1 C 1 B 1A 1 A B C D B 1D 1 C 1E 1 A 1A B C D E

观察表1中各组数据,猜想V 、F 、E 之间的规律:___________。 是否任意一个多面体都有上述规律吗? 问题是数学的心脏。创设问题情境,让学生在解决问题的过程中去观察、猜想、探索;让学生以类似或模拟科学研究的方式进行学习,使学生形成探究性学习的习惯,培养和锻炼学生的探究能力。 问题2:下面3个多面体,分别数出它们的顶点数V 、面数F 和棱数E ,并填出表2。 (7) (8) (9) 简单直观的问题情景能一下子激发学生探索的兴趣。学生进入问题情景,发现问题,在问题的驱动下,进入探究性活动。 问题3:比较前面问题1和问题2中的图形,如果这些多面体的表面都是用橡皮膜制成的,并且可以向它们的内部充气,那么其中哪些多面体能够连续(不破裂、不粘连)变形,最后其表面可变为一个球面?哪些能变为一个环面?哪些可变为两个对接球面? 教师向学生提供材料,学生收集证据。观察、实验、调查、分析处理,教师引导学生大胆质疑,提出问题,提出各种猜想和假设。 引入“简单多面体”的概念: 假设多面体的表面是橡皮膜制成的,可以向它们的内部充气,那么能够连续(不破裂、不粘连)变形,表面能变为一个球面的多面体,叫做简单多面体。

各种图形体积计算公式_

土建工程工程量计算规则公 式汇总 平整场地: 建筑物场地厚度在± 30cm以内的挖、填、 运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积 (2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积 3、注意事项 (1)、有的地区定额规则的平整场地面积:按外墙外皮线外放2 米计算。计算时按外墙外边线外放2 米的图形分块计算,然后与底层建筑面积合并计算;或者按“外放2 米的中心线× 2=外放2 米面积” 与底层建筑面积合并计算。这样的话计算时会出现如下难点:

①、划分块比较麻烦,弧线部分不好处理,容易出现误差。 ②、2 米的中心线计算起来较麻烦,不好计算。 ③、外放2 米后可能出现重叠部分,到底应该扣除多少不好计算。 (2)、清单环境下投标人报价时候可能需要根据现场的实际情况计算平整场地的工程量,每边外放的长度不一样。 大开挖土方 1、开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指混凝土垫层外边线加工作面,如有排水沟者应算至排水沟外边线。排水沟的体积应纳入总土方量内。当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算方法 1)、清单规则: ①、计算挖土方底面积:

方法一、利用底层的建筑面积+外墙外皮到垫层外皮的面积。外墙外边线到垫层外边线的面积计算(按外墙外边线外放图形分块计算或者按“外放图形的中心线 ×外放长度”计算。) 方法二、分块计算垫层外边线的面积(同分块计算建筑面积)。 ②、计算挖土方的体积:土方体积=挖土方的底面积*挖土深度。 (2)、定额规则: ①、利用棱台体积公式计算挖土方的上下底面积。 V=1/6×H×(S 上+ 4×S中+ S下)计算土方体积(其中,S 上为上底面积,S中为中截面面积,S 下为下底面面积)。如下图 S 下=底层的建筑面积+外墙外皮到挖土底边线的面积(包括工作面、排水沟、放坡等)。 用同样的方法计算S 中和S下 3、挖土方计算的难点 ⑴、计算挖土方上中下底面积时候需要计算“各自边线到外墙外边线图” 部分的中心线,中心线计算起来比较麻烦(同平整场地)。 ⑵、中截面面积不好计算。

多面体欧拉公式的发现(1)

