幂的运算法则

幂的运算法则
幂的运算法则

.

幂的运算法则

1、同底数幂的乘法:底数不变,指数相加,

a m xa n=a(m+n)

25x23=2(5+3)=28=2x2x2x2x2x2x2x2=256

2、同底数幂的除法:底数不变,指数相减

a m÷a n=a(m-n)

75÷73=7(5-3)=72=7x7=49

3、幂的乘方:底数不变,指数相乘

(a m)n=a mxn

(52)3=56=5x5x5x5x5x5=25x25x25=125x25=3125

4、积的乘方:等于各因数分别乘方的积

a m x

b m=(axb)m

43x23=(4x2)3=83=8x8x8=128

5、商的乘方(分式乘方):分子分母分别乘方,指数不变

a m÷

b m=(a÷b)m或(a∕b)m

63÷23=(6÷2)3或(6∕2)3=33=3x3x3=27

如有侵权请联系告知删除,感谢你们的配合!

精品

中职数学基础模块上册实数指数幂及其运算法则word学案

§ 实数指数幂及其运算法则 导学案 目标要求:理解有理指数幂的含义,能运用有理指数幂的运算性质进行运算和化简,会进行根式与分数指数幂的相互转化;了解实数指数幂的意义,体会有理指数幂向无理指数幂逼近的过程.通过复习和练习,理解分数指数幂的意义和学会根式与分数指数幂之间的相互转化及有理指数幂运算性质的应用,培养学生的思维能力,注重学生数学思想的渗透。 重点:实数指数幂的概念及分数指数的运算性质。 难点:对非整数指数幂意义的了解,特别是对无理指数幂意义的了解。 学习过程 一、自主学习: 1.整数指数幂概念: n a a a a =?? ?个 )(*∈N n ; ()00a a = ≠; n a -= ()0,a n N * ≠∈. 2.整数指数幂的运算性质:(1)m n a a ?= (),m n Z ∈; (2)() n m a = (),m n Z ∈;(3)()n ab = ()n Z ∈ 其中 m n a a ÷= ,n a b ?? = ??? 3.复习练习: 求(1)9的算术平方根,9的平方根; (2)8的立方根,-8的立方根. 问:什么叫a 的平方根?a 的立方根? 二、合作探究: 1.有理指数幂 问题1:将下列根式写成分数指数幂的形式: 2,32,3)2(,35,325,23)5( 补充说明:0的正分数指数幂等于0,0的负分数指数幂没有意义。 2.有理指数幂的运算法则 问题2:计算(1)2 32 1x x ?; (2)2 34)(a ; (3)5 3)(xy 2 12, 2 32, 2 32, 3 15, 3 25, 3 25 公式:)0(1>= a a a n n ),,,0(为既约分数且 n m N n m a a a n m n m +∈>=

幂的运算法则也可以逆用哟

幂的运算法则也可以逆用哟 学习同底数幂的乘法,幂的乘方,积的乘方几同底数幂的除法的运算法则,同学们不仅要熟练掌握这些法则进行有关的幂的运算,还要会逆用这些法则进行有关来解决一些问题. 一、同底数幂的乘法法则的逆用 同底数幂的乘法法则为:a m·a n=a m+n(m,n为正整数),将其逆用为a m+n=a m·a n (m,n为正整数). 例1 已知3m=9,3n=27,求3m+n+1的值. 分析:根据同底数幂的乘法法则的逆用,可得3m+n+1=3m·3n·3,然后将3m=9,3n=27代入计算即可. 解:3m+n+1=3m·3n·3=9×27×3=729. 评注:根据本题的已知条件,也可以直接求出m,n的值代入计算. 二、幂的乘方法则的逆用 幂的乘方的运算法则为(a m)n=a mn(m,n为正整数),将其逆用为a mn=(a m)n(m,n为正整数). 例2 已知a b=9,求a3b-a2b的值. 分析:根据已知条件a b=9,可以逆用幂的运算法则将a3b化为(a b)3,a2b化为(a b)2,然后将a b=9代入计算. 解: a3b-a2b=(a b)3-(a b)2=93-92=9×92-92=92(9-1)=81×8=648. 评注:根据已知条件不易直接求到a,b的值,此时可求到逆用幂的运算法则进行变形计算. 三、积的乘方运算法则的逆用 积的乘方的运算法则为(a b)n=a n·b n(n为正整数),将其逆用为(a b)n=a n·b n(n为正整数). 例3 已知a m=16,b m=81,求(a2b)m的值. 分析:根据已知条件不容易直接求到a,b,m的值,此时可逆用积的乘方运算法则,将(a2b)m变为a2m·b m,然后将已知条件代入求值. 解: (a2b)m=(a2)m·b m=(a m)2·b m=162×81=20736. 评注:当已知条件是幂的形式,所求式子是积的乘方的形式时,可思考逆用积的

