土壤水文特性测定方法

土壤水文特性测定方法
土壤水文特性测定方法

土壤水文常数的测定方法

土壤农业水文特性是反映:土壤物理性质的特征值;是衡量土壤水分对作物供应及有效程度的标准;它标志着土壤水分保持程度和运动状态,也是农业生产正确掌握灌溉时间和灌溉定额的重要依据,因此土壤农业的水文特性对农业生产有着重要的意义。土壤水文特性包括:最大吸湿量、凋萎湿度、最大分子持水量田间持水量、毛管持水量、土壤容重等这些数值的大小,主要决定于土壤的质地及结构状况,质地结构相同的土壤,它们数值的变化很小或基本一致,所以又称其为土壤水文常数,但对于不同质地、结构的土壤其数值则有较大的变化。

1、土壤容重的测定方法与计算。

土壤容重单位以克/立方厘米表示,它是在没有遭到破坏的自然条件下,单位体积的绝对干土重。土壤容重是计算土壤湿度绝对值,土壤有效水分贮存量及土壤水分总贮存量等不可缺少的常数,它能反映土壤疏松与紧密程度,直接影响作物根系的发育及土壤的透水透气状况。

①测定方法:采用特制的容积为l10平方方厘米的容重钻,容重钻由固定器、钢圈和推进器组成,这套仪器体积小,重量轻,携带方便。在选好的测定地点上把固定器平放在平整过的地面上,用钢圈取其0—5、5—10、10—20??4O—50或直至100厘米各层次的完整土层,每层取4个重复,在取土时一定要使土柱保持自然状态,钢圈口

沿一定要垂直平齐,然后秤其重量,秤完后取出30—4O克土样装入士盒,以备测定土壤湿度,每层还要取一定数量的土以备测各层次的凋萎湿度用(取土层,根据培养指示作物容器的大小而定)。

②按下列公式计算土壤容重

M × 100

dv= ———————

v(100+w )

dv:土壤容重

v: 钢圈容积

M: 钢圈内湿土重

w: 土壤湿度百分数(土壤重量含水率)

2、凋萎湿度测定方法与计算

在土壤中膜状水还未被全部消耗完时,植物就会呈现萎蔫状态,当植物吸收不到水分而使细胞失去蟛压,发生永久萎蔫时的土壤含水量百分数,称为萎蔫系数或叫凋萎湿度。凋萎湿度是植物有效水分的下限,也是计算田间有效水分贮存量的必须参数。它的测定对研究作物水分供应和制订管理措施有着重要的意义,凋萎湿度的测定采用栽培法,把指示作物栽种到土表封闭的玻璃器皿中,当指示作物的所有叶片出现凋萎且空气湿度接近饱和,蒸腾最小的情况下,仍不能恢复时,测定容器中的土壤湿度即为凋萎湿度。其步骤如下

①将测容重时留下的土样,加以处理压碎,挑出草根杂物,石块等,有条件可将士样过筛;

②装土:装土的容器采用10厘米左右口径花盆,将花盆按层次

顺序编好号码,每个土层两个重复,每盆土不能装的过满也不能过少,以保证作物正常生长为宜;

③选好指示作物。选择普遍种植的小麦、玉米两种作物,烟区站采用烤烟,播种前对种籽进行催芽。

④播种与管理:为了一次成功,在每个装好土的花盆中播下2—3粒已发芽的种籽,并浇入适量的水,待全部出苗后拔掉l一2株,留一株健状的幼苗,放在室内弱光下进行生长,在三叶前可以浇水,达到三叶期停止浇水,使其达到自然凋萎,当发现植株凋萎后,将盆移到温凉阴暗处,经l2—14小时看植株是否能恢复生长,若能恢复生长则使其继续生长,如不能恢复则此时的土壤湿度为凋萎湿度。

⑤测定土壤湿度:当植株达到完全周萎对,每盆取30—4O克土装入土盎,两个重复,两个盆共4个重复,测其土壤湿度,取平均即为该土层凋萎湿度。采用培养植株的器皿定高10cm左右,口径l0cm

左右的花盆,容积大,装的土壤多,可以满足幼苗生长发育的需要,这样就减少了配制营养液和百腊封口等复杂麻烦的手续,同时也弥补了田间测定法时间长和不易控制自然降水的不足,这种方法比较简便易行。

田间持水量的测定

3、田间持水量测定

田间持水量是在地下水位较低(毛管水不与地下水相连接)情况下,土壤所能保持的毛管悬着水的最大量,是植物有效水的上限。田间持水量是衡量土壤保水性能的重要指标,也是进行农田灌溉的重要

参数。田间持水量的测定多采用田间小区灌水法,当土壤排除重力水后,测定的土壤湿度即为田间持水量。

一、仪器及工具

1、烘干称重法测定土壤湿度所需的工具一套。

2、米尺、水桶、秤。

二、测定程序

1、测定场地的准备:在所测定的地段上量取面积为4平方米(2米×2米)的平坦场地,拔掉杂草,稍加平整,周围做一道较结实的土埂,以便灌水。

2、灌水前土壤湿度的测定:在离准备好的场地1—1.5米处,根据当地应测定田间持水量的深度,取2个重复的土样测定土壤湿度,并求出所有测值的平均。

3、灌水与覆盖:小区灌水量一般按下式求算:

Q=2?(a-w)ρ?S?h/100

Q:灌水量,单位为立方米。a:假设的所测深度土层中的平均田间持水量,一般沙土取20%,壤土取25%,粘土取27%,以百分值表示。w:灌水前所测深度的各层平均土壤湿度,以百分值表示。ρ:所测深度的平均土壤容重,一般取1.5。S:灌水场地面积,以平方米为单位。h:所要测定的深度,以米为单位。2:保证小区需水量的的保证系数。

干旱地区可适当增加灌水量。所有水应在一天内分次灌完,为避免水流冲刷表土可先在小区内放一些嵩草再灌水。当水分全部下渗

后,再盖上草席和塑料布,以防止蒸发和降水落到小区内。

4、测定土壤湿度:灌水后当重力水下渗后,开始测定土壤湿度。第一次测定土壤湿度的时间,根据不同土壤性质而定,一般沙性土灌后1—2天,壤性土2—3天,粘性土3—4天以后。每天取一次,每次取4个重复,下钻地点不应靠近小区边缘。土壤湿度测定:按烘干称重法测定土壤湿度的方法。

