初三九年级数学沪科版 第23章 解直角三角形第23章 专训(word版)整合提升密码

初三九年级数学沪科版 第23章  解直角三角形第23章  专训(word版)整合提升密码
初三九年级数学沪科版 第23章  解直角三角形第23章  专训(word版)整合提升密码

解码专训一:巧用构造法求几种特殊角的三角函数值名师点金:对于30°、45°、60°角的三角函数值,我们都可通过定义利用特

殊直角三角形三边的关系进行计算;而在实际应用中,我们常常碰到像15°、22.5°、67.5°等一些特殊角的三角函数值的计算,同样我们也可以构造相关图形,利用

数形结合思想进行巧算.

巧构造15°与30°角的关系的图形计算15°角的三角函数值1.求sin 15°,cos 15°,tan 15°的值.

巧构造22.5°与45°角的关系的图形计算22.5°角的三角函数值2.求tan 22.5°的值.

巧用折叠法求67.5°角的三角函数值

3.小明在学习“锐角的三角函数”中发现,将如图所示的矩形纸片ABCD 沿过点B的直线折叠,使点A落在BC边上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC边上的点F处,然后还原,求67.5°角的正切值.

(第3题)

巧用含36°角的等腰三角形中的相似关系求18°、72°角的三角函数值

4.求sin 18°,cos 72°的值.

巧用75°与30°角的关系构图求75°角的三角函数值5.求sin 75°,cos 75°,tan 75°的值.

解码专训二:巧用三角函数解学科内综合问题

名师点金:锐角三角函数体现着一种新的数量关系——边角关系,锐角三角函数解直角三角形,既是相似三角形及函数的延续,又是继续学习三角学的基础,利用三角函数可解决与学科内的一次函数、反比例函数、相似三角形,一元二次方程等综合问题,也会应用到后面学习的圆的内容中,它的应用很广泛.

利用三角函数解与函数的综合问题

1.如图,直线y=kx-1与x轴、y轴分别交于B、C两点,tan∠OCB=1 2.

(1)求点B的坐标和k的值;

(2)若点A(x,y)是第一象限内的直线y=kx-1上的一个动点,在点A的运动过程中,试写出△AOB的面积S与x的函数表达式.

(第1题)

2.如图,反比例函数y=k

x(x>0)的图象经过线段OA的端点A,O为原点,

作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=3 2.

(1)求k的值;

(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=k

x(x>0)

的图象恰好经过DC的中点E,求直线AE对应的函数表达式;

(3)若直线AE与x轴交于点M,与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论,并说明理由.

(第2题)

利用三角函数解与方程的综合问题

3.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a、b是关于x的一元二次方程x2-mx+2m-2=0的两个根,求Rt△ABC中较小锐角的正弦值.

利用三角函数解与相似的综合问题

4.如图,在矩形ABCD中,点E是CD的中点,点F是边AD上一点,连接FE并延长交BC的延长线于点G,连接BF,BE,且BE⊥FG.

(1)求证:BF=BG;

(2)若tan∠BFG=3,S△CGE=63,求AD的长.

(第4题)

解码专训三:应用三角函数解实际问题的四种常见问题名师点金:在运用解直角三角形的知识解决实际问题时,要学会将千变万化的实际问题转化为数学问题,要善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,若不是直角三角形,应尝试添加辅助线,构造出直角三角形进行解答,这样才能更好地运用解直角三角形的方法求解.其中仰角、俯角的应用问题,方向角的应用问题,坡度、坡角的应用问题要熟练掌握其解题思路,把握解题关键.

定位问题

1.(2014·贺州)如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.

(1)求海轮在航行过程中与灯塔C的最短距离;(结果精确到0.1海里)

(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin 55°≈0.819,cos 55°≈0.574,tan 55°≈1.428,tan 42°≈0.900,tan 35°≈0.700,tan 48°≈1.111)

(第1题)

坡坝问题

2.如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE =20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F

处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考数据:2≈1.414,3≈1.732)

(第2题)

测距问题

3.一条东西走向的高速公路有两个加油站A,B,在A的北偏东45°方向还有一个加油站C,C到高速公路的最短距离是30千米,B,C间的距离是60千米,想要经过C修一条笔直的公路与高速公路相交,使两路交叉口P到B,C的距离相等,请求出交叉口P到加油站A的距离.(结果保留根号)

测高问题

4.(2015·盐城)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼

房在地面上的影长AE=10米.现有一只小猫睡在台阶的MN这层上晒太阳.(3取1.73)

(1)求楼房的高度约为多少米?

(2)过了一会儿,当α=45°时,问小猫还能否晒到太阳?请说明理由.

(第4题)

解码专训四:利用三角函数解判断说理问题名师点金:利用三角函数解答实际中的“判断说理”问题:其关键是将实际问题抽象成数学问题,建立解直角三角形的数学模型,运用解直角三角形的原理来解释实际问题.

航行路线问题

1.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.

(第1题)

工程规划问题

2.A,B两市相距150千米,分别从A,B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心、45千米为半径的圆,tan α=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接A,B两市的高速公路.连接A,B两市的高速公路会穿过风景区吗?请说明理由.

(第2题)

拦截问题

3.(2015·荆门)如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1 000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值)

(第3题)

台风影响问题

4.如图所示,在某海滨城市O附近海面有一股强台风,据监测,当前台风中心位于该城市的南偏不20°方向200 km的海面P处,并以20 km/h的速度向北偏西65°的PQ方向移动,台风侵袭的范围是一个圆形区域,当前半径为60 km,且圆的半径以10 km/h的速度不断扩大.

(1)当台风中心移动4 h时,受台风侵袭的圆形区域半径增大到________km;当台风中心移动t h时,受台风侵袭的圆形区域半径增大到____________km;

(2)当台风中心移动到与城市O距离最近时,城市O是否会受到台风侵袭?请说明理由.(参考数据:2≈1.41,3≈1.73)

(第4题)

解码专训五:解直角三角形中常见的热门考点名师点金:本章主要学习锐角三角函数定义,锐角三角函数值,解直角三角形,以及解直角三角形的实际应用,重点考查运用解直角三角形的知识解决一些几何图形中的应用和实际应用,是中考中的必考内容.

锐角三角函数的定义

1.(2015·南通)如图,在平面直角坐标系中,直线OA过点(2,1),则tan α的值是()

A.

5

5B. 5 C.

1

2D.2

(第1题)

(第2题)

2.如图,延长Rt △ABC 斜边AB 到点D ,使BD =AB ,连接CD ,若tan ∠BCD =1

3,则tan A =( )

A .32

B .1

C .13

D .23

3.如图,∠AOB 是放置在正方形网格中的一个角,点A 、B 、O 均在格点上,则cos ∠AOB 的值是________.