幂的运算

幂的运算 1、什么是幂 幂指乘方运算的结果. m n 指将n 自乘m 次.把m n 看作乘方的结果,叫做n 的m 次幂。其中,n 称为底,m 称为指数(写成上标)。 由幂的定义可以看出幂是乘方运算的结果而不是运算的过程。 m n 的亦可视为1×n ×n ×n...×n (注共m 个n 相乘)即起始值1(乘法的单位元)乘底数的指数次幂。这样定义了后,很易想到如何一般指数为0和负数的情况︰ 除了0之外所有数的零次方都是1,即n 0=1(n ≠0); 指数为负数的幂定义为m n - = m n 1; 分数为指数的幂定义为n m a = n m a 。 2、幂的运算 2.1、幂的运算公式 同底数幂的乘法m a ×n a =)(n m a + 幂的乘方:n m a )(=mn a 同指数幂的乘法:m b a )(?=m a ×m b 同底数幂相除:m a ÷n a =)(n m a - (a ≠0) 这些公式也可以这样用: )(n m a += m a ×n a mn a =n m a )( m a ×m b =m b a )(? )(n m a -= m a ÷n a (a ≠0) 2.2幂的运算公式的运用 运用幂的运算公式前应先知道这些公式是怎么得来的,观察幂的运算公式有什么特点,这样才能更好的运用公式。 幂的运算公式都是由幂的定义推导而来,是为了方便特殊情况幂的运算。

2.2.1幂的运算公式推导 2.2.1.1同底数幂的乘法m a ×n a =)(n m a + 因为:m a 由幂的定义为a ×a ×a ×...a(m 个a 相乘); n a 由幂的定义为a ×a ×a ×...a(n 个a 相乘); m a ×n a 由幂的定义为{a ×a ×a ×...a(m 个a 相乘)}×{a ×a ×a ×...a(n 个a 相乘)}为m+n 个a 相乘即)(n m a +; 所以:m a ×n a =)(n m a + 2.2.1.2幂的乘方: n m a )(=mn a 因为:n m a )(由幂的定义为m a ×m a ×m a ...×m a (n 个m a 相乘) 其中m a 由幂的定义为a ×a ×a ×...a(m 个a 相乘) 即n m a )(由幂的定义也可以为{a ×a ×a ×...a(m 个a 相乘)}×{a ×a ×a ×...a(m 个a 相乘)}×{a ×a ×a ×...a(m 个a 相乘)}×...{a ×a ×a ×...a(m 个a 相乘)}(注:共n 个{a ×a ×a ×...a(m 个a 相乘)}) 所以:n m a )(=mn a 2.2.1.3同指数幂的乘法:m b a )(?=m a ×m b 因为:m b a )(?由幂的定义为(a ×b)×(a ×b)×(a ×b)×...×(a ×b)(共m 个a ×b 相乘)=a ×b ×a ×b ×a ×b ×...×a ×b(共m 个a ×b 相乘)=a ×a ×a ×...a(共m 各a 相乘)×b ×b ×b ×...b(共m 各a 相乘) 所以:m b a )(?=m a ×m b 2.2.1.4同底数幂相除:m a ÷n a =)(n m a - (a ≠0) 因为:当a=0时n a 意义; 当a ≠0时,m a ÷n a 由幂的定义为{a ×a ×a ×...a(m 个a 相乘)}÷{a ×a ×a ×...a(n 个a 相乘)} 所以:m a ÷n a =)(n m a - (a ≠0) 2.2.2幂的运算公式运用选择