5、确定田间持水量:每次测定土壤湿度后,逐层计算同一层次前后两次测定的土壤湿度差值,若某层差值≤2.0%,则第二次测定值即为该层土壤的田间持水量,下次测定时该层土壤湿度可不测定。若同一层次前后两次测定值>2.0%,则需继续测定,直到前后两次测定值之差≤2.0%时为止。

6、要求田间持水量的测定深度:50厘米

三、测定前应对地段作如下记载:

1、地段土壤田间持水量测定日期;

2、地段名称、号码。

3、土壤面在观测地段中的位臵极其离道路、河流、林缘等自然体和建筑物的距离。

4、地势和地段小地形。

5、地段植被种类及其生长状况。

土壤含水量的测定(烘干法)

土壤含水量的测定(烘干法) 进行土壤水分含量的测定有两个目的: 一是为了解田间土壤的实际含水状况,以便及时进行灌溉、保墒或排水,以保证作物的正常生长;或联系作物长相、长势及耕栽培措施,总结丰产的水肥条件;或联系苗情症状,为诊断提供依据。 二是风干土样水分的测定,为各项分析结果计算的基础。前一种田间土壤的实际含水量测定,目前测定的方法很多,所用仪器也不同,在土壤物理分析中有详细介绍,这里指的是风干土样水分的测定。 风干土中水分含量受大气中相对湿度的影响。它不是土壤的一种固定成分,在计算土壤各种成分时不包括水分。因此,一般不用风干土作为计算的基础,而用烘干土作为计算的基础。分析时一般都用风干土,计算时就必须根据水分含量换算成烘干土。 测定时把土样放在105~110℃的烘箱中烘至恒重,则失去的质量为水分质量,即可计算土壤水分百分数。在此温度下土壤吸着水被蒸发,而结构水不致破坏,土壤有机质也不致分解。下面引用国家标准《土壤水分测定法》。 2.3.1适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。 2.3.2方法原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 2.3.3仪器设备 ①土钻;②土壤筛: xx1mm;③铝盒:

小型直径约40mm,高约20mm;大型直径约55mm,高约28mm;④分析天平: 感量为 0.001g和 0.01g;⑤小型电热恒温烘箱;⑥干燥器: xx变色硅胶或无水氯化钙。 2.3.4试样的选取和制备 2.3. 4.1风干土样选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 2.3. 4.2新鲜土样在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g,捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。 2.3.5测定步骤 2.3. 5.1风干土样水分的测定将铝盒在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重,准确到至 0.001g。用角勺将风干土样拌匀,舀取约5g,均匀地平铺在铝盒中,盖好,称重,准确至 0.001g。将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h。取出,盖好,移入干燥器内冷却至室温(约需20min),立即称重。风干土样水分的测定应做两份平行测定。

土壤背景值及其采样方法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 土壤背景值及其采样方法 土壤污染概念存在两种认识:一种是基于环境科学对土壤污染含义的解释,土壤污染概念存在两种认识:一种是基于环境科学对土壤污染含义的解释,指土壤环境中污染物累积含量达到一定程度,并对土壤功能和生态环境产生了有害影响,境中污染物累积含量达到一定程度,并对土壤功能和生态环境产生了有害影响,即以污染物含量及生态效应双重含义作为土壤污染与否及污染程度的评价标准;物含量及生态效应双重含义作为土壤污染与否及污染程度的评价标准;另一种理解则认为土壤污染程度是表征原始地质地球化学背景基础上叠加的外源污染作用强度,土壤污染程度是表征原始地质地球化学背景基础上叠加的外源污染作用强度,即以地球化学背景作为评价标准。 综上所述,学背景作为评价标准。 综上所述,土壤污染等级划分最理想的是通过不同污染等级能够反应人类活动不同强度、不同类别污染,又具有生态效应含义两个方面。 应人类活动不同强度、不同类别污染,又具有生态效应含义两个方面。 基准值具有地域性和成因性。 基准值具有地域性和成因性。 基准值存在一个基本单元,在这个基本单元内成因性与地域性达 1/ 7

到统一单元内成因性与地域性达到统一,基准值存在一个基本单元,在这个基本单元内成因性与地域性达到统一,区内元素服从正态分布,正态分布的期望值(均值)可以代表该单元的地球化学含量。 态分布,正态分布的期望值(均值)可以代表该单元的地球化学含量。 三是基准值是一个相对固定的值,不随时间变化而发生改变。 三是基准值是一个相对固定的值,不随时间变化而发生改变。 四是具有相对的代表性区域性的基准值由于以应用为目的,具有相对的代表性,四是具有相对的代表性,区域性的基准值由于以应用为目的,区域内无法以单一的函数确定地球化学元素的的分布特征。 无法确定有绝对代表性的数值,定地球化学元素的的分布特征。 无法确定有绝对代表性的数值,从而可能尽可能选择具有代表性的数值作为其基准值。 土壤环境背景值与基准值有所不同,代表性的数值作为其基准值。 土壤环境背景值与基准值有所不同,它不仅含有自然背景的部分,还可能含有一定的面源污染物(如大气降尘等)。 土壤环境背景值是指在一定的自然部分,还可能含有一定的面源污染物(如大气降尘等)土壤环境背景值是指在一定的自然。 历史期间,一定的地域内土壤中某些原有或淮原有状态的物质丰度原有或淮原有状态的物质丰度[2]。

土壤水份和植物组织含水量的测定

土壤水份和植物组织含水量的测定 实验的目的与要求: 通过对植物和土壤水分的测定来学习和使用烘干法水分测定仪,掌握实验和实习的技巧,了解一定的实习的规则! 通过对实习数据的比较,以及结合自身的知识来分析土壤和植物组织含水量的关系,了解水分对植物生长的影响,了解土壤中水分对植物生长的影响。 结合生态学的知识来分析土壤和植物含水量受整个生态系统的影响。 实验的主要内容: 记录实验地的周围环境的各种生态环境因素,如温度,风向,湿度。 测量土壤和植物组织含水量值,在不同的环境下测量对比,同一环境下不同物种的值。 记录实验测量的数据值,分析得出结论。 实习的主要工具: 1.烘干法水分测定仪(LSH-100A型): 最大秤量:100g 实际标尺分度值:1mg 准确度级别:2级 水分测量允许误差:±0.2%(样品≥2克) 水分含量测定可读性:0.01% 测量水分范围:0~100% 加热源:卤素灯(环型400W) 温控精度:±1℃ 加热温度设定:室温~160℃(以1℃调整) 时间设定:0~180min(以1min调整) 测量方法:手动、自动 操作温度范围:10~30℃ 电源及功耗:AC220V±22V 50Hz 420W 秤盘尺寸:¢100mm 外壳尺寸:360mm×250mm×270mm 净重:7kg 实验用剪刀、小袋子 实验原理: 首先对同一环境下的不同生长情况的高山榕进行水分的测定,记录数据并比较,然后对不同环境下的不同株池杉进行水分的测定,在数据中得出结论。用烘干法测定仪进行含水量的测定,使用小塑料袋来装实验品以防止植物叶子和土壤水分的蒸发。 实验的步骤: 首先进行样本的采样,在学校的马路边分别进行不同生长情况高山榕叶子的取样,然后再树下进行土壤的取样。在昭阳湖旁不同地方生长情况相同的池杉的叶子和土壤的进行取样。将取来的样品装入袋中,并做好标签。 预热烘干法测定仪后,将取来的样品放入烘干仪中保持5-8分钟,待屏幕中的数值稳定后进行数据的记录。 对数据进行整理分析和讨论,得出结论。 实验的结果:

西双版纳地区水文特性分析

西双版纳地区水文特性分析 摘要:本文从西双版纳的地理位置、地形特点、气候条件等基本情况入手,然后从径流、降水、水质等方面分析了西双版纳地区的水文特性。 关键字:西双版纳;水文;分析 Abstract: this article from the geographical position, topography characteristic of xishuangbanna, climate conditions, etc. Basic situation to obtain, and then analyzed from the aspects of runoff, precipitation and water quality in xishuangbanna region of hydrological features. Key words: xishuangbanna; Hydrology; analysis 中国分类号:P333文献标识码:A文章编号: 一、西双版纳自然地理状况简介 1位置。西双版纳位于我国云南省的南端,西双版纳傣族自治州境内,北纬21°08′~22°36′,东经99°56′~101°50′,与老挝、缅甸山水相连,和泰国、越南近邻,土地面积近2万平方公里,属北回归线以南的热带湿润区。 2地形。西双版纳地区的地形主要为丘陵、盆地、山地等,其中以山地和丘陵居多。总体地势南低北高,且北、西、东三面较高,中间低,呈马蹄状。 3气候条件。西双版纳属于亚热带季风性湿润气候,一年之中雨季和干季分别最为明显。且终年气候温暖、湿润多雨,具有“长夏无冬、一雨成秋”的特点。 4水系。西双版纳境内的河流均属于澜沧江水系,流经经缅甸、老挝、泰国等地,在越南南部胡志明市南面注入南海。澜沧江上中游河流深切,两岸高山对峙,下游多河谷平坝。澜沧江水系由干流和众多的支流组成,支流落差大、水资源丰富。中游降水量少,有雪水等补给,水量较为稳定,下游降水量大,水量充沛。昂曲是澜沧江最大支流,发源于青海省,海拔5664米。漾濞江是澜沧江在云南境内最大的支流,同时也是澜沧江第二大支流。另外还有威远江、南班河(又称补远江)、西洱河等较为著名的支流, 5土壤。西双版纳地区以赤红壤为主,占到了全区土地总面积的60%以上。南部为砖红壤,约占15%。另外,澜沧江以北地区还有大量紫色土壤分布,约占7%。其余分布的为红壤、黄壤以及盆地内水稻田的暗灰色水稻土等。 6植被。西双版纳地区气候温暖湿润,地质和土质情况也适宜各种植物生

土壤含水量测定方法小结

土壤含水量测定方法小结 1,烘干称重; 这个不多说了。准确度最高,但测定得到的是质量含 水量,与其他方法所得数据进行比较是注意换算。 2,中子仪; 技术比较成熟,准确性极高,是烘干法以外的第二标 准方法。 但是中子仪测定需要安装套管,理论上可达任何深度,设备昂贵,投入很大。中子射线对操作者身体有损害,严格来说需要相关证件才可以操作。无法测定表层土 壤。 3,电阻法; 一般使用石膏块作为介质埋设地下,石膏块中埋设两根导线,导线之间的石膏成分组成电阻,石膏块电阻与土壤含水量相关。石膏块制作简单,哪怕进口的成品成本也是非常低廉,可以作很多重复,可以不破坏土壤在田间连续自动监测。存在问题,石膏块滞后时间较长,所以不可能用来做移动式测定和自动灌溉系统。石膏块只适合用于非盐碱土壤中,同时石膏块不适合使用直流电(文献查得,表示怀疑,因为所有的石膏块读书表都是用干电池作为电源),测定受土壤类型影响很大,标定结果会随时间改变,达到一定年 限后,石膏会逐渐溶解到土壤中。 4,TDR(Time Domain Reflectometry) TDR有两种时域反射仪和时域延迟,两者均简称TDR。TDR技术是当前土壤水分测定装置的主流原理,可以连续、快速、准确测量。可以测量土壤表层含

水量。一般的TDR原理的设备响应时间约10-20秒,适合移动测量和定点监测。测定结果受盐度影响很小,TDR缺点是电路比较复杂,设备较昂贵。 5,FDR(Frequency Domain Reflectometry)几乎具有TDR的所有优点,探头形状非常灵活。比较夸张的甚至可以放在做成犁状放在拖拉机后面运动中 测量。FDR相对TDR需要更少的校正工作。 TDR和FDR同样有一个缺点,当探头附近的土壤有空洞或者水分含量非常不均匀时,会影响测定结果。 非常奇怪的是,基于FDR原理的往往是低端的仪器设备,根据笔者实际使用经验,FDR技术可能在精度上存在瓶颈,经常在5%的误差左右,写文章时候数据基本上不好用。

土壤湿度的测定方法

土壤湿度的测定方法 国内外有很多土壤水分测定方法。具体方法列举如下:称重法,时域反射法(TDR),石膏法,红外遥感法,频域反射法/频域法(FDR/FD法),滴定法,电容法,电阻法,微波法,中子法, Karl Fischer法,γ射线法和核磁共振法等。 ①烘干法 烘干法是测定土壤水分最普遍的方法,也是标准方法。具体为:从野外获取一定量的土壤,然后放到105℃的烘箱中,等待烘干。其中烘干的标准为前后两次称重恒定不变。烘干后失去的水分即为土壤的水分含量。计算公式为土壤含水量=W/M*100%,M为烘干前的土壤重量,W为土壤水分的重量,即M与烘干后土壤重量M’的差值。称重法缺点是费时费力(需8小时以上),还需要干燥箱及电源,不适合野外作业。如果采用酒精燃烧法,由于需要翻炒多次,极为不便,不适合用于细粒土壤和含有有机物的土壤,且容易掉落土粒或燃烧不均匀而带来较大误差,而且需要取土测量,对土壤有破坏性。 ②TDR(Time Domain Reflectometry)法 TDR法是上世纪80年代发展起来的一种土壤水分测定方法,中文为时域反射仪。这种方法在国外应用相当普遍,国内才刚开始引进,当各部门都相当重视。TDR是一个类似于雷达系统的系统,有较强的独立性,其结果与土壤类型、密度、温度基本无关。而且还有很重要的一点就是,TDR能在结冰下测定土壤水分,这是其他