(第3题)

(第4题)

4.如图,在矩形ABCD 中,E 为边CD 上一点,沿AE 折叠,点D 恰好落在BC 边上的F 点处,若AB =3,BC =5,则tan ∠EFC 的值为________.

5.如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =15,AB 的垂直平分线ED 交BC 的延长线于D 点,垂足为E ,求sin ∠CAD 的值.

(第5题)

特殊角的三角函数值及其计算

6.在等腰直角三角形ABC 中,∠C =90°,那么sin A 等于( ) A .12 B .22 C .3

2 D .1

7.若等腰三角形底边与底边上的高的比是23,则顶角为( ) A .60° B .90° C .120° D .150° 8.计算:(cos 60°)-1

÷(-1)2 016

+|2-8|-2

2+1

×(tan 30°-1)0.

解直角三角形

(第9题)

9.如图是教学用的直角三角板,边AC =30 cm ,∠C =90°,tan ∠BAC =3

3,则边BC 的长为( )

A .30 3 cm

B .20 3 cm

C .10 3 cm

D .5 3 cm

10.(2015·日照)如图,在直角△BAD 中,延长斜边BD 到点C ,使DC =1

2BD ,

连接AC,若tan B=5

3,则tan∠CAD的值为()

A.

3

3B.

3

5C.

1

3D.

1

5

(第10题)

(第11题)

11.(2014·大庆)如图,矩形ABCD中,AD=2,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=________.

12.(2014·临沂)如图,在?ABCD中,BC=10,sin B=9

10,AC=BC,则?

ABCD的面积是________.

(第12题)

解直角三角形的实际应用

13.(2015·南京)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45 km/h和36 km/h,经过0.1 h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O 多远?(参考数据:sin58°≈0.85,cos 58°≈0.53,tan 58°≈1.60)

(第13题)

三角函数与学科内的综合

14.(2015·上海)已知在平面直角坐标系xOy中(如图),抛物线y=ax2-4与x轴的负半轴相交于点A,与y轴相交于点B,AB=25,点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D,设点P的横坐标为m.

(1)求这条抛物线的表达式;

(2)用含m的代数式表示线段CO的长;

(3)当tan∠ODC=3

2时,求∠PAD的正弦值.

(第14题)

解直角三角形中思想方法的应用

a.转化思想

15.如图所示,已知四边形ABCD,∠ABC=120°,AD⊥AB,CD⊥BC,AB=303,BC=503,求四边形ABCD的面积.(要求:用分割法和补形法两种方法求解)

(第15题)

b.方程思想

16.如图,在Rt△ABC中,∠ACB=90°,sin B=错误!,点D是BC上一点,DE⊥AB于点E,CD=DE,AC+CD=9,求BE,CE的长.

(第16题)

17.(中考·泰州)如图,为了测量山顶铁塔AE的高,小明在27 m高的楼CD 底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角为36°52′.已知山高BE为56 m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin 36°52′≈0.60,tan 36°52′≈0.75)

(第17题)

答案

解码专训一

1.解:如图,作Rt△ABC,∠BAC=30°,∠C=90°,延长CA到D,使AD=AB,则∠D=15°,设BC=a,则AB=2a,AC=3a,∴CD=AC+AD =AC+AB=(2+3)a.

在Rt△BCD中,BD=BC2+CD2=a2+(7+43)a2=(6+2)a.

∴sin 15°=sin D=BC

BD=

a

(6+2)a

6-2

4;

cos 15°=cos D=CD

BD=

(2+3)a

(6+2)a

6+2

4;

tan 15°=tan D=BC

CD=

a

(2+3)a

=2- 3.

(第1题)

(第2题)

2.解:如图,作Rt△ABC,∠C=90°,AC=BC,延长CA到D,使DA =AB,则∠D=22.5°,设AC=BC=a,则AB=2a,∴AD=2a,DC=(2+1)a,

∴tan 22.5°=tan D=BC

CD=

a

(2+1)a

=2-1.

3.解:∵将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点E处,∴AB=BE,∠AEB=∠EAB=45°,还原后,再沿过点E的直线折叠,使点A落在BC边上的点F处,

∴AE=EF,∠EAF=∠EFA=45°÷2=22.5°,

∴∠FAB=67.5°.

设AB=x,则EB=x,AE=EF=2x,

∴tan∠FAB=tan 67.5°=FB

AB=

2x+x

x=2+1.

(第4题)

4.解:如图,作△ABC,使∠BAC=36°,AB=AC,使∠ABC的平分线BD交AC于D点,过点A作AE⊥BC于E点,设BC=a,则BD=AD=a,易

知△ABC ∽△BCD ,∴AB BC =BC CD ,∴AB

a =

a

AB -a

, 即AB 2

-a·AB -a 2

=0,∴AB =5+1

2a(负根舍去),∴sin 18°=sin ∠BAE =BE AB =5-14.∴cos 72°=cos ∠ABE =BE

AB =5-14.

(第5题)

5.解:如图,作△ABD ,△ACD ,使得DC =DA ,∠DAB =30°,过点A 作AD ⊥BC 于点D ,过点B 作BE ⊥AC 于点E ,则∠BAE =75°,设AD =DC =a ,则AC =2a ,BD =33a ,AB =233a ,∴BC =BD +DC =? ????

33+1a.∴CE

=BE =BC·sin C =

6+326a ,∴AE =AC -CE =32-66

a , ∴sin 75°=sin ∠BAE =BE

AB =32+6

6a 233a

=6+24,

cos 75°=cos ∠BAE =AE AB =6-24,tan 75°=tan ∠BAE =BE

AE =2+3.

点拨:此题还可以利用第1题的图形求解.

解码专训二

1.解:(1)把x =0代入y =kx -1.得y =-1,∴点C 的坐标是(0,-1),∴OC =1.

在Rt △OBC 中,∵tan ∠OCB =OB OC =12,∴OB =12.∴点B 的坐标是? ????

12,0.

把B ? ??

??

12,0代入y =kx -1,得12k -1=0.解得k =

2.

(2)由(1)知直线AB 对应的函数表达式为y =2x -1,所以△AOB 的面积S 与

x 的函数表达式是S =12OB·y =12×12(2x -1)=12x -1

4.

2.解:(1)∵tan ∠AOB =AB OB =3

2,∴AB =3,∴A 点的坐标为(2,3),∵点A 在函数y =k

x (x >0)的图象上,∴k =6.