幂的运算法则

幂的运算法则 1、同底数幂的乘法a a a n m n +=m ,即同底数幂相乘,底数不变,指数 相加。在考试过程中通常需要用其逆运算a a a n n m =+m ,即当在运算 中出现指数相加时,我们往往将其拆分成同底数幂相乘的形式。 2、同底数幂的除法a a a n m n -m =÷,即同底数幂相除,底数不变,指数 相减。在考试过程中通常需要用其逆运算a a a n n m ÷=-m ,即当在运算中出现指数相减时,我们往往将其拆分成同底数幂相除的形式。 3、幂的乘方a a mn m =)(n ,即当出现内、外指数(m 是内指数,n 是外指数)时,底数不变,指数相乘。在考试过程中通常需要用其逆运算)()(n m n a a a m mn ==,这时注意:具体用何种拆法要根据题目给出的是a m 还是a m 的形式。常在比较两个幂的大小等题目中出现。而在比较幂的大小类题目中,常用方法是转化为同底数幂或者同指数幂的形式。 如:(1)、化同指数比较。比较3275100与的大小,观察可以发现,底数2与3之间不存在乘方关系,因此,我们将其转化为同指数的幂进行比较,()1622225254251004===?,()2733325 25325753===?,因为27>16,所以16272525>,即2310075> (2)化同底数比较。比较934589与观察可以发现,底数9与3之间存 在着乘方关系即392=,因此,对于这样的题,我们将其转化为同底数幂进行比较,()33399045224545===?,而90>89,∴338990>即3989 45>。 规律小结:在幂的大小比较中,底数之间存在乘方关系时,化为同底数幂,比较指数大小;底数之间不存在乘方关系时,化为同指数

指数运算法则

指数运算法则 指数函数的一般形式为y=a^x(a>0且不=1) ,函数图形下凹,a大于1,则指数函数单调递增;a小于1大于0,则为单 调递减的函数。指数函数既不是奇函数也不是偶函数。要想使 得x能够取整个实数集合为定义域,则只有使得a的不同大小 影响函数图形的情况。 一、法则 在函数y=a^x中可以看到: (1)指数函数的定义域为所有实数的集合,这里的前提 是a大于0且不等于1,对于a不大于0的情况,则必然使得 函数的定义域不存在连续的区间,因此我们不予考虑,同时a 等于0一般也不考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4) a大于1,则指数函数单调递增;a小于1大于0, 则单调递减。 (5)可以看到一个显然的规律,就是当a从0趋向于无 穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y 轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y 轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平 直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过定点(0,1) (8)指数函数无界。 (9)指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,此函数图像是 偶函数。例1:下列函数在R上是增函数还是减函数?说明理由. ⑴y=4^x 因为4>1,所以y=4^x在R上是增函数;⑵ y=(1/4)^x 因为0<1/4<1,所以y=(1/4)^x在R上是减函数1对 数的概念如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那 么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对 数的底数,N叫做真数. 由定义知:①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特 别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化式子名称abN指 数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)loga(M/N)=logaM-logaN. (3)logaM n=nlogaM (n∈R). 二、记忆口决 有理数的指数幂,运算法则要记住。 指数加减底不变,同底数幂相乘除。 指数相乘底不变,幂的乘方要清楚。 积商乘方原指数,换底乘方再乘除。 非零数的零次幂,常值为 1不糊涂。 负整数的指数幂,指数转正求倒数。 看到分数指数幂,想到底数必非负。 乘方指数是分子,根指数要当分母。 看到分数指数幂,想到底数必非负。

逆用幂的运算法则巧解题

逆用幂的运算法则巧解题 幂的四条运算法则是: (1)同底数幂相乘,底数不变,指数相加,即 n m n m a a a +=? (2)幂的乘方,底数不变,指数相乘,即()mn n m a a = (3)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即()n n n b a ab = (4)同底数幂相除,底数不变,指数相减,即 n m n m a a a -=÷ (a m n ≠0,,为正整数,且m n >) 同学们对法则的正向运用比较得心应手,但把它们反过来运用却很不习惯。其实,逆用幂的运算法则,常能化繁为简,化难为易,收到事半功倍的效果。幂的运算法则的逆用,常见的有下面四种情况,现举例如下: 一、用于计算 例1. 计算: (1)199960000.1252-?() ;(2)319147 ?-?? ??? 解:(1)原式=(-0.125)1999·82000 =(-0.125)1999·81999·8 =(-0.125×8)1999·8 =(-1)1999·8 =-8. (2)()77727113999????=?-=?- ? ????? 原式 ()=?-?? ???????? ?=-=-9191177

练习:(1)2 2 449???? ??; (2)13128)1250(?-.; (3)3 20002000)2()1250(?. (4)(0.5)10×(-8)3 二、用于求值 例2. 已知a a m n ==32,,求: (1)a m n 23+的值;(2)a m n 23-的值。 解:(1)()()a a a m n m n 23239872+=?=?= (2)()()a a a m n m n 2323989 8-=÷=÷= 例3. 若2x+3y-4=0,求9x ·27y 的值. 解:依题意,得:2x+3y =4. ∴9x ·27y =32x ·33y =32x+3y =34=81. 练习:(5)若103x =125,求101-x . (6)若5x =2 25,5y =125,求53x+2y 的值 (7)已知2a =5,2b =4,2c =10,求22a+b-3c 的值. (8)若n 为正整数,且7x n 2=,则n 222n 3)x (4)x 3(-的值为( ) A .833 B .2891 C .3283 D .1225 三、用于比较大小 例4. 比较3555、4444、5333的大小