方法无法比拟的。另外,TDR能同时监测土壤水盐含量,且前后两次测量的结果几乎没有差别。这种测定方法的精确度可见一斑。 ③欧速土壤水分传感器直接测量法 因为TDR法设备昂贵,我公司开始用比TDR更为简单的方法来测量土壤的介电常数,而且测量时间更短,在经过特定的土壤校准之后,测量精度高,而且探头的形状不受限制,可以多深度同时测量,数据采集实现较容易。

实验三 土壤水分含量的测定

实验三 土壤水分含量的测定 一、目的要求 土壤水分是土壤的重要组成部分,也是重要的土壤肥力因素。进行土壤水分的测定 有两个目的:一是了解田间土壤的水分状况,为土壤耕作、播种、合理排灌等提供依据; 二是在室内分析工作中,测定风干土的水分,把风干土重换算成烘干土重,可作为各项 分析结果的计算基础。 本实验要求掌握烘干法和酒精燃烧法测定土壤水分的原理和方法, 能较准确地测定 出土壤的水分含量。 二、仪器与试剂 天平(感量0.01g和0.001g)、烘箱、干燥器、称样皿、铝盒、量筒(10ml)、无 水酒精、滴管、玻棒等。 三、测定方法 测定土壤中水分含量的方法很多,常用的有烘干法和酒精燃烧法。烘干法是目前测 土壤水分的标准方法,其测定结果比较准确,适合于大批量样品的测定,但这种方法需 要时较长。酒精燃烧法测定土壤水分快但精确度较低,只适合田间速测。 (一)烘干法 1. 方法原理 在105±2℃的温度下从土壤中全部蒸发,而结构水不会破坏,土壤 有机质也不被分解。因此,将土壤样品至于105±2℃下烘至恒重,根据其烘干前后质量 之差,就可以计算出土壤水分含量的百分数。 2. 操作步骤 (1)取有盖的铝盒(或称样皿),洗净,放入干燥器中冷却至室温,然后再分析天 平上称重(W1),并注意标好号,以防弄错。 (2)用角匙取过1mm筛孔的风干土样4~5g(精确至0.001g),铺在铝盒中(或 称样皿中)进行称重(W2) (3)将铝盒盖打开,放入恒温箱中,在105±2℃的温度下烘6h左右。 (4)盖上铝盒盖子,将铝盒放入干燥器中20~30min,使其冷却至室温,取出称 重。 (5)打开铝盒盖子,放入恒温箱中,在105±2℃的温度下再烘2h,冷却,称重至 恒重(W3)。 3. 结果计算 以烘干土为基数计算土壤水分的百分含量(W%) 土壤水分含量= (W2- W3)/W3*100% 水分系数(x)=烘干土重/风干土重

土壤的基本组成性质分类解析

第一篇土壤的基本组成性质分类 第二章土壤生态系统的基本组成 §2.1 土壤矿物质 §2.2 土壤有机质 §2.3 土壤生物 §2.4土壤水分及其特性 §2.5土壤空气及其热量状况 目的与要求 1.了解土壤生态系统的基本组成 2.熟悉土壤的性质 3.掌握土壤的形成、分类与分布 4.掌握土壤环境及其功能 关键词 土壤矿物(soil mineral) 原生矿物(primary mineral) 次生矿物 (secondary mineral) 土壤腐殖质(soil humus) 胡敏酸(humic acids) 富啡酸(fulvic acid) 有机-矿质复合体(organo-mineral complex) 土壤微生物 (soil microorganism) 土壤质地(soil texture) 粒级(particle fraction) 土壤结构(soil structure) 土壤颜色(soil color) 土壤生态系统的基本组成 土壤是由固相、液相、气相三部分组成。适于植物生长的典型壤质土壤的体积组成为土壤孔隙占50%,内含水分和空气;土壤固体占50%,其中矿物质占45%,有机质占5%;土壤生物体均生活在土壤孔隙之中,如图所示。 第一篇土壤的基本组成、性质、分类 第二章:土壤生态系统的基本组成 §2.1土壤矿物质 本章重点介绍硅酸盐矿物的基本构造。 主要教学目标:

1、基本概念 2 、三种主要粘土矿物的性质 §2.1土壤矿物质 一、土壤矿物质的主要元素组成 矿物:是经各种地质作用,自然产生于地壳中的化合物或化学元素,是具有一定化学成分和物理性质的自然均质体,是组成岩石的基本单位。 自然界矿物有三千多种,造岩矿物只有几十种,且主要是硅酸盐类(即硅的含氧盐)矿物(占地壳重量的80%). 土壤矿物主要来自成土母质或母岩,是土壤的主要组成物质。土壤矿物构成了土壤的“骨骼”,它对土壤组成、性状和功能具有巨大的影响。 *一、土壤的矿物组成 *按照发生类型可将土壤矿物划分为原生矿物、次生矿物、可溶性矿物三大类。 原生矿物 (primary mineral)直接来源于母岩特别是岩浆岩。 *一、土壤的矿物组成 *原生矿物在风化和成土过程中新形成的矿物称为次生矿物。它包括 *次生层状硅酸盐:高岭石、蒙脱石、水云母、蛭石、绿泥石; 氧化物及其水化物:氧化铁、氧化铝、氧化硅、氧化锰; 碳酸盐:方解石(CaCO3)、白云石[CaMg(CO3)2]. §2.1土壤矿物质 一、土壤的矿物组成 硅酸盐矿物的基本构造 *由于粘土矿物是由硅氧片和水铝片迭合而成的,因此,要了解粘土矿物的构造和性质,必须先说明硅氧片和水铝片的结构状况。 1.基本结构单位 *原生硅酸盐矿物最基本的结晶构造单位,是硅氧四面体和铝氧八面体。 §2.1土壤矿物质 一、土壤的矿物组成 硅酸盐矿物的基本构造 *1、粘土矿物硅酸盐层的基本单位: *(1)硅氧四面体:由硅四面体连接而成,每一个硅四面体由一个硅离子与四个氧离子组成。 砌成一个三角形锥形体,一共四个面,故称为硅氧四面体 (SiO4)4- 。