(2)∵DC =AB =3,∴EC =12DC =32.∵E 点的纵坐标为32.∵点E 在y =6

x (x >0)的图象上,∴点E 的坐标为? ????4,32,设直线AE 对应的函数表达式为y =kx +b ,则?????3=2k +b ,32=4k +b ,解得?????k =-3

4,b =92.

∴直线AE 对应的函数表达式为y =-34x +92.

(3)结论:AN =ME.理由:在表达式y =-34x +9

2中,令y =0可得x =6,令x =0可得y =9

2.

∴点M(6,0),N ? ??

??0,92. 方法一:延长DA 交y 轴于点F ,则AF ⊥ON ,且AF =2,OF =3, ∴NF =ON -OF =32.根据勾股定理可得AN =5

2. ∵CM =6-4=2,EC =3

2, ∴根据勾股定理可得EM =5

2, ∴AN =ME.

方法二:连接OE ,延长DA 交y 轴于点F ,则AF ⊥ON ,且AF =2, ∵S △EOM =12OM·EC =12×6×32=92,S △AON =12ON·AF =12×92×2=9

2,∴S △EOM =S △AON .

∵AN 和ME 边上的高相等,∴AN =ME.

3.解:∵a ,b 是方程x 2-mx +2m -2=0的根,∴a +b =m ,ab =2m -2. 在Rt △ABC 中,由勾股定理,得a 2+b 2=c 2,即a 2+b 2=52.

∴a 2+b 2=(a +b)2-2ab =25,即m 2-2(2m -2)=25.解得m 1=7,m 2=-3. ∵a ,b 是Rt △ABC 的两条直角边的长,

∴a +b =m >0.即m =-3不合题意,舍去.∴m =7. 当m =7时,原方程为x 2-7x +12=0.解得x 1=3,x 2=4.

不妨设a=3,b=4,则∠A是最小的锐角,∴sin A=a

c=

3

5.

∴Rt△ABC中较小锐角的正弦值为3 5.

4.(1)证明:∵四边形ABCD是矩形,∴∠D=∠DCG=90°,∵E是CD 的中点,∴DE=CE.∵∠DEF=∠CEG,∴△EDF≌△ECG,∴EF=EG.∵BE⊥FG,∴BE是FG的中垂线,∴BF=BG.

(2)解:∵BF=BG,∴∠BFG=∠G,∴tan∠BFG=tan G=3,设CG

=x,CE=3x,则S

△CGE =

3

2x

2=63,解得x=23,

∴CG=23,CE=6,∵∠G+∠CEG=90°,∠G+∠CBE=90°,∴∠

CEG=∠CBE.∵∠ECG=∠BCE=90°,∴△ECG∽△BCE.∴EC

BC=

CG

CE,∴

6

BC=

23

6,∴BC=63,∴AD=6 3.

解码专训三

1.解:(1)过C作AB的垂线,垂足为D,

根据题意可得:∠ACD=42°,∠BCD=55°.

设CD的长为x海里,

在Rt△ACD中,tan 42°=AD

CD,则AD=x·tan 42°海里,

在Rt△BCD中,tan 55°=BD

CD,则BD=x·tan 55°海里.

∵AB=80海里,∴AD+BD=80海里,

∴x·tan 42°+x·tan 55°=80,

解得:x≈34.4,

答:海轮在航行过程中与灯塔C的最短距离约是34.4海里;

(2)在Rt△BCD中,cos 55°=CD

BC,∴BC=

CD

cos 55°≈60(海里),

答:海轮在B处时与灯塔C的距离约是60海里.

2.解:在Rt△ABE中,∠BEA=90°,∠BAE=45°,BE=20米,∴AE=BE=20米.

在Rt△BEF中,∠BEF=90°,∠F=30°,BE=20米,

∴EF =

BE tan 30°=20

3

3

=203(米).

∴AF =EF -AE =203-20≈20×1.732-20=14.64≈15(米). 答:AF 的长度约是15米. 3.解:分两种情况:

(1)如图(1),在Rt △BDC 中,CD =30千米,BC =60千米. sin B =CD BC =1

2,∴∠B =30°. ∵PB =PC ,∴∠BCP =∠B =30°.

∴在Rt △CDP 中,∠CPD =∠B +∠BCP =60°,

(第3题)

∴DP =

CD tan ∠CPD =30

tan 60°

=103(千米).

在Rt △ADC 中,∵∠A = 45°, ∴AD =DC =30千米.

∴AP =AD +DP =(30+103)千米.

(2)如图(2),同法可求得DP =103千米,AD =30千米. ∴AP =AD -DP =(30-103)千米.

答:交叉口P 到加油站A 的距离为(30±103)千米.

点拨:本题运用了分类讨论思想,针对P 点位置分两种情况讨论,即P 可能在线段AB 上,也可能在BA 的延长线上.

(第4题)

4.解:(1)当α=60°时,在Rt △ABE 中, ∵tan 60°=BA AE =BA

10.

∴BA =10 tan 60°=103≈10×1.73=17.3(米

). 即楼房的高度约为17.3米.

(2)当α=45°时,小猫还能晒到太阳.

理由如下:如图,假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.

∵∠BFA=45°,∴此时的影长AF=BA≈17.3米,所以CF=AF-AC≈17.3-17.2=0.1(米),

∴CH=CF=0.1米,∴楼房的影子落在台阶MC这个侧面上.

∴小猫还能晒到太阳.

解码专训四

1.解:若继续向正东方向航行,该货船无触礁危险.理由如下:

过点C作CD⊥AB,交AB的延长线于点D.

依题意,知AB=24×30

60=12(海里),

∠CAB=90°-60°=30°,∠CBD=90°-30°=60°.

在Rt△DBC中,tan∠CBD=tan 60°=CD

BD,∴BD=

3

3CD.

在Rt△ADC中,tan∠CAD=tan 30°=CD

AD,∴AD=3CD.

又∵AD=AB+BD,∴3CD=12+

3

3CD,解得CD=63海里.

∵63>9,

∴若继续向正东方向航行,该货船无触礁危险.

技巧点拨:将这道航海问题抽象成数学问题,建立解直角三角形的数学模型.该货船有无触礁危险取决于岛C到航线AB的最短距离与9海里的大小关系,因此解决本题的关键在于求岛C到航线AB的距离.

2.解:不会穿过风景区.理由如下:过C作CD⊥AB于点D,根据题意得:∠ACD=α,∠BCD=β,则在Rt△ACD中,AD=CD·tanα,在Rt△BCD中,BD=CD·tanβ.