幂的运算方法总结

幂的运算方法总结 幂的运算的基本知识就四条性质,写作四个公式: ①a m×a n=a m+n ②(a m)n=a mn ③(ab)m=a m b m ④a m÷a n=a m-n 只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。 问题1、已知a7a m=a3a10,求m的值。 思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。 方法思考:只要是符合公式形式的都可套用公式化简试一试。 方法原则:可用公式套一套。 但是,渗入幂的代换时,就有点难度了。 问题2、已知x n=2,y n=3,求(x2y)3n的值。 思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。 因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728 方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。 方法原则:整体不同靠一靠。 然而,遇到求公式右边形式的代数式该怎么办呢? 问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。 思路探索:试逆用公式,变形出与已知同形的幂即可代入了。 简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300

方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。 方法原则:逆用公式倒一倒。 当底数是常数时,会有更多的变化,如何思考呢? 问题4、已知22x+3-22x+1=48,求x的值。 思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。 简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x =6×22x=48 ∴22x=8 ∴2x=3 ∴x=1.5 方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。 问题5、已知64m+1÷2n÷33m=81,求正整数m、n的值。 思路探索:幂的底数不一致使运算没法进行,怎样把它们变一致呢?把常数底数都变成质数底数就统一了。 简解:64m+1÷2n÷33m =24m+1×34m+1÷2n÷33m=24m+1-n×3m+1=81=34 ∵m、n是正整数∴m+1=4,4m+1-n=0 ∴m=3,n=13 方法思考:冪的底数是常数时,通常把它们分解质因数,然后按公式3展开,即可化成同底数冪了。 问题6、已知2a=3,2b=6,2c=12,求a、b、c的关系。 思路探索:求a、b、c的关系,关键看2a、2b、2c的关系,即3、6、12的关系。6是3的2倍,12是6的2倍,所以2c=2×2b=4×2a,由此可求。 简解:由题意知2c=2×2b=4×2a ∴2c=2b+1=2a+2 ∴c=b+1=a+2

(完整版)幂的运算总结及方法归纳

幂的运算 一、知识网络归纳 二、学习重难点 学习本章需关注的几个问题: ●在运用n m n m a a a +=?(m 、n 为正整数),n m n m a a a -=÷(0≠a ,m 、n 为正整数且m >n ),mn n m a a =)((m 、n 为正整数),n n n b a ab =)((n 为正整数),)0(10≠=a a ,n n a a 1 = -(0≠a ,n 为正整数)时,要特别注意各式子成立的条件。 ◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。换句话说,将底数看作是一个“整体”即可。 ◆注意上述各式的逆向应用。如计算20052004425.0?,可先逆用同底数幂的乘法法则将20054写成442004?,再逆用积的乘方法则计算 11)425.0(425.02004200420042004==?=?,由此不难得到结果为1。 ◆通过对式子的变形,进一步领会转化的数学思想方法。如同底数幂的乘法

就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。 ◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律”这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。 一、同底数幂的乘法 1、同底数幂的乘法 同底数幂相乘,底数不变,指数相加. 公式表示为:()m n m n a a a m n +?=、为正整数 2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 () m n p m m p a a a a m n p ++??=、、为正整数 注意点: (1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数. (2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算. 例题: 例1:计算列下列各题 (1) 34a a ?; (2) 23b b b ?? ; (3) ()()()2 4 c c c -?-?- 简单练习: 一、选择题 1. 下列计算正确的是( ) A.a2+a3=a5 B.a2·a3=a5 C.3m +2m =5m D.a2+a2=2a4 2. 下列计算错误的是( ) A.5x2-x2=4x2 B.am +am =2am C.3m +2m =5m D.x·x2m-1= x2m 3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b 5 ④ p 2+p 2+p 2=3p 2 正确的有( ) A.1个 B.2个 C.3个 D.4个 4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( ) A.100×102=103 B.1000×1010=103 C.100×103=105 D.100×1000=104 二、填空题 1. a4·a4=_______;a4+a4=_______。 2、 b 2·b ·b 7 =________。 3、103·_______=1010 4、(-a)2·(-a)3·a5 =__________。 5、a5·a( )=a2·( ) 4=a18 6、(a+1)2·(1+a)·(a+1)5 =__________。 中等练习: 1、 (-10)3·10+100·(-102 )的运算结果是( ) A.108 B.-2×104 C.0 D.-104