河南省主要元素的土壤环境背景值_邵丰收

N ●能源环保●表1 河南省土壤A 、B 、C 层背景值统计量及范围 单位:mg /kg (另注明者除外) 层 样 统 元 点 计?素 次 数量算 术几 何平均值标准差平均值标准差分布类型95(%)范围值 层 样 统 元 点 计?素 次 数量算 术几 何平均值标准差平均值标准差分布类型95(%)范围值Cu Pb Zn Cd Ni Cr H g A 40720.0 5.919.9 1.35对11.0-36.1B 25721.7 6.421.3 1.36对11.5-39.2C 33820.7 6.820.6 1.44对10.03-42.49A 40722.3 5.321.8 1.27对13.6-35.0B 25721.5 4.921.0 1.28对13.0-34.1C 33821.3 5.420.8 1.30对12.4-34.8A 40762.513.561.9 1.25对40.1-95.7B 25763.013.962.2 1.27正35.3-90.6C 33863.113.962.9 1.25正35.4-90.9A 4070.0650.0210.065 1.4对0.034-0.124B 2570.0620.0220.060 1.5对0.030-0.121C 3380.0580.0220.057 1.5对0.027-0.120A 40727.47.927.3 1.31对16.0-46.4B 25729.77.9129.1 1.31正13.9-45.5C 33829.68.930.0 1.33对11.9-47.3A 40563.214.462.5 1.26正34.5-91.9B 25665.815.065.4 1.25对42.0-102.0C 33565.318.164.8 1.31正38.2-109.8A 4070.0250.0130.026 2.0对0.007-0.097B 2560.0450.0140.025 2.0对0.007-0.093C 3360.0200.0110.020 2.0对0.005-0.076As Co V Mn F 有机质(%)p H A 4079.83.99.4 1.6对 4.0-21.7B 25711.04.310.4 1.48正 2.5-19.5C 33810.64.810.2 1.57正 1.1-20.2A 40711.53.611.3 1.39对 5.8-21.8B 25712.13.811.8 1.38对 6.2-22.5C 33812.33.912.2 1.43对 6.0-24.5A 407118.747.3118.21.575对47.6-293.1B 257106.438.4107.41.569对43.6-264.5C 337110.439.2112.01.553对46.5-269.9A 407567158570 1.35对316-1029B 257597189590 1.35对324-1075C 338618230605 1.44对293-1250A 407439139442 1.42对221-888B 255457159454 1.43对224-921C 336477167474 1.44对229-984A 382 1.390.83 1.35 2.13对0.30-6.10B 2550.760.490.71 2.2对0.15-3.32C 3340.590.370.57 2.5对0.10-3.35A 3737.71.07.6 1.2正5.8-9.6B 2298.00.78.0 1.1正6.6-9.4C 3067.90.87.9 1.1正6.4-9.4表2 国内外土壤环境背景值对比表 单位:mg /kg (另注明者除外) 元素 符号国内土壤背景值国外土壤背景值河南省土壤背景值黄河下游潮土背景值全国土壤背景值日本土壤背景值美洲大陆连片地区世界土壤背景值中位数95%范围值平均值95%范围值中位数95%范围值几何均值算术均值中位数全距中位数全距Cu 20.011.0-36.121.420.6-22.220.77.3-55.125.5024.8217<1-700302-250Pb 21.813.6-35.014.413.9-14.923.510.0-56.118.1017.1219<10-700352-300Zn 62.540.1-95.765.163.4-66.868.028.4-161.157.3054.8960<5-2500901-900Cd 0.0640.034-0.1240.0910.088-0.0940.0790.017-0.3330.380.330//0.350.01-2.00Ni 27.316.0-46.424.924.1-25.724.97.7-71.019.3018.5819<5-700502-750Cr 63.334.5-91.953.652.4-54.957.319.3-150.228.3025.67541-2000705-1500H g 0.0260.007-0.0970.0220.020-0.0240.0380.006-0.272////0.060.01-0.50As 9.8 4.0-21.712.9412.57-13.329.62.5-33.57.20 6.827.2<0.1-9760.1-40.0Co 11.2 5.8-21.810.259.87-10.6311.64.0-31.2//9.1<0.3-7080.05-6.50V 112.747.6-293.1//76.834.8-168.2//80<7-500903-500M n 560316-1029600578-623540130-1786450.3431.99600<200-7000100020-10000F 433221-888453441-463453191-1012////20020-700有机质(%)1.290.30-6.10/ /2.00.3-13.2//////p H 7.95.8-9.6//6.84.1-10.4//////河南省主要元素的土壤环境背景值 河南省环境保护研究所 邵丰收 周皓韵 摘要 根据《河南省土壤环境背景值研究》成果,给出了河南省境内Cu 、Pb 、Zn 、Cd 、Ni 、Cr 、Hg 、As 、Co 、V 、M n 、F 、有机质等 元素(项目)的背景值,分析了背景值在剖面上的分部特征,并与 国内外背景值进行了比较。 关键词 土壤 元素 背景值 1 背景值概况背景值的概念始于地球化学,常被理解为克拉克含量,也称 地球化学丰度。在环境科学中,背景值表征岩石、土壤、水、大气、 生物等环境要素在自然界的存在与发展过程中形成的本身固有 的物质组成和结构特征,反映环境原有状况。土壤环境背景值即 是土壤在其自然成土过程中形成的物理、化学特征。土壤环境背 景值的研究,对于评价区域性环境质量,制定各类环境标准、法 规,研究各类污染物在土壤中的迁移转化规律,进而预测、预报 环境污染的发展与变化趋势,制定环境治理计 划,合理规划工农业发展布局等,具有重要意义。国外自60年代即有美国、前苏联、日本等国家开始了土壤背景值方面的研究,国内从70年代由中科院有关研究所在北京、南京等地开展了土壤环境背景值研究,在1987年国家还将土壤环境背景值研究列为“七五”重点科技课题进行攻关。河南省土壤环境背景值研究起步较晚,仅有省科学院地理所于1980-1982年间 进行了主要针对农业项目的背景值调查。 2 《河南省土壤环境背景值研究》课题概 况《河南省土壤环境背景值研究》是国家“七五”攻关项目《全国土壤环境背景值研究》(项目编号75-60-01-01)河南分课题(合同号75-60-01-01-13)的扩大和延伸,在完成国家课题下达的河南省内 86个土壤剖面环境背景值调查与研究基础上,将研究对象扩大到全省12个主要土类407个土壤剖面,分析样本数1047个,共取得有效实验数据17178个。课题于1987年2月开始,1996年6月结束,1996年11月通过河南省环保局主持的成果鉴定。1997年5月获得河南省环保局一九九七年度科技进步一等奖,1997年11月,获河南省科技进步三等奖。3 河南省土壤元素背景值表示方法土壤元素背景值有多种表示方法,一般按其在土壤中的丰度,即元素在土壤中的含量的算术平均值来表示。《河南省土壤环境背景值研究》采用《全国土壤环境背景值研究》课题组规定的方法,以数学期望值(算术平均值,几何平均值,中位数等)来表示背景值集中的趋势,用相应的标准差来表示其离散程度,并据以建立背景值的表达方式,其数学处理过程如下:①对元素测定的原始数据进行顺序量统计,用偏度峰度法确定分布类型。 ②根据分布类型,剔除异常值:对于分布类型属于正态分布的元素,剔除X -±3S (X -为算术平均 值,S 为标准偏差)以外的异常值;对 于对数正态分布的元素,剔除M /D 3 ~M D 3(M 为几何平均值,D 为几何 标准偏差)范围以外的异常值。③根据分布类型,确定背景值表 达方式和参数:对于属于正态分布的元素,用X -±2S(X -表示95%置信度的背景值范围;对于属于对数正态分布的元素,用M /D 2~M D 2表示95%置信度的背景值范围。 4 河南省土壤主要元素的环境背景值按上述原则确定出的河南省A 层(表层)、B 层(淀积层)、C 层(母质层)土壤环境背景值见表1。为便于与国内外土壤环境背景值进行比较,将河南省土壤环境背景值及国内外部分地区土壤环境背景值主要统计量列于表2。由表1可以看出:各元素在土壤垂直剖面中(自上而下)的含量变化的总趋势为:Cu 、Zn 、Ni 、Cr 、As 、Co 、M n 、F 、p H 基本呈现增高趋势,Pb,Cd,Hg ,V ,有机质呈现降低趋势。由表2可以看出,河南省土壤环境背景值除钒(V )的范围值上限略为偏高外,大都在全国土壤背景值含量范围之内;与黄河下游潮土区背景值相比较,各元素范围值上限均明显偏高;与日本土壤背景值比较(以中位数与其几何均值比),Cd 明显偏低,Cr 偏高,其余项目接近;与世界土壤背景值比较(中位数相比),Cd 、Ni 、Pb 、Hg 、M n 明显偏低,F 略微偏高,其余项目较接近。 5 主要参考文献 5.1 河南省环境保护研究所《河南省土壤环境背景研究》1996年6月 5.2 国家环境保护局主持、中国环境监测总站主编《中国土壤元素背景值》中国环境科学出版社1990年 5.3 李健、郑春江等《环境背景值数据手册》中国环境科学出版社1989年 5.4 中国环境监测站《“七五”国家重点科技攻关项目全国土壤背景值》研究参考资料(一)~(三)1988年(内部资料)本栏责编 任瑞芳·29·