∵AD+DB=AB,∴CD·tanα+CD·tanβ=AB,∴CD=

AB

tanα+tanβ

=150

1.627+1.373=150

3=50(千米).∵50>45,∴连接A,B两市的高速公路不会

最新沪科版九年级数学下册全册教案

最新沪科版九年级数学下册全册教案 24.1 旋转 第1课时旋转的概念和性质 1 .了解图形旋转的有关概念并理解它的基本性质 ( 重点 ) ; 2 .了解旋转对称图形的有关概念及特点 ( 难点 ) . 一、情境导入 飞行中的飞机的螺旋桨、高速运转中的电风扇等均属于旋转现象.你还能举出类似现象吗? 二、合作探究 探究点一:旋转的概念和性质 【类型一】旋转的概念 下列事件中,属于旋转运动的是 ( ) A .小明向北走了 4 米 B .小朋友们在荡秋千时做的运动 C .电梯从 1 楼上升到 12 楼 D .一物体从高空坠下 解析: A. 是平移运动; B. 是旋转运动; C. 是平移运动; D. 是平移运动.故选 B .

方法总结:本题考查了旋转的概念,图形的旋转即是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变 . 变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 1 题 【类型二】旋转的性质 如图,△ ABC 绕点 A 顺时针旋转 80 °得到△ AEF ,若∠ B = 100 °,∠ F =50 °,则∠ α 的度数是 ( ) A . 40 ° B . 50 ° C . 60 ° D . 70 ° 解析:∵△ ABC 绕点 A 顺时针旋转 80 °得到△ AEF ,∴△ ABC ≌△ AEF ,∠ C =∠ F = 50 °,∠ BAE = 80 ° . 又∵∠ B = 100 °,∴∠ BAC = 30 °,∴∠ α =∠ BAE -∠ BAC = 50 ° . 故选 B. 方法总结:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:① 定点——旋转中心;② 旋转方向;③ 旋转角度. 变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 4 题 【类型三】与旋转有关的作图 在图中,将大写字母 A 绕它上侧的顶点按逆时针方向旋转 90 °,作出旋转后的图案,同时作出字母 A 向左平移 5 个单位的图案. 解:

高中数学经典例题

高中数学经典例题讲解高中数学经典例题讲解典型例题一例1下列图形中,满足唯一性的是 (). A.过直线外一点作与该直线垂直的直线 B.过直线 外一点与该直线平行的平面C.过平面外一点与平面平行的直 线D.过一点作已知平面的垂线分析:本题考查的是空间线线 关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条..过一点作已知平面的垂线是有且仅有一条.假设空间点、平面,过点有两条直线、都垂直于,由于、为相交直线,不妨设、所确定的平面为 ,与的交线为,则必有,,又由于、、都在平面内,这样在内经过点就有两条直线和直线垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作

已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2 已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是(). A.(1)、(2) B.(2)、(3) C.(3)、(4) D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系; - 1 - 高中数学经典例题讲解(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性.故选D.说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如E、FGBC在

2019中考数学解直角三角形汇编

解直角三角形应用篇 1.(2019山东泰安中考)(4分)如图,一艘船由A港沿北偏东65°方向航行30km至B 港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km. A.30+30B.30+10C.10+30D.30 2.(2019山东淄博中考)如图,小明从A处沿北偏东40°方向行走至点B处,又从点B处沿东偏南20方向行走至点C处,则∠ABC等于() A.130°B.120°C.110°D.100° 3(.2019山东聊城中考)某数学兴趣小组要测量实验大楼部分楼体高度(如图①所示,CD 部分),在起点A处测得大楼部分楼体CD的顶端C点的仰角为45,底端D点的仰角为 30°,在同一剖面沿水平地面向前走20米到达B处,测得顶端C的仰角为63.4(如图② 所示),求大楼部分楼体CD的高度约为多少米?(精确到1米)(参考数据:sin63.40.89, cos63.40.45,tan63.42.00,21.41,31.73)

4. (2019甘肃中考7分)某数学课题研究小组针对兰州市住房窗户设计遮阳篷”这-课 题进行了探究: 出: 1是某住户窗户上方安装的,要求设计的遮阳篷既能最大限度夏天 炎热的阳光,又能最大限度地使冬天温暖的阳光射. 方案设计: 2,该数学课题研究小组通过调查研究设AC 的遮阳篷CD 数据收集: 通过查阅:兰州市一年中,夏至这一天的正午时刻,太DA 与遮阳篷C D 的夹角∠A D C 最大(∠A D C =77.44°):冬至这一天的正午时刻,太 DB 与遮 阳篷CD 的夹角 ∠BDC 最小(∠BDC=30.56°);窗户的高度AB=2m 决: 根据上述方案及数据,求遮阳篷C . (结果0.1m,参考数据:sin30.56°≈0.51,cos30.56°≈0.86,tan30.56°≈0.59)

新人教版高中数学必修五 第一章解直角三角形教案: 正弦定理和余弦定理

1.1 正弦定理和余弦定理 【知识要点】 1. 正弦定理:在三角形ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,R 是三 角 形ABC 的外接圆的半径,则有===2sin sin sin a b c R A B C 。文字语言表述为:在一 个三角形中,各边和它所对角的正弦的比相等。 2.余弦定理:在三角形ABC 中,有: 222222222=+-2cos ;=a +-2cos ;=+-2cos a b c bc A b c ac B c a b ab C ; 变形后:222222222 +-+-+-cos =,cos =,cos =222b c a a c b a b c A B C bc ac ab 。 3. 解三角形的基本类型及解法 a. 一般的,把三角形的三个内角A 、B 、C 和它们的对边a 、b 、c 叫做三角 形的元素。已知三角形的几个元素求其它元素的过程叫做解三角形。 b. 解三角形有一下几种类型: (1)已知一边和两角 (2)两边和夹角 (3)三边 (4)两边和其中一边对角 4. 判断三角形的形状 常见结论:(1)若222+=a b c ,则C=90? (2)若2 2 2 +a b c >,则C <90? (3)若2 2 2 +a b c <,则C 90>? (4)sin 2sin 2,+= 2 A B π =若则A=B,或A B 5. 三角形的综合问题 【知识应用】 1. 研究三角形问题的一般有两种思路:一是边化角,二是角化边。在解题时要结合题设,发现题设结构,再结合正弦定理解决。 【J 】例1 (1)三角形ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。若c=2,6,120b B ==?,则a=______。 (2)在三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 (3)cos cos , cos b c A a C A -=则=________。