逆用幂的运算性质和乘法公式巧妙解题

逆用幂的运算性质和乘法公式巧妙解题 在整式乘除运算中,有的运用幂的运算性质运算,有的运用乘法公式运算,大量习题都是直接套用公式运算,但有一部分如果直接运用公式不仅计算很繁,而且很难计算准确.如果把公式反过来使用,就会化繁为简,化难为易. 一、逆用幂的运算性质 1.同底数幂乘法与同底数幂除法互为逆运算. 例1 与a M b2的积为4a3m+2b2n+3的单项式是______. 例1是已知积和其中一个因式,求另一个因式;例2是已知除式和商式求被除式,这时可利用乘法与除法的互逆关系来解答. 例3 已知3M=4,3N=5,求3M+n. 本题如果想先求出m,n的值,再代入3M+n中求值,是很难办到的,初一学生更无法进行.但若将同底数幂乘法性质反过来用,就可得到3M+n=3M·3N,这样问题就迎刃而解了. 2.积的乘方与幂的乘方性质的逆用. 例4计算(a-1)2(a2+a+1)2. 这个题若按一般运算顺序,先算乘方,后算乘法,就会很繁杂,但若仔细观察,不难发现,作为两个因式的幂的指数都是2,如果将积的乘方性质反过来运用就会简捷很多. 解:(a-1)2(a2+a+1)2 =[(a-1)(a2+a+1)]2 =(a3-1)2 =a6-2a3+1. 一般地,当两个同指数幂相乘,且底数之积较特殊时,就应考虑到逆向运用积的乘方的性质. 例5 已知a x=2,a y=5,求a3x-2y的值. 该题可先将同底数幂除法性质反过来运用后得到a3x-2y=a3x÷a2y,这时再将幂的乘方性质逆用一次,得到a3x-2y=a3x÷a2y=(a x)3÷(a y)2,再代入已知条件就可求出所求代数式的值.

幂的运算例题精讲

幂的运算例题精讲 【知识方法归纳】 知识要点 主要内容 友情提示 同底数幂相乘 m n mn a a a ?= (m 、n 是正整数); a 可以多项式 幂的乘方 ()m n mn a a = (m 、n 是正整数) mn m n n m a a a ==)()( 积的乘方 ()n n n ab a b = (n 是正整数) n n n ab a )()(= 同底数幂的除法 m m n n a a a -=(m 、n 是正整数,m >n) n m n m a a a ÷≠÷ 方法归纳 注意各运算的意义,合理选用公式 注意:零指数幂的意义“任何不等于0的数的0次幂都等于1”和负指数幂的意义“任何不等于0的数的负次幂等于它正次幂的倒数” 知识点1 同底数幂的意义及同底数幂的乘法法则(重点) 同底数幂的乘法法则: +?=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同, 它们的指数之和等于原来的幂的指数。即m n m n a a a +=?(,m n 都是正整数). 【典型例题】 例1:计算. (1)2 3 4 444??; (2)3 4 5 2 6 22a a a a a a ?+?-?; (3)1 1211()() ()()()n n m n m x y x y x y x y x y +-+-+?+?+++?+ 例2:辨析:下列运算是否正确?不正确的,请改为正确的答案。 (1)x 3 ·x 5 = x 15 ( ) ; (2) b 7 + b 7 =b 14 ( ) ; (3)a 5- a 2=a 3 ( ) (4) 2x 3+ x 3=2x 6 ( ) ; (5) (b- a)3=-(a- b)3 ( ) ; (6)(- a- b)4=(a- b)4 ( )

指数与指数幂的运算(基础)

指数与指数幂的运算 A 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: 1.理解分数指数的概念,掌握有理指数幂的运算性质 (1)理解n 次方根,n 次根式的概念及其性质,能根据性质进行相应的根式计算; (2)能认识到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化; (3)能利用有理指数运算性质简化根式运算. 2.掌握无理指数幂的概念,将指数的取值范围推广到实数集; 3.通过指数范围的扩大,我们要能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力; 4.通过对根式与分数指数幂的关系的认识,能学会透过表面去认清事物的本质. 学习策略: 学习实数指数幂及其运算时,应熟练掌握基本技能:运算能力、处理数据能力以及运用科学计算器的能力. 二、学习与应用 (1 )零指数幂:a 0= (a 0) “凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对性.我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记. 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

