遥感导论第四章

遥感导论第四章
遥感导论第四章

第四章 遥感图像处理

遥感图像处理是指对遥感探测所获取的图像或资料进行的各种技术处理,发生在对遥感图像资料进行分析、判读、理解、识别以前。处理的目的是使遥感图像或资料更适于应用。

遥感图像有光学图像和数字图像。从处理方法上,主要有光学处理和计算机(数字图像)处理。

第一节 光学原理与光学处理

遥感图像光学处理的目的是通过光学手段增强目标地物的影像差异或影像特征,将目标地物从环境背景信息中突现出来,更适于识别和进行信息提取。

互补色: 在色度学中,当两种颜色混合产生白色或灰色时,这两种颜色称为互补色 颜色性质:所有颜色都是对某段波长有选择地反射而对其它波长吸收的结果;颜色的性质由明度、色调、饱和度(彩色纯洁的程度,即光谱中波长段是否窄,频率是否单一的表示。)来描述。

颜色立体(球形明度-色度-饱和度色彩坐标系)

垂直坐标轴代表亮度;圆周代表色度,色度值从红色中点处的0开始,沿着球体圆周的逆时针方向增加;饱和度描述了色彩的纯度。

三原色:若三种颜色,其中的任一种都不能由其余二种颜色混合相加产生,三种颜色按一定比例混合,可以形成各种色调的颜色,则称之为三原色。

由三原色混合,可以产生其他颜色,称为加色法。

色度图可以粗略推算两种颜色相混合得到的中间色,M 和N 两种颜色按照一定比例合成,一定能得到MN 连线上的中间色K (只要比例合适,MN 上其他的点也可得到);连接C 点与色度图曲线内的一点,可得该点的光谱,例如连接C 与K ,可得K

点的光谱色

(0.573um);该点距离C点的远近反映了C点的饱和度;过C点的直线与边缘交于两个点,则两个点对应的颜色一定是互补色,两者混合可产生白光。

减色法是从自然光(白光)中,减去一种或二种基色光而生成色彩的方法。

第二节数字图像的

校正

数字图像的概念:

能在计算机里存

储、运算、显示和

输出的图像。

数字化:将一幅影

像通过扫描仪或者

数字摄像机等外部

设备输入计算机时,

就是对图像的位置

变量进行离散化,

对灰度值进行量化。即包含两方面的内容:一是图像空间位置(坐标)的数字化(采样)。二是图像灰度

的数字化(量化)。

灰度直方图的概念:表示灰度值出现频率的图形,横坐标是灰度值,纵坐标是像元的

个数或者像元的百分比。反映灰度的总体结构,灰度级的等级分布,不反映空间的分布。

遥感图像数据处理:是对遥感数据进行辐射纠正、图像整饰、特征提取、分类和各种

专题处理的方法。目的在于,消减图像的误差和变形,降低电磁波信号的噪声、增强

图像的对比度、挖掘图像中所包含的信息等。按照数据的类型,遥感数据处理可以分

为光学处理和数字处理。

辐射校正:消除或改正遥感图像成像过程中附加在遥感传感器输出的辐射能量中各种

噪声的过程。(目的是尽可能恢复图像的本来面目,为遥感图像的识别,分类,解译等

后续工作打下基础 )

辐射误差的来源主要有三项

1.传感器仪器本身产生的误差(系统误差);

2.太阳位置(系统误差)、地形起伏引

起的辐射误差(随机误差);3.大气影响引起的辐射误差(随机误差);

相应的辐射处理包括辐射定标(纠正系统误差)和辐射误差校正(大气校正,纠正随

机误差)。辐射定标的目的在于消除系统本身造成的辐射误差,包括两方面:传感器

仪器本身造成的误差、不同太阳高度角造成的辐射能量差异(归一化)。大气影响造

成的辐射误差会使得图像对比度下降,还会产生随机噪声。

什么情况下需要进行大气校正?大气透明度差而且不均一; 大气中的水汽含量高;低

海拔地区应该进行校正,3000米以上的地区可不考虑;相对高差变化大的地形区域 ;不同时段图像的联合处理。

大气校正的方法

利用辐射传递方程进行大气校正;利用地面实况数据进行大气校正;波段对比法(大

气散射主要影响短波部分,波长较长的波段几乎不受影响,因此可用波长最长的波段(如TM的第7波段)来其校正其它波段数据。暗像元法:在不受大气影响的波段和待

校正的某一波段图像中,选择最黑区域(通常为高山阴影区)中的一系列目标,将每

个目标的两个待比较的波段灰度值提取出来进行回归分析,建立线性回归方程)

波段对比法的原理:1)首先选取理论上辐射亮度应为零的区域(黑区、水体或阴影);2)对于这些区域的象元,在实际观测中,由于受到大气程辐射(增强)的影响,其辐

射亮度并不为零,多出来的辐射亮度实际上就是大气程辐射值。此时的大气校正实际

上就是要去除这一部分的亮度。3)由于长波段受大气影响较小,因而这些区域的长波

段亮度值是接近于零的,也相对更准确。4)可以用受大气影响较小的长波段来校正其

它波段;

几何畸变:遥感图像上各地物的几何位置、形状、尺寸、方位等特征与实际情况不一致。

系统性畸变是指遥感系统造成的畸变,这种畸变一般有一定的规律性,并且大小事先

能够预测,例如扫描镜的结构方式和扫描速度等造成的畸变。随机性畸变是指大小不

能事先预测、其出现带有随机性质的畸变,例如地形起伏造成的随地而异的几何偏差。

几何粗校正是针对引起畸变原因而进行的校正,这种畸变按照比较简单和相对固定的

几何关系分布在图像中的,校正时只需将传感器原校准数据、遥感平台的位置以及卫

星运行姿态等一系列测量数据代入理论校正公式即可。几何粗校正主要校正系统畸变。几何精校正是利用控制点进行的几何校正,它是用一种数学模型来近似描述遥感图像

的几何畸变过程,并利用畸变的遥感图像与标准地图之间的一些对应点(即控制点(GCP))求得这个几何畸变模型,然后利用此模型进行几何畸变校正,这种校正不考

虑畸变的具体形成原因,而只考虑如何利用畸变模型来校正遥感图像,实际上是一种

统计回归模型。

遥感图像变形的原因及影响因素:遥感平台位置和运动状态变化的影响(航高:由于

卫星轨道本身是椭圆的,因此其航高始终发生变化,而传感器的扫描视场角不变,从

而导致图像扫描行对应的地面长度发生变化。航高越向高处偏离,图像对应的地面越宽。);地形起伏的影响;地球表面地形的影响;地球曲率的影响;大气折射的影响;地球自转的影响