初三数学:解直角三角形

解直角三角形 知识要点: 1、 锐角三角函数:正弦、余弦、正切、余切 sin A =斜边的对边A ∠, cos A =斜边的邻边 A ∠, tan A =的邻边的对边A A ∠∠, cot A = 的对边 的邻边 A A ∠∠ (1)平方关系:1cos sin 2 2=+A A ; (2)倒数关系:1cotA tanA =?; (3)商的关系:tanA= A A cos sin (4)互余两角的正余弦、正余切关系: 如果ο 90=∠+∠B A ,那么B A A cos )90cos(sin =-=ο ;tanA=cot (90°-A )=cotB 2、 解直角三角形 3、 解直角三角形的应用:坡度问题、测量问题、航海问题 关键是把实际问题转化为数学问题来解决 (构造直角三角形) 几个专用名词:俯角、仰角、坡角、坡度(或坡比)、方向角 一:转化思想在解直角三角形中的应用 转化的思想在数学中应用十分广泛,在不含直角三角形的图形中(如斜三角形、梯形等),我们应通过作适当的垂线构造直角三角形,从而转化为解直角三角形问题,希望同学们在不断地学习中总结这种添加垂线的技巧例1. 在△ABC 中,已知AB=6,∠B=45°,∠C=60°,求AC 、BC 的长. 已知条件 解法 一边及 一锐角 直角边a 及锐角A B =90°-A ,b =a·tanA,c= sin a A 斜边c 及锐角A B =90°-A ,a =c·sinA,b =c·cosA 两边 两条直角边a 和b ,B =90°-A , 直角边a 和斜边c sinA= a c ,B =90°-A ,

例2. 如图所示,△ABC中,∠BAC=120°,AB=5,AC=3,求sinB·sinC的值. 例3.如图,在ΔABC中,∠C=90°,∠A的平分线交BC于D,则 CD AC AB- 等于(). A .sin A B. cos A C . tan A D . cot A 例4.如图所示,在ΔABC中,∠B=60°,且∠B所对的边b=1,AB+BC=2,求AB的值. 例5.已知:在ΔABC中,∠B=60°,∠C=45°,BC=5,求ΔABC的面积. 例6.如图,ΔABC中,∠A=90°,AB=AC,D是AC上的一点,且AD∶DC=1∶3,求tan∠DBC的值. 二:可解的非直角三角形的类型与解法 解这类三角形一般都需要三个条件,它的解题思路是:作垂线,构造含特殊角的直角三角形来解决,下面分类举例说明,供同学们参考. 一、“SSS”型:例1.已知:如图1,BC=2,AC=6,AB=31 +,求△ABC各内角的度数. B A D C 图1

初三数学解直角三角形

初三数学解直角三角形 1、解直角三角形 在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫解直角三角形. 2、解直角三角形的依据 (1)三边之间的关系:a2+b2=c2.(2)两锐角之间的关系:∠A+∠B=90°. (3)边角之间的关系: 例1如图,在△ABC中,AD为BC边上的高,tanB=cos∠DAC. (1)求证:AC=BD;(2)若BC=12,,求AD的长. 3、仰角与俯角:在进行测量时,从下向上看,视线与水平线的夹角叫仰角;从上往下看,视线与水平线的夹角叫俯角.如图所示: 例2、汶川地震后,抢险队派一架直升机去A、B两个村庄抢险,飞机在距地面450米的上空P点,测得A村的俯角为30°,B村的俯角为60°,如图所示,求A、B两个村庄之间 的距离.(精确到1m.参考数据) 4、方向角:指北或指南方向与目标方向线所成的小于90°的夹角叫方向角.如图所示:例3某段笔直的限速公路上,规定汽车的最高行驶速度不能超过60km/h.交通管理部门在离该公路100m处设置了一速度监测点A,在如图所示的坐标系中,点A在y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.1)请在图中画出表示北偏东45°方向的射线AC,并标出点C的位置; 2)点B的坐标为__________,点C的坐标为__________; 3)一辆汽车从点B行驶到点C所用的时间为15s,请你通过计算判断汽车在这段限速公路 上是否超速行驶(本问中取1.7) 1、已知Rt△ABC中,∠C=90°,∠A=60°,,则a=() A.B. C. D.6 2、一等腰梯形的高为4,下底长为8,下底的底角的正弦值为0.8,那么它的上底和腰长分别为()A.4和5 B.2和5 C.2和4 D.4和10 3、王师傅在楼顶的A处测得楼前一棵树CD的顶端C的俯角为60°,又知水平距离BD为10m,楼高AB为24m,则树高CD为()m.

沪科版九年级数学下册 22.1比例线段

22.1 比例线段 一、选择题 1、下列长度的各组线段中,能组成比例线段的是() A.2,5,6,8 B. 3,6,9,18 C.1,2,3,4 D. 3,6,7,9 2、如果a=3,b=2,且b是a和c的比例中项,那么c等于() A.±2 3 B. 2 3 C. 4 3 D.± 4 3 3、如果a∶b=c∶d,那么下列等式成立的是() A. a+b b= c+d c B. a-c c= b-d b C. a+c c= b+d d D. a-c a= b-d d 4、.美是一种感觉,当人体的下半身长与身高的比值越接近0.618时,越给人一种美感.如图是某女士身高165 cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她穿的高跟鞋的高度大约为() A.4 cm B.6 cm C.8 cm D.10 cm 5、如图,直线l1∥l2∥l3,直线AC分别交11,l2,l3于点A、B、C,直线DF分别交11,l2,l3于点D、E、F, AC与DF相交于点G,且AG=2,GB=1,BC=5,则DE EF 的值为() A.1 2 B.2 C. 2 5 D. 3 5、 6、如图,在?ABCD中,AC与BD交于点O,E为OD的中点,连接AE并延长交DC于点F,则EF∶AE 等于() A.1∶4 B.1∶3 C.2∶3 D.1∶2 7、.如图所示,F是?ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论中错误的是() A. ED EA= EF EB B. DF FC= EF FB C. FC DF= BF BE D. BF BE= CF AB

8、?ABCD 中,E ,F 分别是AD ,AB 的中点,EF 交AC 于点G ,那么AG ∶GC 的值为( ) A .1 ∶2 B .1∶3 C .1∶4 D .2∶3 二、填空题 9、.如图,△ABC 与△ DEF 相似,且AC ,BC 的对应边分别是DF ,EF ,则△ABC 与△DEF 的相似比是________. 10、在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm ,则甲、乙两地间的实际距离是________. 11、已知 x y =23 ,则x y x y -+=________. 12、如果,则K=________. 13、已知实数x 、y 、z 满足x +y +z =0,3x -y -2z =0,则x :y :z =_______. 14、 如图,梯形ABCD 中,AD?//?BC?//?EF ,AE:EB =2:1,DF =8,则FC =________. 15、如图,点D 是△ABC 边BC 上的中点,点E 在边AC 上,且AO OD =13,AD 与BE 相交于点O ,则AE EC =_________. 三、解答题 1、以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上. (1)求AM ,DM 的长; (2)求证:AM 2=AD ·DM ; (3)根据(2) 的结论你能找出图中的一个黄金分割点吗? a b c d k b c d a c d a b d a b c ====++++++++