(2)负整数指数幂:a-p= (a0, p是数) (3)一般地,如果一个数x的等于a,即a x= 2,那么,这个数x就叫做a的平方根。也叫做二次方根.一个正数有个平方根,它们是互为;0只有个平方根,它是;负数平方根. (4)一般地,如果一个数的等于a,这个数就叫做a的立方根(也叫做三次方根). 要点一:整数指数幂的概念及运算性质 1.整数指数幂的概念 ( )* .................................... n a n Z =∈; () ...................................... a a =; ................................... (0,) n a a n Z* -=∈. 2.运算法则 (1)m n a a?=; (2)()n m a=; (3)() ............................ m n a m n a a =>≠ ,; (4)()m ab=. 要点二:根式的概念和运算法则 1.n次方根的定义: 若x n=y(n∈N*,n>1,y∈R),则x称为y的n次方根. n为奇数时,正数y的奇次方根有个,是数,记为n y;负数y的 奇次方根有个,是数,记为n y;零的奇次方根为,记为 要点梳理——预习和课堂学习 认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听 课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源 ID:#10160#391630

七年级数学幂的运算及整体代入(法则的逆用二)(北师版)(含答案)

学生做题前请先回答以下问题 问题1:幂的运算法则: ①同底数幂相乘,_________,_________.即_____________. ②同底数幂相除,_________,_________.即_____________. ③幂的乘方,___________,___________.即_____________. ④积的乘方等于___________.即_____________. 问题2:幂的运算法则逆用: ①观察已知及所求,对比确定______________________之间的关系; ②根据____________对已知或所求进行等价变形,使之成为__________________. 幂的运算及整体代入(法则的逆用二)(北师版)一、单选题(共9道,每道11分) 1.已知,则的值是( ) A. B. C. D. 答案:C 解题思路: 根据积的乘方等于乘方的积;幂的乘方,底数不变,指数相乘, 对左边进行运算,得到 再根据等式两边字母和相同字母的指数都对应相等,可知: , ∴, ∴ 故选C.

试题难度:三颗星知识点:幂的运算 2.已知,,则的值为( ) A.12 B.9 C.8 D.3 答案:B 解题思路: 思路分析: ①观察已知和所求,x,y不能求出,考虑整体代入, 考虑把,当作整体; ②逆用幂的运算法则,对所求进行等价变形,找到整体,然后代入. ∵, 故选B. 试题难度:三颗星知识点:整体代入 3.已知,,则的值为( ) A.-80 B.2 C.3 D.82 答案:A 解题思路: ∵,

故选A. 试题难度:三颗星知识点:整体代入 4.计算,,则的值为( ) A.-30 B.-20 C.-8 D.10 答案:A 解题思路: 故选A. 试题难度:三颗星知识点:整体代入 5.若,则的值为( ) A.1 B.3 C.4 D.6 答案:B 解题思路: 观察已知和所求,发现等式左右两边,幂的底数不同, 分析可知,16是4的平方,12是3和4的乘积, 因此考虑逆用幂的运算法则,对已知进行变形,使之成为同底数的幂.

幂的运算

幂的运算 一、教学内容: 1.同底数幂的乘法 2.幂的乘方与积的乘方 3.同底数幂的除法 二、技能要求: 掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法),能用字母式子和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。 三、主要数学能力 1.通过幂的运算到多项式乘法的学习,初步理解“特殊——一般——特殊”的认识规律,发展思维能力。 2.在学习幂的运算性质、乘法法则的过程中,培养观察、综合、类比、归纳、抽象、概括等思维能力。 四、学习指导 1.同底数幂的乘法:a m·a n=a m+n(m, n是自然数) 同底数幂的乘法法则是本章中的第一个幂的运算法则,也是整式乘法的主要依据之一。学习这个法则时应注意以下几个问题: (1)先弄清楚底数、指数、幂这三个基本概念的涵义。 (2)它的前提是“同底”,而且底可以是一个具体的数或字母,也可以是一个单项式或多项式,如: (2x+y)2·(2x+y)3=(2x+y)5,底数就是一个二项式(2x+y)。

(3)指数都是正整数 (4)这个法则可以推广到三个或三个以上的同底数幂相乘,即 a m·a n·a p....=a m+n+p+... (m, n, p都是自然数)。 (5)不要与整式加法相混淆。乘法是只要求底数相同则可用法则计算,即底数不变指数相加,如: x5·x4=x5+4=x9;而加法法则要求两个相同;底数相同且指数也必须相同,实际上是幂相同系数相加, 如-2x5+x5=(-2+1)x5=-x5,而x5+x4就不能合并。 例1.计算:(1) (- )(- )2(- )3(2) -a4·(-a)3·(-a)5 解:(1) (- )(- )2(- )3分析:①(- )就是(- )1,指数为1 =(- )1+2+3②底数为- ,不变。 =(- )6③指数相加1+2+3=6 = ④乘方时先定符号“+”, 再计算的6次幂 解:(2) -a4·(-a)3·(-a)5分析:①-a4与(-a)3不是同底数幂 =-(-a)4·(-a)3·(-a)5可利用-(-a)4=-a4变为同底数幂 =-(-a)4+3+5②本题也可作如下处理: =-(-a)12-a4·(-a)3·(-a)5=-a4(-a3)(-a5)