几何校正

实质:按实际位置和投影状况确定校正后影像的行列并为每个新像元赋予合适的亮度值。几何纠正的步骤:准备工作(影像数据、地图资料、大地测量成果、航天器轨道

参数和传感器姿态参数的收集与分析,所需控制点的选择和量测。)、输入原始图像(按规定的格式将遥感数字图像读入计算机)、建立纠正函数(纠正变换函数提供了

输入影像和输出影像间的坐标变换关系。纠正方法有:多项式法、共线方程法、随机

场内插值法等。)、确定输出图像范围、逐个像元进行几何变化、灰度的重采样(纠

正后的新图像的每一个像元,根据变换函数,可以得到它在原始图像上的位置。如果

求得的位置为整数,则该位置处的像元灰度就是新图像的灰度值。如果位置不为整数,则像元灰度值需根据周围阵列像元的灰度确定,这种方法称为灰度重采样(这是相对

遥感图像获取时已进行过一次采样而言)、输出纠正后的图像、效果评价。

校正前的图像,由于某种几何畸变,图像中像元点间所对应的地面距离并不相等。校

正后的图像是由等间距的网格点组成的,且以地面为标准,符合某种投影的均匀分布,图像中格网的交点可以看作是像元的中心;校正的最终目的是确定校正后图像的行列

数值,然后找到新图像中每一像元的亮度值。

最近邻法:距离实际位置最近的像元的灰度值作为输出图像像元的灰度值;特点:方

法简单易用,计算量小,在几何位置上精度为0.5像元,但处理后图像的亮度具有不

连续性,从而影响了精确度。

双线性法:以实际位置临近的4个像元值,确定输出像元的灰度值。特点:图像亮度

连续,几何上较精确,但会使图像变得模糊。

三次卷积法:以实际位置临近的16个像元值,确定输出像元的灰度值。

控制点的选取:n次多项式,控制点的最少数目为(n+1)(n+2)/2。

地面控制点的选取原则:控制点应选取图像上易分辨且较精细的特征点,通过目视方

法辨别。道路交叉点、河流弯曲或分叉处、海岸线弯曲处、湖泊边缘、飞机场、城廓

边缘等。特征变化快的地区应多选些。图像边缘部分一定要选取控制点,以避免外推。尽可能满幅均匀选取,特征实在不明显的大面积区域(如沙漠),可用求延长线交点的

办法来弥补,但应尽可能避免这样做.

第三节数字图像增强

主要目的:(1)采用一系列技术改善图像的视觉效果,提高图像的清晰度;(2)将

图像转换成一种更适合于人或机器进行解译和分析处理的形式。图像增强不是以图像

保真度为原则,而是通过处理,有选择地突出感兴趣的信息,抑制一些无用的信息,

以提高图像的使用价值,即图像增强处理只是增强了对某些信息的辨别能力。

图像增强的分类

a.点域增强处理和空间域增强处理-按几何关系分类(图像灰度的直方图、线性变换、非线性变换直方图均衡化、直方图正态化、直方图匹配、密度分割、灰度反转)

b. 空间域增强和频率域增强-按影像表达方式分类

c. 灰度增强和彩色增强-按显示方式分类

1、数字图像直方图:以每个像元为单位,表示图像中各亮度值或亮度值区间像元出现

的频率的分布图。直方图的性质:(1)直方图反映了图像中的灰度分布规律;(2)

任何图像有唯一的直方图,不同的图像可能有相同的直方图;直方图的作用:直观地

了解图像的亮度值分布范围、峰值的位置、均值以及亮度值分布的离散程度。直方图

的曲线可以反映图像的质量差异。

2、线性变换——按比例拉伸:在改善图像对比度时,变换前后图像的亮度之间构成线

性函数关系。分段线性变换:是为了突出人们感兴趣的目标或亮度值区间,要求局部

扩展亮度值范围。它可以有效地利用有限个灰度级,达到最大限度增强图像中有用信

息的目的,更有效地拉大感兴趣目标与其它地物之间的反差。

3、非线性灰度变换:对于要进行扩展的亮度值范围是有选择的,扩展的程度是随亮度

值的变化而连续变化的。常用的方法:突出高亮度区域、突出低亮度区域。

4、直方图均衡化:遥感图像的灰度集中在较窄的区间,从而引起图像细节的模糊,为

使图像细节清晰,并使一些目标得到突出,达到增强图像的目的,可通过改善各部分

亮度的比例关系,即可通过直方图的方法来实现。直方图调整以概率论为基础的,常

用的方法有直方图均衡化(是将一已知灰度概率密度分布的图像,经过某种变换,变

成一幅具有均匀灰度概率密度分布的新图像,其结果是扩展了像元取值的动态范围,

从而达到增强图像整体对比度的效果。)、直方图正态化(目的是将随机分布的原图

像直方图修改成高斯分布。)和直方图匹配(是使一幅图像的某个波段的直方图与另

一幅图像对应波段的直方图类似,或使一幅图像的所有波段与另一幅图像所对应的波

段的直方图类似。多用于相邻图像拼接或多时相遥感图像进行动态变化研究时的预处理。)

5、密度分割:单波段黑白遥感图像可按亮度分层,对每层赋予不同的色彩,使之成为

一幅彩色图像。这种方法又叫密度分割。层方案与地物光谱差异对应合适,可以较好

地区分地物类别。

6、灰度反转:数字图像处理中将灰度值大小颠倒,使得正像和负像互换,为灰度反转。

空间滤波:侧重于图像的空间特征或频率,是以重点突出图像上的某些特征为目的的,如突出边线或纹理等,因此通过像元与其周围相邻像元的关系,采用空间域中的邻域

处理方法(也称为滤波)