解直角三角形知识点整理

在RT ABC ?中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,则: sin A a A c ∠= =的对边斜边 cos A b A c ∠==的邻边斜边 tan A a A A b ∠= =∠的对边的邻边 c o t A b A A a ∠==∠的邻边的对边 常用变形:sin a c A = ;sin a c A =等,。 二、 锐角三角函数的有关性质: 1、 当0°<∠A<90°时,0sin 1A <<;0cos 1A <<;tan 0A >;cot 0A > 2、 在0°--90°之间,正弦、正切(sin 、tan )的值,随角度的增大而增大;余弦、余切(cos 、 cot )的值,随角度的增大而减小。 三、 同角三角函数的关系: 22sin cos 1A A += t a n c o t 1A A = sin tan cos A A A = c o s c o t sin A A A = 常用变形:2 sin 1cos A A =- 2c o s 1s i n A A =- 四、 正弦与余弦,正切与余切的转换关系: 如图1,由定义可得:sin cos cos(90)a A B A c = ==?- 同理可得: sin cos(90)A A =?- cos sin(90)A A =?-tan cot(90)A A =?- c o t t a n (90A A =?- 五、 特殊角的三角函数值: 三角函数 sin α cos α tan α cot α 30° 12 32 33 3 45° 22 22 1 1 60° 32 12 3 33 六、 解直角三角形的基本类型及其解法总结: 类型 已知条件 解法 两边 两直角边a 、b 2 2c a b =+,tan a A b = ,90B A ∠=?-∠ 直角边a ,斜边c 22 b c a =-,sin a A c =,90B A ∠=?-∠ 一边 一锐角 直角边a ,锐角A 90B A ∠=?-∠,cot b a A =,sin a c A = 斜边c ,锐角A 90B A ∠=?-∠,sin a c A = ,cos b c A = 60° 30° 32 1 B C A 45° 22 2 B C A

初中数学解直角三角形练习题.docx

xx 学校xx学年xx 学期xx试卷 姓名:_____________ 年级:____________ 学号:______________ 题型选择题填空题简答题xx题xx题xx题总分 得分 一、xx题 (每空xx 分,共xx分) 试题1: .如图:小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得米, 米,CD与地面成的角,且在此时测得1米杆的影长为2米,则电线杆的高度约为多少米。(结果保留两位有效数字)。试题2: 某电信部门计划修建一条连结B、C两地的电缆,测量人员在山脚A测得B、C两地的仰角分别为,在B地测得C地的仰角为,已知C地比A地高,电缆BC至少长多少米?(精确到) 试题3: 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD和高度DC 都可直接测得,从A、D、C三点可看到塔顶端H,可供使用的测量工具有皮尺、测倾器。 (1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案,具体要求如下: a.测量数据尽可能少。 评卷人得分

b.在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上。(如果测A、D间距离,用m表示,若测D、C 间的距离,用n表示,若测角用表示) (2)根据你测量的数据,计算塔顶端到地面的高度HG。(用字母表示,测倾器高度忽略不计) 试题4: 如图:一轮船原在A处,它的北偏东方向上有一灯塔P,轮船沿着北偏西方向航行4小时到达B处,这时灯塔P 正好在轮船的正东方向上,已知轮船的航速为25海里/时,求轮船在B处时与灯塔P的距离。 试题5: 为了测量旗杆的高度,准备如下测量工具: ①镜子②皮尺③长2米的标杆④高1.5米的测角仪(能测量仰角和俯角的仪器),请你根据你所设计的测量方案回答下列问题: ①在你设计方案中,选用的测量工具是_________________(填序号)。 ②在图中画出你的测量方案示意图。 ③你需要测量示意图中哪些数据,并用a、b、c、d等字母表示测得的数据。 ________________________________________________ ④写出求旗杆高的算式,AB=_____________米。

解直角三角形单元备课

第九章解直角三角形单元备课 陈光双 一、地位和作用 锐角三角函数刻画了直角三角形中边角之间的关系,它的直接应用是解直角三角形,而解直角三角形在现实生活中有着广泛的应用.锐角三角函数又是高中阶段学习任意角三角函数的基础,也是整个三角学的基础.因此,本章内容也是初中阶段数学学习的重点内容之一. 二、教学内容 本章的主要内容有锐角三角函数和解直角三角形的概念、有关锐角三角函数的计算,以及锐角三角函数在解决与直角三角形有关的问题中的应用.研究图形中各个元素之间的关系,并把这种关系进行量化,是分析和解决问题中常用的一种数形结合的方法,这种方法是一种重要的数学思想.因此本章还包含了数形结合的思想. 本章内容之间的相互关系可用如下的结构框图表示: 角确定时,斜面的高度与斜面在水平方向的距离之比随之确定,说明斜面的倾斜角和斜面的高度与斜面在水平方向的距离的比值之间存在着某种函数关系.(2)锐角三角函数是指本学段所学的三角函数限定在锐角,本章所指的锐角三角函数包括正弦(sin A)、余弦(cos A)和正切(tan A)三种.(3)三角函数的计算包括已知锐角求三角函数值和已知三角函数值求锐角两个方面,当已知角或所求的角不是30°、45°和60°这三个特殊角时,需要使用计算器进行计算.

(4)锐角三角函数的运用主要包含解直角三角形与现实生活中的实际问题两个方面,而能用锐角三角函数解决的实际问题,都可归结为解直角三角形的数学问题,因此,锐角三角函数的运用核心是解直角三角形. 二、教学目标 三、教法学法建议 1.边角之间的关系用函数来定义,学生理解有困难,教学时应引导学生适当回顾函数的概念,使学生体会三角函数的定义的合理性. 2.注意创设学生熟悉的问题情境.如引入锐角三角函数时,若农村学生没有见过电梯,可以用山坡、屋顶的斜面,或用木板现场搭建斜面等创设问题情境.使学生在熟悉的问题情境中,从已有经验出发,研究其中的数量关系.3.注意引导学生进行合作交流.如在探索锐角三角函数时,在已知角的边上选点、作垂线、测量、计算比值后让学生及时交流,体会当角的大小固定时,比值与所选点的位置无关;当任意画一个锐角再选点、作垂线、测量、计算比值后,及时交流,体会当角的大小变化时,比值也随之变化,由此体验比值是角的函数.