【课题】研究性课题:多面体欧拉公式的发现(1)【教学目标】 1、能通过观察具体简单多面体的V、E、F从中寻找规律. 2、能通过进一步观察验证所得的规律. 3、能从拓扑的角度认识简单多面体的本质. 4、能通过归纳得出关于欧拉公式的猜想. 【教学重点】欧拉公式的发现. 【教学难点】从中体会和学习数学大师研究数学的方法. 【教学过程】 一、复习引入 欧拉是瑞士著名的数学家,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支。比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方程、欧拉常数、欧拉方法、欧拉猜想等。其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别代表一简单多面体的顶点、棱和面的数目,这就是我们今天要学习的欧拉定理。 二、讲解新课 (一)简单多面体 1.简单多面体:考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它就会连续(不破裂)变形,最后可变为一个球面如图:象这样,表面经过连续变形可变为球面的多面体,叫做简单多面体 说明:棱柱、棱锥、正多面体等一切凸多面体都是简单多面体。

(二)五种正多面体的顶点数、面数及棱数: 发现:它们的顶点数V 、面数F 及棱数E 有共同的关系式:2V F E +-=. 上述关系式对简单多面体都成立 欧拉定理:简单多面体的顶点数V 、面数F 及棱数E 有关系式: 2V F E +-= 证明1:以四面体ABCD 为例来说明: 将它的一个面BCD 去掉,并使其变为平面图形,四面体的顶点数V 、棱数E 与剩下的面数()111F F F =-变形后都没有变。因此,要研究V 、E 和F 的关系,只要去掉一个面,将它变形为平面图形即可。 对平面图形,我们来研究: (1)去掉一条棱,就减少一个面。例如去掉BC ,就减少一个面ABC 。同理,去掉棱CD 、 BD ,也就各减少一个面ACD 、ABD 。 所以1F E -、V 的值都不变,因此1V F E +-的值也不变 (2)再从剩下的树枝形中,去掉一条棱,就减少一个顶点。例如去掉CA ,就减少一个顶点C .同理,去掉DA 就减少一个顶点D ,最后剩下AB (如图)。

多面体欧拉公式(1)

研究性课题:多面体欧拉公式的发现(一) ●教学目标 (一)教学知识点 1.简单多面体的V、E、F关系的发现. 2.欧拉公式的猜想. 3.欧拉公式的证明. (二)能力训练要求 1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律. 2.使学生能通过进一步观察验证所得的规律. 3.使学生能从拓扑的角度认识简单多面体的本质. 4.使学生能通过归纳得出关于欧拉公式的猜想. 5.使学生了解欧拉公式的一种证明思路. (三)德育渗透目标 1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学 生对科学的热爱和对理想的追求. 2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力. ●教学重点 欧拉公式的发现. ●教学难点 使学生从中体会和学习数学大师研究数学的方法. ●教学方法 指导学生自学法 首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识并从中寻找规律;问题2让学生作进一步观察、验证得出规律;问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现 规律的证明. 以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的 思想和方法. ●教具准备 投影片三张: 第一张:课本P56的问题1及表1(记作§9.9.1 A) 第二张:课本P57的问题2及表2(记作§9.9.1 B) 第三张:课本P57的问题3及P58的问题4(记作§9.9.1 C) ●教学过程 Ⅰ.课题导入