渠江流域水文特性分析

龙源期刊网 https://www.360docs.net/doc/ca3824392.html, 渠江流域水文特性分析 作者:刘萍 来源:《房地产导刊》2015年第01期 【摘要】本文根据多年收集的水文资料从降水、径流、泥沙、蒸发在年内及年际间的分布规律进行分析,总结出渠江流域独特的水文特性。 【关键词】渠江降水;径流;蒸发;泥沙水文特性分析 一、流域自然地理概况 渠江流域地处四川省东北部,长江二级支流,嘉陵江左岸最大一级支流,位于东经 106°28~108°24、北纬30°26~33°05之间。河口集水面积39200km2,域内支流纵多,呈扇形分布,渠县三汇镇以上分巴河与州河两大支流。 巴河发源于米仓山南麓,属米仓山暴雨区,集水面积19927km2。巴中市三江口以下为巴河主干,以上分南江与恩阳河两大支流。平昌县城纳通江,通江在通江县城以上分大通江与小通江。 州河发源于大巴山南麓,属大巴山暴雨区,集水面积11165km2,宣汉县城以下为州河主干,以上分前、中、后河。 渠江流域总的地势为东北高西南低,以大巴山、米仓山为分水岭,域内最高处海拔2500m 以上,至三汇镇海拔245m,源头多崇山峻岭,山高沟深,坡度较大,至下游浅丘区河道比降逐渐变小。域内植被较好,喀斯特地貌发育,众多峰丛、地下河、槽谷等。河谷深切,山谷高差800~1200m。河道蜿蜒曲折,滩沱相间,水位变化很大,丰、枯流量差值可达近万倍。 二、降水 1、降水特性 渠江流域处于大巴山以南地区,大巴山为四川盆地与汉中盆地的分界山,属褶皱山,它西延即为米仓山。域内气候易受西太平洋副热带高压的控制,水汽向上输送强劲,又处于盆地北部边缘地带,极易受北方南下冷空气的侵袭而形成强降水过程。因此越是上游的站降雨量越大,为降水高值区,位于后河源头的皮窝站实测最大年降水量为2637.9mm,大通江上游的碧溪站实测最大年降水量2113.7mm,而处于下游的三汇站实测最大年降水量1483.6mm,为本流域降水低值区。各站多年平均降水量在1050~1600mm之间。流域汛期较长,从3月到10月底、有时甚至到11月中旬都有可能出现强降雨过程,在实测资料中通江及上游大通江1994年11月中旬出现全年最大洪水,当月降水量多站位居第二。

土壤含水量测量实验报告

土壤水分的测定实验 一、实验目的 1、了解土壤的实际含水情况,以便适时灌排,保证植物生长对水分的需求。 2、风干土样水分的测定,是各项分析结果计算的基础。土壤水分含量的多少,直接影响土壤的固、液、气三相比例,以及土壤的适耕性和植物的生长发育。 二、实验原理 土壤水分大致分为化学结合水、吸湿水和自由水三类。自由水是可供植物自由利用的有效水和多余水,可以通过土壤在空气中自然风干的方法从土壤中释放出来;吸湿水是土壤颗粒表面被分子张力所吸附的单分子水层,只有在105-110℃下才能摆脱土壤颗粒表面分子力的吸附,以气态的形式释放出来,由于土粒对水汽分子的这种吸附力高达成千上万个大气压,所以这层水分子是定向排列,而且排列紧密,水分不能自由移动,也没有溶解能力,属于无效水;而化学结合水因为参与了粘土矿物晶格的组成,所以是以OH-的形式存在的,要在600--700℃时才能脱离土粒的作用而释放出来。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 三、实验器材 铝盒、烘箱、干燥器、天平、小铲子、小刀。 四、实验步骤 1、在室内将铝盒编号并称重,重量记为W0 。 2、用已知重量的铝盒在天平上称取欲测土样15—20克,称量铝盒与新鲜土壤样