空间频率:图像中色调变化的平滑或粗糙程度,即灰度变化剧烈程度的指标,是灰度

在平面空间上的梯度。

低通滤波主要用于加强图像中的低频成分,减弱图像中的高频成分;高通滤波则相反,即加强高频细节,减弱低频信息。带通滤波由于仅保留一定的频率成分,所以可用于

提取、消除每隔一定间隔出现的干扰条纹的噪声。

2.1 图像卷积运算:是在空间域上对图像进行局部检测的运算,以实现平滑和锐化的

目的。方法; 1.选取一个m×n的模板;2. 从图像左上角开始,选取一个与模板相同

大小的活动窗口;3. 将图像窗口的象元亮度值与模板上对应的值相乘后再相加,作为

窗口中心象元的亮度值。4.模板向右移动一个象元,重复以上步骤。

低通滤波模板被设计成突出大块、变化平缓的地物,并削减图像中的细节信息。因此,低通滤波通常产生平滑图像的效果。

边缘检测模板强化了线状地物,如道路和边界等。

多波段彩色变换——彩色合成:彩色合成就是把同一遥感图像的若干个波段分别赋予

不同的基色,再混合组成一幅彩色图像的过程。彩色合成的作用在于综合利用各波段

图像的信息。通过彩色合成,可以制成标准假彩色图像,模拟天然彩色图像,以及以

突出感兴趣目标为目的的任意合成图像。

图像运算

差值运算:两幅同样行列数的影像,对应像元的亮度值相减就是差值运算。作用:有

利于目标与背景反差较小的信息提取;有利于同一研究区的时相变化;行列各移一位

后与原图像相减突出边缘。

比值运算:两幅同样行列数的图像,对应像元的亮度值相除(除数不为0),就是比

值运算。作用:检测波段的斜率信息,提高对比度;突出植被特征、计算植被指数或

生物量;去除地形影响;土壤含水量差异;微地貌变化。

多光谱变换目的:压缩冗余信息,保留主要信息,降低数据量;增强或提取有用信息。

本质:对遥感图像进行线性变换,使多光谱空间的坐标系按照一定规律旋转。

3.1 K-L变换(主成分变换):目的:减少图像波段之间的相关性,去除冗余信息,压缩数据量。方法:旋转坐标系。

3.2 K-T变换(缨帽变换):根据多光谱遥感中土壤、植被等信息在多维光谱空间中信息分布结构对图像做的经验性线性正交变换。

遥感导论答案

第一章 1.遥感的概念:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通 过分析,揭示出物体的特征性质及其变化的综合性探测技术 2.遥感系统的基本构成:遥感系统包括被测目标的信息特征, 信息的获取, 信息的传输与记录, 信 息的处理和信息的应用五大部分 3.遥感的特点:1)大面积的同步观测2)时效性3)数据的综合性和可比性4)经济性5)局限性 第二章 1.电磁波: 当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播,就是电磁波 电磁波谱: 按电磁波在真空中传播的波长或频率,递增或递减排列,则构成了电磁波谱 2.辐射通量φ: 单位时间内通过某一面积的辐射能量 辐射通量密度E:单位时间内通过单位面积的辐射能量 辐射度I:被辐射的物体表面单位面积上的辐射通量 辐射出射度M:辐射源物体表面单位面积上的辐射通量 3.绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体 黑体辐射规律:1)绝对黑体的总辐射出射度与黑体温度的四次方成正比 2)黑体辐射光谱中最强辐射的波长与黑体绝对温度成反比 3)黑体温度越高,其曲线的峰顶就越往波长短的方向移动 4.太阳常数:是指不受大气影响在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间黑体所接收的太阳辐射能量 5.常见的大气散射及其特点,解释蓝天、朝霞、夕阳 1〉瑞利散射:当大气中粒子的直径比波长小的多时发生的散射。特点是散射强度与波长的四次方成反比,对可见光的影响很大 2〉米氏散射:当大气中粒子的直径与辐射的波长相当时发生的散射。特点是散射强度与波长的二次方成反比,散射在光线向前方向比向后方向更强,方向性比较明显,潮湿天气对米氏散射影响较大 3〉无选择性散射:当大气中粒子的直径比波长大得多时发生的散射。特点是散射强度与波长无关无云的晴空呈现蓝色,因为蓝光波长短,散射强度较大,因此蓝光向四面八方散射,使整个天空蔚蓝,,使太阳辐射传播方向的蓝光被大大削弱。在日出和日落时,太阳高度角小,阳光斜射向地面,通过的大气层比阳光直射时要厚得多。在过长的传播中,蓝光波长最短,几乎被散射殆尽,波长次短的绿光散射强度也居次之,大部分被散射掉了。只剩下波长最长的红光,散射最弱,因此透过大气最多。加上剩下的绿光,最后合成呈现橘红色。 6.大气窗口:通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段称为大气窗口 7.地球辐射的特点 波段名称可见光与近红外(微米)中红外远红外 波长0.3~0.5 2.5~6 〉6 辐射特性地表反射太阳辐射为主地表反射太阳辐射 地表物体自主热辐射为主 和自身的热辐射 发射光谱曲线:某种物体的比辐射率(发射率)随波长的变化曲线

遥感导论梅安新复习资料资料讲解

<<<<<<精品资料》》》》》 第一章1、什么是遥感?有何特点?如何分类?有何应用? 遥感:是一种远离目标,在不与目标对象直接接触的情况下,通过某种平台上装载的传感器获取其特征信息,然后对所获信息进行提取、判定、加工处理及应用分析的 综合性技术。 分类:☆按遥感平台分类:近地面遥感;航空遥感;航天遥感等。 ☆按传感器的探测波段分类: 紫外遥感:0.05 ~ 0.38 μm可见光遥感:0.38 ~ 0.76 μm 红外遥感:0.76 ~ 1000μm微波遥感: 1 mm ~ 10 m 多波段遥感:传感器由若干个窄波段组成 ☆按工作方式分类:主动遥感;被动遥感 ☆按应用领域分类:陆地遥感、海洋遥感;农业遥感、城市遥感……  特点:1.大面积的同步观测 2.时效性 3.数据的综合性和可比性 4.经济性 5.局限性 应用: A、土地资源、土地利用及其动态监测 B、农作物的遥感估产 C、重要自然灾害的遥感监测与评估 D、城市发展的遥感监测 E、天气与海洋 F、其他领域如军事、突发事件 2、什么是光谱特性?指地球上每种物质其反射、吸收、透射及辐射电磁波的固有特质,这种对电磁波固 有的波长特性。 3、遥感技术系统包括哪些内容? ?1)被测目标的信息特征、2)信息的获取、3)信息的传输与纪录、4)信息的处理、5)信息的应用 ?第二章 ?1、电磁波及电磁波谱? 电磁波:指电磁振源产生的电磁振荡在空间的传播 电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列成的图表 ?2、紫外线、可见光、红外线的波谱范围及特征(遥25页) ?3、大气成份与大气结构 ?大气成份:大气中主要包括N2、O2、H2O、CO、CO2、N2O、CH4、O3等 * 微粒有尘埃、冰晶、水滴等形成的气溶胶、云、雾等 * 以地表为起点,在80KM以下的大气中,除H2O、O3等少数可变气体外,各种气体均匀混合、比例不变,故称均匀层,在该层中大气物质与太阳辐射相互作用,是太阳辐射衰减的主要原因。 ?大气结构:大气层没有明显的界线,一般取1000KM。 ?1)对流层:经常发生气象变化,是RS活动的主要区域,是空气作垂直运动而形成对流的一层,在离地面7-19KM之间变化,厚度随纬度降低而增加。 2)平流层:没有明显对流,几乎没天气变化。因有O3层对太阳紫外线的强吸收,温度由下部向上升高。 3)电离层:由下向上分为中间层、热层和散逸层。中间层的气温随高度增加而减少,热层(增温层的气温随高度增加而急剧递增。电离层对可见光、红外甚至微波都影响较小,基本上是透明的,层中 大气十分稀薄,处于电离状态。 4)大气外层: ?4、大气对太阳辐射的影响(遥24~32页):