中职数学基础模块上册《实数指数幂及其运算法则》word教案

实数指数幂及运算 课前预习案 【课前自学】 一 、 整数指数 1、正整指数幂的运算法则 (1)m n a a = ,(2)()m n a = ,(3)m n a a = ,(4)()m ab = 。 2、对于零指数幂和负整数指数幂,规定:0___(0)a a =≠, ____(0,)n a a n N -+=≠∈。 二、 分数指数幂 1.n 次方根的概念 . 2.n 次算术根的概念 . 3.根式的概念 . 4.正分数指数幂的定义 1 n a = ; m n a = . 5.负分数指数幂运算法则: m n a -= . 6.有理指数幂运算法则:(设a>0,b>0,,αβ是任意有理数) a a αβ= ;()a αβ= ;()a b α= 自学检测(C 级) =-0)1(______ ; =-3)x 2(_______; 3)21(--=_______ ; =-223 )y x (_____ 课内探究案 例:化简下列各式

(1 (2 (3) )0(322>a a a a ; (4)232520432()()()a b a b a b --?÷; (5)12231111362515()()46x y x y x y ----- (6)111222m m m m --+++. 当堂检测: 1. (C 级)化简44)a 1(a -+的结果是( ) A. 1 B. 2a-1 C. 1或2a-1 D. 0 2.(C 级) 用分数指数幂表示下列各式:

32x =_________;31a =_________;43)(b a +=_________; 322n m +=_________;32y x =_________. 3. (C 级) 计算: 21)49 64(- =________ 3227=________;________= 41 10000; 课后拓展案 1.(C 级)计算: (1) 21 6531 -÷a a a (2) )32(431313132----÷ b a b a (3) (4). 6433)1258(b a 2. (C 级)计算:(1)3163)278(-- b a ; (2)632x x x x (3)22 121)(b a -; (4)302 32)()32()2(--?÷a b a b a b . 3.(B 级)k 2)1k 2()1k 2(222---+-+-等于( )

幂的运算知识讲解

幂的运算(基础) 【学习目标】 1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、除法、幂的乘方、积的乘方); 2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算. 【要点梳理】 要点一、同底数幂的乘法性质 a m .a n = a m+n (其中m 、n 都是正整数). 即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它 们的指数之和等于原来的幂的指数。 即 a m+n = a m .a n (m 、n 都是正整数). 要点二、同底数幂的除法性质 a m ÷a n = a m-n (其中m 、n 都是正整数). 即同底数幂相除,底数不变,指数相减. 逆用公式: a m-n = a m ÷a n

要点三、幂的乘方法则 (a m )n = a mn (m 、n 都是正整数) 即幂的乘方,底数不变,指数相乘. 要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数) (2)逆用公式: a mn =(a m ) n ,根据题目的需要常常逆用幂的乘方运算能将某些 幂变形,从而解决问题. 要点三、积的乘方法则 (ab)n =a n b n (其中n 是正整数). 即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 要点诠释:(1)公式的推广:(abc) n =a n b n c n (n 为正整数). (2)逆用公式: a n b n =(ab) n 逆用公式适当的变形可简化运算过程,尤其是遇到底数互 为倒数时,计算更简便.如:10 10 101122 1.22???? ?=?= ? ????? 要点四、 不等于0的数的0次幂是1 0的0次幂没有意义 (任何非零实数的0次方都等于1,包括负数。) 注意事项 (1)底数可以是任意实数,也可以是单项式、多项式. (2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏. (3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加. (4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯.