鄱阳湖环湖区水文气候特征

鄱阳湖环湖区水文气候特征 胡魁德,何友礼,罗嗣林 (江西省水文局,江西南昌 330002) 摘要:本文简介了鄱阳湖环湖区的形态和特征,概括了鄱阳湖环湖区的气候资源、水资源和水环境等水文气象特征,为研究、开发和整治鄱阳湖提供了科学依据。 关键词:鄱阳湖;环湖区;气候资源;水资源;特征值;水环境 1 鄱阳湖环湖区概况 鄱阳湖是目前我国最大的淡水湖泊,位于长江中下游南岸,115°49′~116°46′E、28°24′~29°46′N之间。流域面积为162225km2,其中156743km2位于江西省境内,占全流域的96.6%;其余5482km2分属闽、浙、皖、湘等省,占全流域的3.4%。鄱阳湖纳赣江、抚河、信江、饶河和修水五水系以及博阳河、东河和西河诸河来水,经鄱阳湖调蓄后由湖口汇入长江。五河中赣江最大,外洲水文站集水面积为80948 km2,占鄱阳湖流域面积的49.9%;抚河李家渡水文站集水面积为15811km2,占鄱阳湖流域面积的9.7%;信江梅港水文站集水面积为15535km2,占鄱阳湖流域面积的9.6%;饶河石镇街、古县渡水文(位)站以上集水面积为14218km2,占鄱阳湖流域面积的8.8%;修河永修水位站以上集水面积为14539km2,占鄱阳湖流域面积的9.0%。 根据全国水资源综合规划水资源分区(水利部水利水电规划设计总院,2003年5月)划分,鄱阳湖环湖区(以下简称湖区)范围为:赣江从外洲水文站以下、抚河李家渡水文站以下、信江梅港水文站以下、乐安河石镇街水文站以下、昌江古县渡水文站以下、修水永修水位站以下至湖口县的湖口水文站。集水面积约占鄱阳湖流域面积的13%,为21174km2。其中江西省内面积为20190km2,安徽省东至县流入湖区面积为984km2。共辖有南昌市区(县)、新建、进贤、永修、德安、星子、九江市(县)、湖口、都昌、彭泽、余干、波阳、万年、樟树等县(市)。素称“鱼米之乡”之称,是江西的粮仓,也是我国重要商品粮基地之一。 鄱阳湖的自然地理特征是高水是湖,低水似河,洪水一片,枯水一线。汛期五河洪水入湖,湖水漫滩,湖体扩大,水流平缓;冬春季节,湖水落槽,湖滩显露,湖面缩小,比降增大,水流湍急,与河流无异。因此,洪枯水时,湖面面积相差极大。高程22m(吴淞基面,下同)时,湖面面积为3993km2,容积为296亿m3。高程11m时,湖面面积仅340km2,容积仅7亿m3。 湖盆自东、西向中,由南向北倾斜,湖底高程一般由12m降至湖口约1m。

土壤含水量测量方法

土壤含水量测量方法 ( 1 )称重法(Gravimetric) 也称烘干法,这是唯一可以直接测量土壤水分方法,也是目前国际上的标准方法。用土钻采取土样,用0.1g 精度的天平称取土样的重量,记作土样的湿重 M,在 105℃的烘箱内将土样烘 6~8 小时至恒重,然后测定烘干土样,记作土样的干重 Ms 土壤含水量=(烘干前铝盒及土样质量-烘干后铝盒及土样质 量)/(烘干后铝盒及土样质量-烘干空铝盒质量)*100% ( 2 )张力计法(Tensiometer) 也称负压计法,它测量的是土壤水吸力测量原理如下:当陶土头插入被测土壤后,管内自由水通过多孔陶土壁与土壤水接触,经过交换后达到水势平衡,此时,从张力计读到的数值就是土壤水(陶土头处)的吸力值,也即为忽略重力势后的基质势的值,然后根据土壤含水率与基质势之间的关系(土壤水特征曲线)就可以确定出土壤的含水率 ( 3 ) 电阻法(Electricalresistance) 多孔介质的导电能力是同它的含水量以及介电常数有关的,如果忽略含盐的影响,水分含量和其电阻间是有确定关系的电阻法是将两个电极埋入土壤中,然后测出两个电极之间的电阻。但是在这种情况下,电极与土壤的接触电阻有可能比土壤的电阻大得多。因此采用将电极嵌入多孔渗水介质(石膏、尼龙、玻璃纤维等)中形成电阻块以解决这个问题 ( 4 ) 中子法(Neutronscattering) 中子法就是用中子仪测定土壤含水率中子仪的组成主要包括:一个快中子源,一个慢中子检测器,监测土壤散射的慢中子通量的计数器及屏蔽匣,测试用硬管等。快中子源在土壤中不断地放射出穿透力很强的快中子,当它和氢原子核碰撞时,损失能量最大,转化为慢中子(热中子),热中子在介质中扩散的同时被介质吸收,所以在探头周围,很快的形成了持常密度的慢中子云

土壤水分的测定(吸湿水和田间持水量)

土壤水分的测定(吸湿水和田间持水量) 田间持水量是土壤排除重力水后,本身所保持的毛管悬着水的最大数量。它是研究土、水、植物的关系,研究土壤水分状况,土壤改良、合理灌溉不可缺少的水分常数。 吸湿水是风干土样水分的含量,是各项分析结果计算的基础。 一、土壤吸湿水的测定 测定原理 风干土壤样品中的吸湿水在105±2℃的烘箱中可被烘干,从而可求出土壤失水重量占烘干后土重的百分数。在此温度下,自由水和吸湿水都被烘干,然而土壤有机质不能被分解。 测定步骤 1.取一干净又经烘干的有标号的铝盒(或称量瓶)在分析天平上称重为A。 2.然后加入风干土样5—10g(精确到 0."0001g),并精确称出铝盒与土样的总重量B。 3.将铝盒盖斜盖在铝盒上面呈半开启状态,放入烘箱中,保持烘箱内温度105±2℃,烘6小时。 4.待烘箱内温度冷却到50℃时,将铝盒从烘箱中取出,并放入干燥器内冷却至室温称重,然后再启开铝盒盖烘2小时,冷却后称其恒重为C。前后两次称重之差不大于3mg。 结果计算 该土样吸湿水的含量(%) =[ (B-A)-(C-A)/(C-A)×100% =[ (湿土重-烘干土重)/烘干土重×100%注意事项