遥感导论答案

第一章 1.遥感的基本概念是什么?应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感探测系统包括哪几个部分?被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用. 第二章 1.大气的散射现象有几种类型?①瑞利散射(大气中粒子的直径比波长小得多时发生的散射).②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射)③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射) 2.电磁波谱主要分为哪几个波段?遥感利用最多是那些?分析原因 频率由大到小:r射线,x射线,紫外线,可见光,红外线,微波,无线电波 最常用的是:红外,可见光(被动遥感);微波(主动遥感) 3、几类常见地物反射波谱特性.1.植物:叶绿素对蓝光和红光吸收作用强,而对绿光的反射强,在绿波段形成波峰,在红和蓝是两个吸收带,在远红外波段有一反射陡坡,是因为植物的叶细胞结构不同,同时植物的种类、季节、病虫害影响、含水量也影响植被的光谱性质 2.土壤:没有明显的波峰波谷,土质越细反射率越高,有机质含量越高含水量越高,反射率越低 3. 水体:反射主要在蓝绿波段,其它波段吸收都很强,特别是近红外波段吸收更强。水中含泥沙时,可见光波段反射率会增加,峰值出现在黄红区。水中含叶绿素时,近红外波段明显抬升。4. 岩石:没有统一的变化规律。5.城市道路,建筑物的反射波谱曲线受太阳的位置影响 第三章 1.主要遥感平台是什么,各有何特点? 地面平台:高度在0~50m范围内,与地面接触的平台称为地面平台或近地面平台。它通过地物光谱仪或传感器来对地面进行近距离遥感,测定各种地物的波谱特性及影像的实验研究。 航空平台:包括飞机和气球。飞机按高度可以分为低空平台、中空平台和高空平台。 航天平台:包括卫星、火箭、航天飞机、宇宙飞船。高度在150km以上。航天飞机240~350km高度。卫星:低轨150~300km,大比例尺、高分辨率图象;寿命短,用于军事侦察;中轨:700~1000km,资源与环境遥感;高轨:35860km,地球静止卫星,通信、气象。航天平台目前发展最快,应用最广:气象卫星系列、海洋卫星系列、陆地卫星系列。 2.垂直摄影相片的几何特征? (1)中心投影(2)像点位移(3)ao/AO = f/H(正地形会向相片边缘移动,负地形会由相片边缘向中间移动) 3.微波成像的特点? (1)能全天候、全天时工作(2)对某些地物具有特殊的波谱特征(3)对冰、雪,森林、土壤等具有一定的穿透能力(4)对海洋遥感具有特殊意义(5)分辨率低,但特性明显 4.如何评价遥感图像的质量? 一、遥感图像的空间分辨率:指像素所代表的地面范围的大小。地面分辨率取决于胶片的分辨率和摄影镜头的分辨率所构成的系统分辨率,以及摄影机焦距和航高。二、图象的光谱分辨率:波谱分辨率是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。间隔愈小,分辨率愈高。传感器的波段选择必须考虑目标的光谱特征值。三、辐射分辨率:辐射分辨率是指传感器接受波谱信号时,能分辨的最小辐射度差。在遥感图像上表现为每一像元的辐射量化级。某个波段遥感图像的总信息量与空间分辨率、辐射分辨率有关。 四、图象的时间分辨率:时间分辨率指对同一地点进行采样的时间间隔,即采样的时间频率,也称重访周期。时间分辨率对动态监测很重要。 第四章 1.理解假色法与减色法的原理和使用条件 加色法原理:不同颜色(波长)的光混合后生成白光 使用条件:显像管(电视、电脑) 减色法原理:2块滤光片组合产生颜色混合时,入射光通过滤光片时都会减掉一部分辐射,最后透过光是经过多次减色的结果使用条件:颜色的配制、彩色相片的染印等 2.真彩色与假彩色的区别 真彩色:用地物对红光的反射率作为红,对蓝光的反射率作为蓝,对绿光的反射率作为绿 假色光:(1)根据加法彩色合成原理,选择遥感的某三个波段,分别赋予红、绿、蓝三种原色。此时原来的选择与原来遥感波段所代表的真实颜色不同,生成的合成色不是地物真实的颜色。(2)对于单波段遥感图像,可按亮度分层,对每层赋予不同的色彩,使之成为不同彩色图像

遥感导论试题

遥感导论课后练习题 第一章绪论 1.遥感的基本概念。 2.简述遥感探测系统的几个部分。 3.简述遥感的类型。 4.简述遥感的特点。 5.试述全球及我国遥感技术的进展与趋势。 第二章电磁辐射与地物光谱特征 1、电磁波含义及电磁波的性质。 2、电磁波谱的含义,电磁波区段的划分就是怎样的? 3、辐射通量,辐射通量密度的物理意义。 4、简述辐照度,辐射出射度与辐射亮度的物理意义,其共同点与区别就是什么? 5、朗伯源与黑体的概念? 6、大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云透雾的能力而可见光不能? 7.什么就是大气窗口?对照书内卫星传感器表中所列波段区间与大气窗口的波段区间,理解大气窗口对于遥感探测的重要意义。 8、综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整体过程中所发生的物理现象。 9、从地球辐射的分段特性说明为什么对于卫星影像解译必须了解地

物反射波谱特性。 10、列举几种可见光与近红外波段植被、土壤、水体、岩石的地物反射波谱曲线实例。 11、在真空中电磁波速为3×108 s m (1)可见光谱的波长范围从约3、8×10-7 m 的紫色光到约7、6×10-7m 的红色光,其对应的频率范围为多少? (2)X 射线的波长范围约5×10-9—1、0×10-11m,其对应的频率范围就是多少? (3)短波无线电的频率范围约为1、5MH Z ---300MH Z 其对应的波长范围就是多少? 12、在地球上测得太阳的平均辐照度I=1、4×10 3 2m w 设太阳到地球 的平均距离约为1、5×1011m 试求太阳的总辐射能量。 13、假定恒星表面的辐射与太阳表面辐射一样都遵循黑体辐射规律。如果测得到太阳辐射波谱λ=0、51μm ,的北极星的λ=0、35μm ,试计算太阳与北极星的表面温度及每单位表面积上所发射出的功率就是多少? 14、已知日地平均距离为天文单位,1天文单位≈1、496×103m,太阳的线半径约为6、96×105KM (1)通过太阳常数I 0,计算太阳的总辐射通量E 。 (2)由太阳的总辐射通量E,计算太阳的辐射出射度M 。 第三章 遥感成像原理与遥感图像特征 1. 传感器,遥感平台的含义。