初中数学九年级下册解直角三角形(教案)教学设计

28.2.1 解直角三角形 教学目标 1.理解解直角三角形的意义和条件;(重点) 2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点) 教学过程 一、情境导入 世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A ,过点B 向垂直中心线引垂线,垂足为点C .在Rt △ABC 中,∠C =90°,BC =5.2m ,AB =54.5m ,求∠A 的度数. 在上述的Rt △ABC 中,你还能求其他未知的边和角吗? 二、合作探究 探究点一:解直角三角形 【类型一】 利用解直角三角形求边或角 已知在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,按下列条件解直角三角形. (1)若a =36,∠B =30°,求∠A 的度数和边b 、c 的长; (2)若a =62,b =66,求∠A 、∠B 的度数和边c 的长. 解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形. 解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,∵cos B =a c ,即c =a cos B =363 2 =243,∴b =sin B ·c =12×243=123; (2)在Rt △ABC 中,∵a =62,b =66,∴tan A =a b =33 ,∴∠A =30°,

∴∠B =60°,∴c =2a =12 2. 方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解. 【类型二】 构造直角三角形解决长度问题 一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,试求CD 的长. 解析:过点B 作BM ⊥FD 于点M ,求出BM 与CM 的长度,然后在△EFD 中可求出∠EDF =60°,利用解直角三角形解答即可. 解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =122,∴BC =AC =12 2.∵AB ∥CF ,∴BM =sin45°BC =122×22=12,CM =BM =12.在△EFD 中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM tan60°=43,∴CD =CM -MD =12-4 3. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答. 【类型三】 运用解直角三角形解决面积问题 如图,在△ABC 中,已知∠C =90°,sin A =3 7,D 为边AC 上一点,∠BDC =45°,DC =6.求△ABC 的面积. 解析:首先利用正弦的定义设BC =3k ,AB =7k ,利用BC =CD =3k =6,求得k 值,从而求得AB 的长,然后利用勾股定理求得AC 的长,再进一步求解. 解:∵∠C =90°,∴在Rt △ABC 中,sin A =BC AB =37 ,设BC =3k ,则AB =7k (k >0),在Rt △BCD 中,∵∠BCD =90°,∴∠BDC =45°,∴∠CBD =∠BDC =45°,

沪科版数学九年级下册-随机事件学案

随机事件 【学习目标】 1、通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断; 2、通过实验操作体会随机事件发生的可能性是有大小的。 【学习过程】 一、问题引入: 俗话说:“天有不测风云”,也就是说世界上有很多事情具有偶然性,人们不能事先判定这些事情是否会发生。试根据事件发生可能性的不同,把下面的8个事件分类: (1)某人的体温是100℃; (2) a2+b2=-1(其中a,b都是实数); (3)太阳从西边下山; (4)经过城市中某一有交通信号灯的路口,遇到红灯; (5) 一元二次方程x2+2x+3=0无实数解; (6)掷一枚骰子,向上的一面是6点; (7) 人离开水可以正常生活100天; (8)篮球队员在罚线上投篮一次,未投中。 一定条件下必然会发生的事件有 一定条件下不可能发生的事件有 一定条件下可能发生也可能不发生的事件有 二、自主学习: 自学课本,体会随机事件的含义。 试举出现实生活中存在的必然事件、不可能事件、随机事件的例子: 三、练习: 1、指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)通常加热到100°C时,水沸腾; (2)度量三角形的内角和,结果是360°; (3)正月十五雪打灯; (4)掷100次硬币,每次都是正面朝上; 2、掷两枚骰子,你能说出一个必然事件,一个不可能事件,一个随机事件吗? 3、李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解. 四、探究: 把4橙2白6个乒乓球球放入袋中,在看不到球的条件下,随机地从袋子中摸出一个球。 1、这个球是橙色的还是白色的? 2、你能说出一个必然事件,一个不可能事件,一个随机事件吗? 3、猜测从袋中摸球一次,摸出哪种颜色的球的可能性比较大?

高中数学必修解三角形教案

高中数学必修解三角形 教案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

第2章 解三角形 正弦定理 教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题. 教学重点:正弦定理的探索和证明及其基本应用. 教学难点:已知两边和其中一边的对角解三角形时判断解的个数. 教学过程: 一、复习准备: 1. 讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办? 2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以把边、角关系准确量化? →引入课题:正弦定理 二、讲授新课: 1. 教学正弦定理的推导: ①特殊情况:直角三角形中的正弦定理: sin A =c a sin B =c b sin C =1 即c = sin sin sin a b c A B C == . ② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形) 当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a b A B =. 同理,sin sin a c A C = (思考如何作高?),从而 sin sin sin a b c A B C == . ③*其它证法:证明一:(等积法)在任意斜△ABC 当中S △ ABC = 111 sin sin sin 222 ab C ac B bc A ==.

(新)高中数学三角函数知识点及试题总结

高考三角函数 1.特殊角的三角函数值: 2.角度制与弧度制的互化:,23600π= ,1800π= 3.弧长及扇形面积公式 弧长公式:r l .α= 扇形面积公式:S=r l .2 1 α----是圆心角且为弧度制。 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: sin α cos α tan α x y + O — — + x y O — + + — + y O — + + —

5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1。(2)商数关系:α α cos sin =tan α (z k k ∈+≠ ,2 ππ α) 6.诱导公式:记忆口诀:2 k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号 看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2παα??+= ???,cos sin 2παα??+=- ??? . 口诀:正弦与余弦互换,符号看象限. 7正弦函数、余弦函数和正切函数的图象与性质

2019中考数学解直角三角形汇编.docx

WORD格式 解直角三角形应用篇 1.(2019 山东泰安中考)( 4 分)如图,一艘船由 A 港沿北偏东65°方向航行30km 至 B 港,然后再沿北偏西40°方向航行至 C 港, C 港在 A 港北偏东 20°方向,则A, C 两港之间的距离为()km. A. 30+30B. 30+10C. 10+30D. 30 2.(2019 山东淄博中考)如图,小明从 A 处沿北偏东40°方向行走至点 B 处,又从点 B 处沿东偏南 20 方向行走至点 C 处,则∠ ABC等于() A. 130° B. 120° C. 110 ° D. 100 ° 3(.2019 山东聊城中考)某数学兴趣小组要测量实验大楼部分楼体高度(如图①所示,CD 部分),在起点 A 处测得大楼部分楼体 CD的顶端 C 点的仰角为45,底端 D 点的仰角为 30°,在同一剖面沿水平地面向前走20 米到达 B 处,测得顶端 C 的仰角为63.4 (如图② 所示),求大楼部分楼体CD的高度约为多少米?(精确到 1 米)(参考数据:sin63.40.89,