(1)要控制好烘箱内的温度,使其保持在105±2℃,过高过低都将影响测定结果的准确性。 (2)干燥器内所放的干燥剂要在充分干燥的情况下方可放入烘干土样。否则干燥剂要重新烘干或更换后方可放入干燥器中。 主要仪器 铝盒、分析天平( 0."0001g)、角匙、烘箱、坩埚钳、干燥器、瓷盘。 二、田间持水量的测定 测定方法(铁框法) 1.在田间选择具有代表性的地块,面积不少于 0."5m2,仔细平整地面。 2.将铁框击入平整好的地块约6—7cm深,其中大框(50×50cm2)在外,小框(25×25cm2)在内,大小框之间为保护区,其之间距离要均匀一致。小框内为测定区。 3.在上述地块旁挖一剖面,测定各层容重及其自然含水量。从而计算出总孔隙度及自然含水量所占容积%,然后根据总孔隙度与现有自然含水量所占容积%之差,求出实验土层(一般为1m左右)全部孔隙都充满水时应灌水的数量,为保证土壤充分渗透,实际灌水量将为计算需水量的 1."5倍。按下式计算测试区和保护区的灌水量: 灌水量(m3)=H(a-w)×d×s×h 式中: a—土壤饱和含水量(%); w—土壤自然含水量(%);

土壤含水量的测定实验报告书

1. 实验二 土壤含水量的测定 (烘干法与酒精燃烧法) 一、目的意义 进行土壤含水量的测定有两个目的:一是为了解田间土壤的实际含水情况,以便及时进行播种、灌排、保墒措施,以保证作物的正常生长;或联系作物长相长势及耕作栽培措施,总结丰产的水肥条件。二是风干土样水分的测定,是各项分析结果计算的基础。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 二、土壤自然含水量的测定 土壤自然含水量是指田间土壤中实际的含水量,它随时在变化之中,不是一个常数。土壤自然含水量测定的方法,介绍烘干法和酒精燃烧法。 (一)烘干法 1.方法原理 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 2.操作步骤 (1)将铝盒擦净,烘干冷却,在1/100天平上称重,并记下铝盒号码(A )。 (2)在田间取有代表性的土样(0~20cm )20g 左右,迅速装入铝盒中,盖好盒盖,带回室内(注意铝盒不可倒置,以免样品撒落),在天平上称重(B ),每个样品至少重复测3份。 (3)将打开盖子的铝盒(盖子放在铝盒旁侧或盖子平放在盒下),放人105℃±2℃的恒温箱中烘6~8小时。 (4)待烘箱温度下降至50℃左右时,盖好盖子,置铝盒于干燥器中30分钟左右,冷却至室温,称重(C ),如无干燥器,亦可将盖好的铝盒放在磁盘或木盘中,待至不烫手时称重。 (5)然后,启开盒盖,再烘4小时,冷却后称重,一直到前后两次称重相差不超过1%时为止(C )。 3.结果计算 土壤含水量(%)= 100A C C B ?-- 式中:A — 铝盒重(g ) B — 铝盒加湿土重(g ) C — 铝盒加烘干土重(g ) 4.注意事项 (1)烘箱温度以105℃±2℃为宜,温度过高,土壤有机质易碳化逸失。在烘箱中,一

土壤自然含水量的测定

土壤自然含水量的测定(烘干法) 一、仪器设备。 1、铝盒:大型的、小型的、玻璃的。 2、天平:感量为0.01g(百分之一)。 3、电热恒温鼓风干燥箱。 4、干燥器:内有变色硅胶或无水氯化钙。 二、土壤样品:通过2㎜筛(10目)的土壤样。 三、操作步骤。 1、小型铝盒的烘干及称量。①编号,将铝盒标记好实验号。②取小型铝盒在恒温干燥箱中于105℃±2℃烘约2小时。③用钳子将空铝盒移入干燥内冷却至室温(约20分钟)称重,精确至0.0001g,作好记录。 2、称土样,称取土样约5g,精确至0.0001g,作好记录。 3、土样装盒及烘干。将称好的土壤样,均匀地平铺装在铝盒内,铝盒盖倾斜放在铝盒上,置于已预热至105℃±2℃的恒温干燥箱中烘约6小时。 4、土样盒称重。将烘干的土样盒取出,盖好,移入干燥器内冷至室温(约20分钟),立即称重,精确到0.0001g,作好记录。 5、结果计算:结果保留小数点后一位。 6、注意事项: ①保持干燥内的干燥剂整洁。 ②试样必须烘6小时。 ③严格控制恒温温度在105℃±2℃范围内。

土壤有机质的测定 (油溶加热重铬酸钾—容量法) 一、仪器设备。 1、油溶锅。用20—26㎝的不锈钢锅代替,内装固体石蜡(工业用)。 2、硬质试管。18—25㎜×200㎜。 3、铁丝笼。大小和形状与油溶锅配套。 4、滴试管。10.00ml、25.00ml。 5、温度计。300℃。 6、电炉。1000W,配套有消毒柜。 二、试剂。 1、重铬酸钾消煮用液[1/6K2Cr2O7=0.8mol.L-1]; 称取40.0g重铬酸钾溶于600—800mL水中,过滤到1L量筒内,用水洗涤滤纸,并加水至1L。 2、浓硫酸消煮用液。取密度为1.84的浓硫酸加水定容至1L,保存待用。 3、重铬酸钾标准溶液(0.2000mol.L-1)。 称取经130℃烘2-3小时的重铬酸钾(优级纯)9.807克,先用少量水溶解,然后无损地移入1000ml容量瓶中,加水定容。 4、硫酸亚铁铵标准溶液(0.2mol.L-1) 称取硫酸亚铁铵78.4g,溶解于600—800ml水中,加浓硫酸20ml,搅拌均匀,定容至1000ml,贮于棕色瓶中保存。 每次使用时标定其浓度。吸取0.2000 mol.L-1重铬酸钾标准液25.00ml于150ml三角瓶中,加入浓硫酸3-5ml和邻菲罗啉指示剂2-3滴,用硫酸亚铁铵标准溶液滴定,由橙黄-蓝绿-棕红即可,根据硫酸亚铁铵溶液消耗量计算其浓度,取中间值 C=G·V1/V2=0.2×25÷V2 V2=滴定时消耗硫酸亚铁铵标准液的体积(ml)。 5、邻菲罗啉指示剂。

相关文档
最新文档