遥感导论课后习题答案

第一章: 1.遥感的基本概念是什么? 应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感探测系统包括哪几个部分? 被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用. 3.作为对地观测系统,遥感与常规手段相比有什么特点? ①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。 ②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。因此,遥感大大提高了观测的时效性。这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。(比较多,大家理解性的删除自己不需要的)③数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。 ④经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。 ⑤局限性遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。 第二章: 6.大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云浮透雾能力而可见光不能。 ①瑞利散射(大气中粒子的直径比波长小得多时发生的散射). ②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射) ③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射). 大气散射类型是根据大气中分子或其他微粒的直径小于或相当于辐射波长时才发生。大气云层中,小雨滴的直径相对其他微粒最大,对可见光只有无选择性散射发生,云层越厚,散射越强,而对微波来说,微波波长比粒子的直径大很多,则又属于瑞利散射的类型,散射强度与波长四次方成反比,波长越长散射强度越小,所以微波才有可能有最小散射,最大透射,而被成为具有穿云透雾的能力。 7.对照书内卫星传感器表中所列波段区间和大气窗口的波段区间,理解大气窗口对于遥感探测的重要意义。 对于遥感传感器而言,只有选择透过率高的波段才有观测意义。根据卫星传感器的用途选择合适的波段区间进行观测,选择电磁波通过大气层透过率高的大气窗口,以获取更多有效信息。 8.综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象。 ○1大气的吸收作用;○2大气的散射作用;大气的反射、折射、散射、透射 9.从地球辐射的分段特性说明为什么对于卫星影像解译必须了解地物反射波谱特性。 当太阳辐射到达地表后,就短波而言,地表反射的太阳辐射成为地表的主要辐射来源,而来自地球本身的辐射,几乎可以忽略不计。地球自身的辐射主要集中在长波,即6um以上的热红外区段,该区段太阳辐射的影响几乎可以忽略不计,因此只考虑地表物体自身的热辐射。两峰交叉之处是两种辐射共同其作用的部分,在2.5~6um,即中红外波段,地球对太阳辐照的反射和地表物体自身的热辐射均不能忽略。

遥感导论习题部分答案

第一章: 1.遥感的基本概念是什么?应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感探测系统包括哪几个部分?被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用. 3.作为对地观测系统,遥感与常规手段相比有什么特点? 答:①大面积同步观测;②时效性;③数据的综合性和可比性;④经济性;⑤局限性 4.遥感技术研究(应用领域)容及发展前景? 答:遥感技术应用领域: (一)技术遥感在测绘中的应用; (二)遥感技术在军事上应用; (三)遥感技术在农林牧方面的应用; (四)遥感技术在水体信息提取中的应用; (五)遥感技术在灾害监测方面的应用。 影响遥感技术发展中主要存在的问题:(1)遥感的时效性:实时检测与处理能力不足;(2)遥感的定量反演:精度不能达到实用要求。 产生以上问题的原因主要有:(1)遥感技术本身的局限性;(2)人们认识上局限性。 发展前景:遥感技术正在进入一个能偶快速准确的提供多种对地观测海量数及应用研究的新阶段,在近一二十年的倒了飞速发展,目前又将达到一个新的啊高潮!主要发展有以下几个方面:【1】遥感影像的空间分辨率和时间分辨率愈来愈高(例如,民用遥感影像饿空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十个数百个;军用侦察卫星空间分辨率达到厘米级,如美若的KH-11空间分辨率为0.11m;【2】可获取遥感立体影像;【3】微波遥感迅速发展,未来诸多领域倾向于合成孔径雷达、成像光谱仪的广泛应用;【4】高光谱遥感迅速发展;【5】遥感的综合应用不断深化,表现为从单一信息源分析向包含非遥感数据的多源信息的复合分析的方向发展;从定向判读向信息系统应用模型及专家系统支持下的定量分析;从静态研究向多时相的动态研究发展;【6】商业遥感时代的到来;【7】建立高速、高精度和大容量的遥感数据处理系统,3S一体化。 第二章:

遥感导论课后习题答案

第一章 1.遥感的基本概念是什么? 应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感探测系统包括哪几个部分? 被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用. 3.作为对地观测系统,遥感与常规手段相比有什么特点? ①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。因此,遥感大大提高了观测的时效性。这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。(比较多,大家理解性的删除自己不需要的)③数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。④经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。⑤局限性遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。 第二章 1.大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云浮透雾能力而可见光不能。 ①瑞利散射(大气中粒子的直径比波长小得多时发生的散射).②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射)③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射).大气散射类型是根据大气中分子或其他微粒的直径小于或相当于辐射波长时才发生。大气云层中,小雨滴的直径相对其他微粒最大,对可见光只有无选择性散射发生,云层越厚,散射越强,而对微波来说,微波波长比粒子的直径大很多,则又属于瑞利散射的类型,散射强度与波长四次方成反比,波长越长散射强度越小,所以微波才有可能有最小散射,最大透射,而被成为具有穿云透雾的能力。 3.综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象。(一)大气的吸收作用;(二)大气的散射作用;大气的反射、折射、散射、透射(提供者原答案) 4.从地球辐射的分段特性说明为什么对于卫星影像解译必须了解地物反射波谱特性。 当太阳辐射到达地表后,就短波而言,地表反射的太阳辐射成为地表的主要辐射来源,而来自地球本身的辐射,几乎可以忽略不计。地球自身的辐射主要集中在长波,即6um以上的热红外区段,该区段太阳辐射的影响几乎可以忽略不计,因此只考虑地表物体自身的热辐射。两峰交叉之处是两种辐射共同其作用的部分,在2.5~6um,即中红外波段,地球对太阳辐照的反射和地表物体自身的热辐射均不能忽略。 波段名称可见光与近 红外 中红外远红外 波长0.3~2.5um 2.5~6um >6um 辐射特性地表辐射太 阳辐射为主 地表辐射太 阳辐射和自身的 热辐射 地表物体自 身热辐射为主

遥感导论知识点整理(梅安新版)

遥感导论知识点整理 【题型】 一、选择题 二、填空题 三、名词解释 四、简答题 五、论述题 注意:标注页码的地方比较难理解,希望大家多看看书,看看ppt。【第一章】绪论 1、【名】遥感(remote sensing) 广义:泛指一切无接触的远距离探测; 定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。 2、遥感系统 包括:被测目标的信息特征(信息源)、信息的获取、信息的传输与记录、信息的处理和信息的应用。(5个哦亲!详见书第2页图哈~) 3、【名】信息源:任何目标具有发射、反射和吸收电磁波的性质,被称为遥感的信息源。 4、遥感的类型: a)按照遥感平台分 地面遥感、航空遥感、航天(空间)遥感、航宇遥感 b)按传感器的探测波段分 紫外遥感(0.05μm-0.38μm)、可见光遥感(0.38-0.76μm)、红外遥感(0.76-1000μm)、微波遥感(1mm-10m) c)按工作方式分 主动遥感、被动遥感;成像遥感、非成像遥感 5、遥感的特点:大面积的同步观测、时效性、数据的综合性和可比性、经济性 6、遥感发展简史 Remote Sensing 的提出:美国学者布鲁伊特于1960年提出,61年正式通过。 遥感发展的三个阶段:

(1)萌芽阶段 1839年,达格雷发表第一张空中相片; 1858年,法国人用气球携带照相机拍摄了巴黎的空中照片。 1882年,英国人用风筝拍摄地面照片; J N Niepce (1826, France) The world’s first photographic image Intrepid balloon, 1862 1906, Kites Pigeons, 1903. (2)航空遥感阶段 1903年,莱特兄弟发明飞机,创造了条件。 1909年,意大利人首次利用飞机拍摄地面照片。 一战中,航空照相技术用于获取军事情报。 一战后,航空摄影用于地形测绘和森林调查与地质调查。 1930年,美国开始全国航空摄影测量。 1937年,出现了彩色航空像片。 (3)航天遥感阶段 1957年,苏联发射第一颗人造地球卫星,意义重大。 70年代美国的陆地卫星 法国的Spot卫星 发展中国家的情况:中国,印度,巴西等。 卫星遥感 Landsat Spot NOAA EO-1 Terra/modis Ikonos 7、我国遥感发展概况 50年代航空摄影和应用工作。 60年代,航空摄影工作初具规模,应用范围不断扩大。 70年代,腾冲遥感实验获得巨大成功。 70.4.24发射第一颗人造地球卫星。 80年代是大发展阶段。 目前在轨运行卫星:海洋卫星、气象卫星、中巴资源卫星、环境卫星等。 8、遥感的应用 (1)资源调查与应用 1. 在农业、林业方面的应用 农、林土地资源调查、病虫害、土壤干旱、盐化沙化的调查及监测。 土地利用类型调查 精细农业 作物估产 “三北”防护林遥感综合调查

遥感导论_章节重点

第一章 一、名词解释 遥感:广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。 狭义:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 二、遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用。 三、简述遥感(技术)的特点  (1) 大面积的同步观测  (2) 时效性  (3) 数据的综合性和可比性  (4) 经济性  (5) 局限性(信息的提取方法、数据挖掘技术、思维方式等有等改善) 四、论述遥感应用的主要方面: (1) 在资源调查方面的应用 (2)在环境测评及对抗自然灾害方面的应用 (3) 在区域分析及建设规划方面的应用 (4) 在全球性宏观研究中的应用 (5) 在其他方面的应用:<1>在测绘制图方面的应用 <2>在历史遗迹、考古调查方面的应用 <3>在军事上的应用 5、 遥感的类型 按遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感 根据传感器的工作方式不同,可分为 主动式传感器:主动遥感 被动式传感器:被动遥感 成像方式:成像遥感 非成像方式:非成像遥感 按传感器的探测波段分 可见光遥感、红外遥感、微波遥感、紫外遥感数据等。 按应用领域分 大的研究领域:外层空间遥感、大气层遥感、陆地遥感、海洋 遥感。 具体应用领域:资源遥感、环境遥感、农业遥感、林业遥感、渔 业遥感、地质遥感、气象遥感、水文遥感、城市遥感、工程遥 感、灾害遥感、军事遥感等等。 第二章 一、名词解释

1、电磁波:光波、热辐射、微波、无限电波等由振源发出的电磁振荡 在空间的传播,这些波叫电磁波。 2、电磁波谱:电磁波在真空中传播的波长或频率,递增或递减排列, 构成了电磁波谱。 3、大气窗口 :通常把透过大气而较少被吸收、散射的透射率较高的电 磁辐射波称为大气窗口。 4、地物反射光谱:地物的反射率随波长变化的规律。 5、地物反射光谱曲线:按地物反射率与波长之间关系绘成的曲线(横 轴为波长,纵轴为反射率) 。 6、反射率:物体反射的辐射能量占总入射能量的百分比。 7、发射率:表示实际物体辐射与黑体辐射之比。 8、瑞利散射:当微粒的直径比辐射波长小许多时发生的散射。 9、米氏散射:当微粒与辐射光波长接近时发生的散射。 10、非选择性散射:当微粒的直径比辐射波长长很多时发生的散射。 二、遥感技术常用的电磁波有哪些?各有什么特性? 遥感中较多地使用紫外线、可见光、红外和微波波段。 紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有0.3~0.38μm波长的光到达地面,对油污染敏感,但探测高度在2000m以下。 可见光:0.4—0.76um。它由红、橙、黄、绿、青、蓝紫色光组成。人眼对可见光可直接感觉,不仅对可见光的全色光,而且对不同波段的单色光,也具有这种能力。所以可见光是作为鉴别物质的主要波段。 红外线:0.76—1000um,为了实际应用方便,又将其划分为:近红外(0.76—3.0 um),中红外(3.0—6.0um),远红外(6.0—15.0um)和超远红外(15-1000um)。 微波:1mm—1m。来源于地物的热辐射由于其波长比可见光、红外线要长,受大气层中云、雾的散射干扰要小,因此能全天候进行遥感。 三、大气散射有何特点?它分为哪几种散射,各有什么特点? 散射作用:是指辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开。散射使原传播方向辐射减弱,而增加其他各方向的辐射。 大气的散射集中于太阳辐射能量较强的可见光区。因此,大气对太阳辐射的散射是太阳辐射衰减的主要原因。散射强度可用散射系数γ来表示:γ∞1/λw,γ散射系数、w为波长指数, 由大气微粒直径(d)决定。 <1>瑞利散射d<<λ当微粒的直径比辐射波长小许多时,也叫分子散射。W(4),大气对可见光 的影响很大。 <2>米氏散射d≈λ当微粒与辐射光波长接近时,是由于大气溶胶所引起的,其W(2) 。云、雾对红 外线的米氏散射是不可忽视的。 <3>非选择性散射d>>λ当微粒的直径比辐射波长长很多时的情况,W(0) 任何波长散射强度相 同。 四、什么是大气窗口?试写出对地遥感的主要大气窗口. 遥感是怎样利 用大气窗口的? (1) 通常把透过大气而较少被吸收、散射的透射率较高的电磁辐射波称为大气窗口。

遥感导论课后习题答案解析

第一章: 1.遥感的基本概念是什么 应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感探测系统包括哪几个部分 被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用. 3.作为对地观测系统,遥感与常规手段相比有什么特点 ①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。 ②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。因此,遥感大大提高了观测的时效性。这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。(比较多,大家理解性的删除自己不需要的)③数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。 ④经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。 ⑤局限性遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。 第二章: 6.大气的散射现象有几种类型根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云浮透雾能力而可见光不能。 ①瑞利散射(大气中粒子的直径比波长小得多时发生的散射). ②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射) ③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射). 大气散射类型是根据大气中分子或其他微粒的直径小于或相当于辐射波长时才发生。大气云层中,小雨滴的直径相对其他微粒最大,对可见光只有无选择性散射发生,云层越厚,散射越强,而对微波来说,微波波长比粒子的直径大很多,则又属于瑞利散射的类型,散射强度与波长四次方成反比,波长越长散射强度越小,所以微波才有可能有最小散射,最大透射,而被成为具有穿云透雾的能力。 7.对照书内卫星传感器表中所列波段区间和大气窗口的波段区间,理解大气窗口对于遥感探测的重要意义。? 对于遥感传感器而言,只有选择透过率高的波段才有观测意义。根据卫星传感器的用途选择合适的波段区间进行观测,选择电磁波通过大气层透过率高的大气窗口,以获取更多有效信息。 8.综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象。 ○1大气的吸收作用;○2大气的散射作用;大气的反射、折射、散射、透射 9.从地球辐射的分段特性说明为什么对于卫星影像解译必须了解地物反射波谱特性。 当太阳辐射到达地表后,就短波而言,地表反射的太阳辐射成为地表的主要辐射来源,而来自地球本身的辐射,几乎可以忽略不计。地球自身的辐射主要集中在长波,即6um以上的热红外区段,该区段太阳辐射的影响几乎可以忽略不计,因此只考虑地表物体自身的热辐射。两峰交叉之处是两种辐射共同其作用的部分,在~6um,即中红外波段,地球对太阳辐照的反射和地表物体自身的热辐射均不能忽略。