幂的运算知识总结

幂的四则运算(知识总结) 一、同底数幂的乘法 运算法则:同底数幂相乘,底数不变,指数相加。用式子表示为:n m n m a a a +=?(m 、n 是正整数) 练习: a 3·a =_______ a ·a 7—a 4 ·a 4 =____ 二、同底数幂的除法 运算法则:同底数幂相除,底数不变,指数相减。用式子表示为:n m n m a a a -=÷。(0≠a 且 m 、n 是正整数,m>n 。) 补充: 零次幂及负整数次幂的运算:任何一个不等于零的数的0次幂都等于1;任何不等于零的数的p -(p 是正整数)次幂,等于这个数的p 次幂的倒数。用式子表示为:)0(10≠=a a ,p p a a 1=-(0≠a ,p 是正整数)。 练习: 1、下面的计算对不对?如果不对,应怎样改正? (1)236x x x =÷ (2)m m m =÷4 5 (3)33a a a =÷ (4)224)()(c c c -=-÷- 2、计算: 03,15-,310-,27-,101-,0 )2004( 三、幂的乘方 运算法则:幂的乘方,底数不变,指数相乘. 用式子表示为: ()n m mn a a =(m 、n 都是正 整数) 注:把幂的乘方转化为同底数幂的乘法 练习: 1、计算:

①()()()()2452232222x x x x -?-?②()()()3 2212m n m a a a a -?-? 2、下列各式的计算中,正确的是( ) A.()235x x = B.()236x x = C.()2121n n x x ++= D.326x x x ?= 补充: 同底数幂的乘法与幂的乘方性质比较: 幂的运算 指数运算种类 同底数幂乘法 乘法 加法 幂的乘方 乘方 乘法 四、积的乘方 运算法则:两底数积的乘方等于各自的乘方之积。用式子表示为:()n n n b a b a ?=?(n 是正整数) 扩展 p n m p n m a a a a -+=÷?()np mp p n m b a b a = (m 、n 、p 是正整数) 提高训练 1.填空 (1) (1/10)5×(1/10)3 = (2) (-2 x 2 y 3) 2 = (3) (-2 x 2) 3 = (4) 0.5 -2 = (5) (-10)2×(-10)0×10-2 = 2.选择题 (1) 下列说法错误的是. A. (a -1)0 = 1 a ≠1 B. (-a )n = - a n n 是奇数

幂的运算(提高)知识讲解

幂的运算(提高) 【要点梳理】 要点一、同底数幂的乘法性质 +?=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、 多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数 与原来的底数相同,它们的指数之和等于原来的幂的指数。即 m n m n a a a +=?(,m n 都是正整数). 要点二、幂的乘方法则 ()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘. 要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘 方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则 ()=?n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 要点诠释:(1)公式的推广:()=??n n n n abc a b c (n 为正整数). (2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010 101122 1.22?????=?= ? ????? 要点四、注意事项 (1)底数可以是任意实数,也可以是单项式、多项式. (2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要

幂的运算法则也可以逆用哟教学文案

精品文档 精品文档幂的运算法则也可以逆用哟 学习同底数幂的乘法,幂的乘方,积的乘方几同底数幂的除法的运算法则,同学们不仅要熟练掌握这些法则进行有关的幂的运算,还要会逆用这些法则进行有关来解决一些问题. 一、同底数幂的乘法法则的逆用 同底数幂的乘法法则为:a m·a n=a m+n(m,n为正整数),将其逆用为a m+n=a m·a n (m,n为正整数). 例1 已知3m=9,3n=27,求3m+n+1的值. 分析:根据同底数幂的乘法法则的逆用,可得3m+n+1=3m·3n·3,然后将3m=9,3n=27代入计算即可. 解:3m+n+1=3m·3n·3=9×27×3=729. 评注:根据本题的已知条件,也可以直接求出m,n的值代入计算. 二、幂的乘方法则的逆用 幂的乘方的运算法则为(a m)n=a mn(m,n为正整数),将其逆用为a mn=(a m)n(m,n为正整数). 例2 已知a b=9,求a3b-a2b的值. 分析:根据已知条件a b=9,可以逆用幂的运算法则将a3b化为(a b)3,a2b化为(a b)2,然后将a b=9代入计算. 解: a3b-a2b=(a b)3-(a b)2=93-92=9×92-92=92(9-1)=81×8=648. 评注:根据已知条件不易直接求到a,b的值,此时可求到逆用幂的运算法则进行变形计算. 三、积的乘方运算法则的逆用 积的乘方的运算法则为(a b)n=a n·b n(n为正整数),将其逆用为(a b)n=a n·b n(n为正整数). 例3 已知a m=16,b m=81,求(a2b)m的值. 分析:根据已知条件不容易直接求到a,b,m的值,此时可逆用积的乘方运算法则,将(a2b)m变为a2m·b m,然后将已知条件代入求值. 解: (a2b)m=(a2)m·b m=(a m)2·b m=162×81=20736. 评注:当已知条件是幂的形式,所求式子是积的乘方的形式时,可思考逆用积的

相关文档
最新文档