瑞士著名的数学家欧拉,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支.比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方程、欧拉常数、欧拉方法、欧拉猜想等.其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别代表一简单多面体的顶点、棱和面的数目,今天我们就去体验当年的数学大师是如何运用数学思想和方法发现欧拉公式并给予理论上的推理证明等研究活动,希望大家在活动中要充分展开自己的想象,展开热烈的讨论互相进行数学交流. Ⅱ.讲授新课 [师]我们先从一些常见的多面体出发,对它们的顶点数V、面数F、棱数E列出表,请大家观察后 填写表1 (打出投影片§9.9.1 A) (学生观察,数它们的顶点数V、面数F、棱数E,填入表1) [师]好,大家填的快速而准确,继续观察表1的各组数据,找出顶点数V、面数F及棱数E的关系 如何? (学生寻找,可能一时不易得到,教师应给予适当点拨提问) [师]表1中多面体的面数F都随顶点数目V的增大而增大吗? [生]不一定. [师]请举例说明. [生]如八面体和立方体的顶点数由6增大到8,而面数由8减小到6. [师]此时棱的数目呢? [生]棱数都是一样的. [师]所以我们得到:棱的数目也并不随顶点数目的增大而增大. 大家从表中还发现了其他的什么规律,请积极观察,勇于发言. [生]当多面体的棱数增加时,它的顶点与面数的变化也有一定规律. [师]举例说明. [生甲]如图中(1)和(2)的棱数由6增大到12,面数由4增大到6,此时的顶点数也在随棱数的增加而 增加,即由4增大到8. [师]生甲叙述得严格吗?有不同意见吗? [生乙]顶点数和面数并不是严格按棱数的增大而增大的. [师]请试说说你归纳出来的规律. [生乙]我发现并认为:当顶点数随棱数的增加而减小时,它的面数一定是随棱数的增加而增加的; 当面数随棱数的增加而减小时,它的顶点数却是随棱数的增加而增加. [师]生乙归纳得如何?大家对他的叙述同意吗? (可能会有其他想法,教师应给学生充分的时间,让他们畅所欲言,表达他们的新发现,并予以一一指 导) [师]上面的归纳引导去猜想,棱数与顶点数+面数即E与V+F是否有某种关系,请大家按这个方向考察表中的数据,发现并归纳出它们都满足的关系. [生](积极验证,得出) V+F-E=2 [师]以上同学们得到的V+F-E=2这个关系式是由表1中的五种多面体得到,那么这个关系式对于其他的多面体是否也成立吗?请大家尽可能的画出多个其他多面体去验证. [生](许多同学可能举出前面学过的图形)四棱锥、五棱锥、六棱柱等.

空间几何体的表面积和体积讲解及经典例题

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2009年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。 2.旋转体的面积和体积公式 表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。 四.典例解析 题型1:柱体的体积和表面积

例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9- 29=2 9, ∴A 1O= 223,平行六面体的体积为2 2 345? ?=V 230=。 题型2:柱体的表面积、体积综合问题 例3.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是

高二数学多面体欧拉公式的发现练习

研究性课题:多面体 欧拉公式的发现练习 【同步达纲练习】 一、选择题 1.P ={正多面体},Q ={凸多面体},R ={多面体},S ={简单多面体},P 、Q 、R 、S 之间关系( ) A.P Q R S B.R Q S P C.P Q S R D.R S Q P 2.每个顶点都有3条棱的正多面体共有( ) A.2种 B.3种 C.4种 D.5种 3.连结正十二面体各面的中心,得到一个( ) A.正六面体 B.正八面体 C.正十二面体 D.正二十面体 4.正十二面体和正二十面体的棱数分别是( ) A.29、30 B.30、30 C.30、31 D.32、35 5.已知一个简单多面体的各个顶点都有三条棱,那么2F-V =( ) A.2 B.4 C.8 D.12 6.过正四面体一边及对边中点的截面截锥体分成两部分和体积的比为( ) A.1∶2 B.1∶1 C.1∶4 D.2∶3 7.正方体的八个顶点中有四个恰是正四面体的顶点,则正方体的全面积与正四面体的全面积之比是( ) A.2 B.3 C.26 D.3 32 8.一个多面体共有10个顶点,每个顶点处都有四条棱,面的形状只有三角形和四边形,则多面体有三角形和四边形的面分别为( ) A.8个、4个 B.4个、8个 C.5个、6个 D.6个、5个 9.一个十二面体共有8个顶点,其中2个顶点,各有6条棱,其他的顶点都有相同数目的棱,则其他各有( )条棱. A.4 B.5 C.6 D.7 10.如果四面体的每一个面都不是等腰三角形,那么其长度不等的棱的条数最少的为 ( ) A.3 B.4 C.5 D.6 二、填空题 1.正八面体的棱长为a ,则它的对角线长为 .

相关文档
最新文档