遥感导论-习题及参考答案第二章 电磁辐射与地物光谱特征答案

第二章电磁辐射与地物光谱特征 ·名词解释 辐射亮度:由辐射表面一点处的单位面积在给定方向上的辐射强度称为辐射亮度。 普朗克热辐射定律:在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1 灰度波谱:用该类型在该波段上的灰度值反应的波谱曲线 黑体辐射:任何物体都具有不断辐射、吸收、发射电磁波的本领,为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。 电磁波谱:将电磁波按大小排列制成图表。 太阳辐射:太阳射出的辐射射线 瑞利散射:大气中粒子的直径比波长小得多时发生的散射 米氏散射:当大气中粒子的直径与辐射的波长相当时发生的散射 地球辐射:地面吸收太阳辐射能后,向外辐射的射线。 地物波谱特性:各种地物因种类和环境条件不同,都有不同的电磁波辐射或反射特性 反射率:地物反射能量与入射总能量之比。 比辐射率:某一物体在一特定波长和温度下的发射辐射强度与理想黑体在相同波长和温度下所发射的辐射强度之比。 后向散射 ·问答题 地球辐射的分段特性是什么? 当太阳辐射到达地表后,就短波而言,地表反射的太阳辐射成为地表的主要辐射来源,而来自地球本身的辐射,几乎可以忽略不计。地球自身的辐射主要集中在长波,即6um以上的热红外区段,该区段太阳辐射的影响几乎可以忽略不计,因此只考虑地表物体自身的热辐射。两峰交叉之处是两种辐射共同其作用的部分,在2.5~6um,即中红外波段,地球对太阳辐照的反射和地表物体自身的热辐射均不能忽略。 什么是大气窗口?试写出对地遥感的主要大气窗口 答:大气窗口的定义:通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高 的波段成为大气窗口。 包括:部分紫外波段,0.30 m μ~0.40m μ,70%透过。 全部可见光波段,0.40 m μ~0.76m μ,95%透过。 部分近红外波段,0.76 m μ~1.3m μ,80%透过。 近红外窗口:1.5 m μ~2.4m μ,90%透过,可区分蚀变岩石。 包括两个小窗口:1.5 m μ~1.75m μ 2.1 m μ~2.4m μ。 中红外窗口:3.5 m μ~5.5m μ,反射和发射并存。 包括两个小窗口(反射和发射混合光谱):3.5 m μ~4.2m μ 4.6 m μ~5m μ 远红外窗口:8 m μ~14m μ,发射电磁波,热辐射。 微波窗口:0.5cm~300cm

遥感导论答案

遥感导论 第一章 1. 遥感的概念:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术 2. 遥感系统的基本构成:遥感系统包括被测目标的信息特征, 信息的获取, 信息的传输与记录, 信息的处理和信息的应用五大部分 3. 遥感的特点:1)大面积的同步观测 2)时效性 3)数据的综合性和可比性4)经济性5)局限性 第二章 1.电磁波: 当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播,就是电磁波 电磁波谱: 按电磁波在真空中传播的波长或频率,递增或递减排列,则构成了电磁波谱2.辐射通量φ: 单位时间内通过某一面积的辐射能量 辐射通量密度E:单位时间内通过单位面积的辐射能量 辐射度I:被辐射的物体表面单位面积上的辐射通量 辐射出射度M:辐射源物体表面单位面积上的辐射通量 3.绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体黑体辐射规律:1)绝对黑体的总辐射出射度与黑体温度的四次方成正比 2)黑体辐射光谱中最强辐射的波长与黑体绝对温度成反比 3)黑体温度越高,其曲线的峰顶就越往波长短的方向移动 4.太阳常数:是指不受大气影响在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间黑体所接收的太阳辐射能量 5.常见的大气散射及其特点,解释蓝天、朝霞、夕阳 1〉瑞利散射:当大气中粒子的直径比波长小的多时发生的散射。特点是散射强度与波长的四次方成反比,对可见光的影响很大 2〉米氏散射:当大气中粒子的直径与辐射的波长相当时发生的散射。特点是散射强度与波长的二次方成反比,散射在光线向前方向比向后方向更强,方向性比较明显,潮湿天气对米氏散射影响较大 3〉无选择性散射:当大气中粒子的直径比波长大得多时发生的散射。特点是散射强度与波长无关 无云的晴空呈现蓝色,因为蓝光波长短,散射强度较大,因此蓝光向四面八方散射,使整个天空蔚蓝,,使太阳辐射传播方向的蓝光被大大削弱。在日出和日落时,太阳高度角小,阳光斜射向地面,通过的大气层比阳光直射时要厚得多。在过长的传播中,蓝光波长最短,几乎被散射殆尽,波长次短的绿光散射强度也居次之,大部分被散射掉了。只剩下波长最长的红光,散射最弱,因此透过大气最多。加上剩下的绿光,最后合成呈现橘红色。 6.大气窗口:通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段称为大气窗口 7.地球辐射的特点 波段名称

遥感导论课后习题答案

第一章: 1. 遥感的基本概念是什么? 应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示岀物体的特征性质及其变化的综合性探测技术。 2. 遥感探测系统包括哪几个部分? 被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用 3. 作为对地观测系统,遥感与常规手段相比有什么特点? ①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。 ②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力 物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。因此,遥感大大提高了观测的时效性。 这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。(比较多,大家理解性的删除自己不需要的) ③数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。由于遥感的 探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。同时考 虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。与传统地面调查和考察相比较,遥感数据 可以较大程度地排除人为干扰。 ④经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。 ⑤局限性遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。 第二章: 6. 大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具 有穿云浮透雾能力而可见光不能。 ①瑞利散射(大气中粒子的直径比波长小得多时发生的散射) ②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射) ③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射) 大气散射类型是根据大气中分子或其他微粒的直径小于或相当于辐射波长时才发生。大气云层中,小雨滴的直径 相对其他微粒最大,对可见光只有无选择性散射发生,云层越厚,散射越强,而对微波来说,微波波长比粒子的直径大很多,则又属于瑞利散射的类型,散射强度与波长四次方成反比,波长越长散射强度越小,所以微波才有可能有最小散射,最大透射,而被成为具有穿云透雾的能力。 7. 对照书内卫星传感器表中所列波段区间和大气窗口的波段区间,理解大气窗口对于遥感探测的重要意义。? 对于遥感传感器而言,只有选择透过率高的波段才有观测意义。根据卫星传感器的用途选择合适的波段区间 进行观测,选择电磁波通过大气层透过率高的大气窗口,以获取更多有效信息。 8. 综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象。 CD大气的吸收作用;O 2大气的散射作用;大气的反射、折射、散射、透射 9. 从地球辐射的分段特性说明为什么对于卫星影像解译必须了解地物反射波谱特性。 当太阳辐射到达地表后,就短波而言,地表反射的太阳辐射成为地表的主要辐射来源,而来自地球本身的辐 射,几乎可以忽略不计。地球自身的辐射主要集中在长波,即6um以上的热红外区段,该区段太阳辐射的影响几 乎可以忽略不计,因此只考虑地表物体自身的热辐射。两峰交叉之处是两种辐射共同其作用的部分,在?6um,即中红外波段,地球对太阳辐照的反射和地表物体自身的热辐射均不能忽略。