cos63.40.45 ,tan63.42.00,21.41, 31.73 ) 专业资料整理

WORD格式 的

专业资料整理

WORD格式4. ( 题出: 2 进1 行是 1 炎了某 9 热探方案设计 : 甘住 的究2 肃户 :阳, 中数窗据收集 : 光该 考户 ,通 7数上 与 又过 分学方 遮 能 阳篷 CD查的夹角 )课安 阳 最阅 题 某∠ BDC最装小 ( ∠ BDC=30.56° ); 窗户的高度 篷: 大 数研的决: 限C兰 学究, D度根 州 课小要 的 地据 市 题组求 夹 使上 结一 研通设 角述 冬 果年 究过计 ∠°≈ 0.51 天方 中 小调0.1m, 参考数据 :sin30.56的 A温案, 组查遮 D暖及夏 针研阳 C的数至 对究篷 最 阳据 这 兰设既 大 光, 一 州AC的遮阳篷 CD能 (射求 市天最 ∠的遮 .住大 A阳 房正限 D篷 窗午度 C C时 户夏天 =.刻 设计遮阳篷”这 - 课 7, 7太 .DA 4 4 ° ) : 冬 至 这 一 天 的正 午 时 刻 , 太 DB与遮

2019-2020学年高中数学 第一章 解直角三角形 1.2 应用举例教案 新人教B版必修5.doc

2019-2020学年高中数学第一章解直角三角形 1.2 应用举例教案 新人教B版必修5 (1)教学目标 (a)知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 (b)过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正 (c)情感与价值:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 (2)教学重点、难点 教学重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 教学难点:根据题意建立数学模型,画出示意图 (3)学法与教学用具 让学生回忆正弦定理、余弦定理以及它们可以解决哪些类型的三角形,让学生尝试绘制知识纲目图。生活中错综复杂的问题本源仍然是我们学过的定理,因此系统掌握前一节内容是学好本节课的基础。解有关三角形的应用题有固定的解题思路,引导学生寻求实际问题的本质和规律,从一般规律到生活的具体运用,这方面需要多琢磨和多体会。 直角板、投影仪(多媒体教室) (4)教学设想 1、复习旧知 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、设置情境 请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。 3、新课讲授 (1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解 (2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=? 75。求A、B两点 51,∠ACB=? 的距离(精确到0.1m)

中考数学解直角三角形检测试题汇编

解直角三角形 一、选择题 1.(2016福州,9,3分)如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是() A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα) 【考点】解直角三角形;坐标与图形性质. 【专题】计算题;三角形. 【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标. 【解答】解:过P作PQ⊥OB,交OB于点Q, 在Rt△OPQ中,OP=1,∠POQ=α, ∴sinα=,cosα=,即PQ=sinα,OQ=cosα, 则P的坐标为(cosα,sinα), 故选C. 【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.2.(2016·云南)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要() A.米2B.米2C.(4+)米2D.(4+4tanθ)米2 【考点】解直角三角形的应用. 【分析】由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果. 【解答】解:在Rt△ABC中,BC=AC?tanθ=4tanθ(米),

∴AC+BC=4+4tanθ(米), ∴地毯的面积至少需要1×(4+4tanθ)=4+tanθ(米2); 故选:D. 【点评】本题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出BC是解决问题的关键.3.(2016·四川巴中)一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是() A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10° C.AC=1.2tan10°米D.AB=米 【考点】解直角三角形的应用-坡度坡角问题. 【分析】根据坡度是坡角的正切值,可得答案. 【解答】解:斜坡AB的坡度是tan10°=,故B正确; 故选:B. 4.(2016山东省聊城市,3分)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)() A.169米B.204米C.240米D.407米 【考点】解直角三角形的应用-仰角俯角问题. 【分析】过C作CD⊥AB于D,在Rt△ACD中,求得AD=CD?tan∠ACD=CD?tan33°,在Rt△BCO中,求得 OD=CD?tan∠BCO=CD?tan21°,列方程即可得到结论. 【解答】解:过C作CD⊥AB于D, 在Rt△ACD中,AD=CD?tan∠ACD=CD?tan33°, 在Rt△BCO中,OD=CD?tan∠BCO=CD?tan21°, ∵AB=110m, ∴AO=55m,

初三数学解直角三角形地应用题

解直角三角形应用题 考点一、直角三角形的性质 1、直角三角形的两个锐角互余 可表示如下:∠C=90°?∠A+∠B=90° 2、在直角三角形中,30°角所对的直角边等于斜边的一半。 ∠A=30° 可表示如下: ?BC= 2 1AB ∠C=90° 3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90° 可表示如下: ?CD=2 1 AB=BD=AD D 为AB 的中点 4、勾股定理 直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即2 2 2 c b a =+ 5、摄影定理 在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项 ∠ACB=90° BD AD CD ?=2 ? AB AD AC ?=2 CD ⊥AB AB BD BC ?=2 6、常用关系式 由三角形面积公式可得: AB ?CD=AC ?BC 考点二、直角三角形的判定 (3~5分) 1、有一个角是直角的三角形是直角三角形。 2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 3、勾股定理的逆定理 如果三角形的三边长a ,b ,c 有关系2 2 2 c b a =+,那么这个三角形是直角三角形。 考点三、锐角三角函数的概念 (3~8分) 1、如图,在△ABC 中,∠C=90° ①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即 c a sin =∠= 斜边的对边A A ②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即 c b cos =∠= 斜边的邻边A A ③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即b a tan =∠∠= 的邻边的对边A A A

高中数学《111正弦定理》教学设计

高中数学必修5《1.1.1 正弦定理》教学设计 一、教学内容分析 “正弦定理”是《普通高中课程标准数学教科书·数学(必修5)》(人教版)第一章第一节的主要内容,它既是初中“解直角三角形”内容的直接延拓,也是三角函数一般知识和平面向量等知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。为什么要研究正弦定理?正弦定理是怎样发现的?其证明方法是怎样想到的?还有别的证法吗?这些都是教材没有回答,而确实又是学生所关心的问题。 本节课是“正弦定理”教学的第一课时,其主要任务是引入并证明正弦定理,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且通过对定理的探究,能使学生体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。 二、学生学习情况分析 学生在初中已经学习了解直角三角形的内容,在必修4中,又学习了三角函数的基础知识和平面向量的有关内容,对解直角三角形、三角函数、平面向量已形成初步的知识框架,这不仅是学习正弦定理的认知基础,同时又是突破定理证明障碍的强有力的工具。正弦定理是关于任意三角形边角关系的重要定理之一,《课程标准》强调在教学中要重视定理的探究过程,并能运用它解决一些实际问题,可以使学生进一步了解数学在实际中的应用,从而激发学生学习数学的兴趣,也为学习正弦定理提供一种亲和力与认同感。 三、设计思想 培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生

相关文档
最新文档