遥感导论课程教学大纲

《遥感导论》课程教学大纲 课程编号: 14122403 课程名称:遥感导论 英文名称:Introduction to Remote Sensing 课程类型: 专业核心课程 总学时:48 讲课学时:48 实验学时:0 学分:3 适用对象: 地理科学类 先修课程:相关基础课程 执笔人:陈明文审定人:张金萍 一、课程性质、目的和任务 《遥感导论》是资源环境、地理信息系统及地理科学专业的一门专业基础课。课程注重反映现代遥感技术的最新成果与应用内容,并结合经济建设实际,详细介绍了遥感的基本概念、电磁辐射与地物波谱、遥感成像原理、遥感图像特征、遥感图像分析的原理与方法、图像信息的提取与分类处理、遥感的应用及实例,3S集成,以及新型遥感平台与传感器等。 该课程的目的和任务:通过本课程学习,要求学生牢固掌握遥感技术的基本概念和基本原理;掌握运用遥感技术原理、方法解释和解决实际问题的能力;了解遥感技术的前沿动态和发展趋势。尤其注重培养学生的实际动手和应用能力,为学习专业课程、从事专业技术工作和进行科学研究打下基础。 二、课程教学和教改基本要求 1.本课程主讲授遥感基本理论。内容比较枯燥,所以在教学中应尽量采用通俗易懂和形象化语言表述,着重讲清地物电磁波谱的基本遥感理论问题。 2.对于有关物理学公式,不须推导过程,重点理解其基本原理。 3.根据课程进程的需要,适当的布置课外阅读文献报告和体会,以加深对所学理论知识的理解和了解本学科的研究动态。 三、课程各章重点与难点、教学要求与教学内容 第一章绪论 一、教学重点: 遥感的定义(广义与狭义)、遥感技术过程、遥感技术的特点与分类。 二、难点: 遥感技术的基本过程 三、教学要求: (一) 从广义与狭义两方面掌握遥感的定义,了解遥感技术的基本过程; (二) 掌握遥感的分类; (三) 与常规方法相比,掌握遥感的主要特点;

遥感导论课后习题答案

遥感导论课后习题答案

遥感导论课后习题答案 第一章;1.遥感的基本概念是什么?应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感探测系统包括哪几个部分?被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用. 3.作为对地观测系统,遥感与常规手段相比有什么特点?①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。因此,遥感大大提高了观测的时效性。这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。(比较多,大家理解性的删除自己不需要的)③数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。④经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。⑤局限性遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。 第二章:1.大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云浮透雾能力而可见光不能。①瑞利散射(大气中粒子的直径比波长小得多时发生的散射).②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射)③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射).大气散射类型是根据大气中分子或其他微粒的直径小于或相当于辐射波长时才发生。大气云层中,小雨滴的直径相对其他微粒最大,对可见光只有无选择性散射发生,云层越厚,散射越强,而对微波来说,微波波长比粒子的直径大很多,则又属于瑞利散射的类型,散射强度与波长四次方成反比,波长越长散射强度越小,所以微波才有可能有最小散射,最大透射,而被成为具有穿云透雾的能力。 3.综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象。(一)大气的吸收作用;(二)大气的散射作用;大气的反射、折射、散射、透射(提供者原答案) 4.从地球辐射的分段特性说明为什么对于卫星影像解译必须了解地物反射波谱特性。当太阳辐射到达地表后,就短波而言,地表反射的太阳辐射成为地表的主要辐射来源,而来自地球本身的辐射,几乎可以忽略不计。地球自身的辐射主要集中在长波,即6um以上的热红外区段,该区段太阳辐射的影响几乎可以忽略不计,因此只考虑地表物体自身的热辐射。两峰交叉之处是两种辐射共同其作用的部分,在2.5~6um,即中红外波段,地球对太阳辐照的反射和地表物体自身的热辐射均不能忽略。 波段名称可见光与近红外中红外远红外 波长0.3~2.5um 2.5~6um >6um 辐射特性地表辐射太阳辐射 为主 地表辐射太阳辐射 和自身的热辐射 地表物体自身热辐 射为主 比辐射率(发射率)波谱特性曲线的形态特征可以反映地面物体本身的特性,包括物体本身的组成、温度、表面粗糙度等物理特性。特别是曲线形态特殊时可以用发射率曲线来识别地面物体,尤其在夜间,太阳辐射消失后,地面发出的能量已发射光谱为主,单侧起红外辐射及微波辐射并与同样温度条件下的比辐射率(发射率)曲线比较,是识别地物的重要方法之一。地物反射波普曲线除随不同地物(反射率)不同外,同种地物在不同内部结构和外部条件下形态表现(发射率)也不同。一般说,地物发射率随波长变化有规律可循,从而为遥感影像的判读提供依据。 4、几类常见地物反射波谱特性.1.植物:a.在可见光的0.55μm(绿)附近有一个小反射峰,在0.45μm(蓝)和0.67μm(红)附近有两个明显的吸收带。b.在0.7~0.8μm是一个陡坡,反射率急剧增高,在近红外波段0.8~1.3μm之间形成一个高的,形成反射峰。c.以1.45μm、1.95μm和2.7μm为中心是水的吸收带。2.土壤:没有明显的波峰波谷,土质越细反射率越高,有机质含量越高含水量越高,反射率越低3. 水体:反射主要在蓝绿波段,其它波段吸收都很强,近红外吸收更强。水中含泥沙时,可见光波段反射率会增加,峰值出现在黄红区。水中含叶绿素时,近红外波段明显抬升。4. 岩石:形态各异,没有统一的变化规律。岩石的反射波谱曲线受矿物成分、矿物含量、风化程度、含水状况、颗粒大小、表面光滑程度、色泽等影响 第三章:1.主要遥感平台是什么,各有何特点?地面平台:高度在0~50m范围内,三角架、遥感塔、遥感车和遥感船等与地面接触的平台称为地面平台或近地面平台。它通过地物光谱仪或传感器来对地面进行近距离遥感,测定各种地物的波谱特性及影像的实验研究。航空平台:包括飞机和气球。飞机按高度可以分为低空平台、中空平台和高空平台。低空平台:2000米以内,对流层下层中。

相关文档
最新文档