生物学遗传学综述

生物学遗传学综述
生物学遗传学综述

遗传学综述

一、序幕期(1865-1899)

1.1856-1864 孟德尔的遗传律:

分离定律:染色体在体细胞中是成对的,在减数分裂形成配子时,同源染色体彼此分离,分配到配子中去。处在同源染色体的相对位置上的等位基因随同源染色体的分离而分离,被随机地分配到各自的两个配子中去。

自由组合定律:在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时非同源染色体上的非等位基因自由组合。

1866 发表"植物杂交试验"。

2. 1883 罗士首倡染色体学说

1903 苏顿主张染色体含有遗传的单元

二、中兴期(1900~1909)

孟德尔定律的被肯定:荷兰植物学家戴伏里斯发表《杂种的分离律》、德国植物学家柯伦斯发表《杂种后裔行为与孟德尔定律》、奥地利车伏麦可-斯索涅格发表《豌豆杂交研究》。

中兴的功臣——贝特森:1902年,贝特森创alleomorph(后被缩短成allele,即对偶基因)、异质接合体及同质接合体三个名词。并以genetics 为遗传学命名。

约翰生的贡献:荷兰生物学家约翰生从1890 年代起,对数量性状的变异做有系统的研究,于1903 年发表《族群与纯系遗传》。1909年,他又出版《遗传学纲要》一书,创用基因、表现型及基因型三个名词。

染色体与遗传:1902年,美国人苏顿发表了一篇有关染色体形态的文章,文中提到在减数分裂(meiosis)时,染色体的联会与分离可能构成孟德尔遗传律的物质基础。在1903年,他又发表《染色体与遗传》一文,详细阐释染色体与遗传的关系。同年,波威利也注意到染色体行为与植物杂交试验间的关系,1928年威尔森把苏顿和波威利的理论称之曰《苏顿-波威利假设》

族群遗传学的萌芽:族群遗传学所研究的是有关族群的遗传组成和基因频率的问题。英国数学家阿尔迪及德国医生温柏格同年发表有关族群平衡的基本理论。他们认为在一个随机交配的大族群中,基因频率是固定不变的,基因型也将维持一定的频率。

三、塑型期(1910-1940)

1. 果蝇学派的崛起:

1910年,美国哥伦比亚大学教授摩根发表《果蝇的性联遗传》一文,有两个重要的结论,第一、基因是位于染色体上,而且某一特定的基因是位于某一特定的染色体上,第二、数个基因可以同在一条染色体上,而在同一染色体上的基因,不遵守孟德尔的独立分配律。摩根

经过不断的研究,把基因在染色体上的观念完全建立起来,还阐明了连锁和互换的观念。

布瑞杰兹发表了染色体的不分离、1917年,染色体缺失、1921年,性别决定与基因平衡观念、1935年,细胞学染色体图的建立等。

穆勒在1927年发现X射线可以诱导突变发生,容易获得大量突变种,用做遗传和育种试验研究的材料。

2. 细胞遗传学的壮大

1915年左右,布雷克斯利及其同僚研究曼陀罗的十二个不同突变体,发现这些突变体内都含有一个特殊的额外染色体,这种染色体组成叫做三染体,例如单染体,三倍体、四倍体,及染色体易位等。

1933年,裴恩特从细胞学着手,利用果蝇幼虫唾液腺细胞特有的巨大的多丝染色体,做成了第一个详尽的X染色体之染色体图。

1929年,恩默森和克莱顿首先由细胞学上证实遗传的互换,即不仅在表现型上看到了基因重组,在显微镜下也看到染色体间互换发生。

3. 突变的研究

1927年,穆勒发现X射线可以诱导果蝇突变的发生。

德莫斯报告在果蝇内有许多易变基因。1950年代麦克林塔克指出玉米可能含有某种遗传物质,称为跳跃基因组,例如在细菌中跳跃基因组可把抗生素抵抗力由一个质体移转到另一个质体,现己证明跳跃基因组也就是转移子确实存在。

4. 基因生理与个体发育的研究

自1920到1940年中,有关基因生理的研究有两点值得特别说明,一是基因平衡的观念,另一是基因如何控制代谢反应。

布瑞杰兹认为,在生物体内每一个性状都是受许多基因所控制的,这些基因可以分散在许多不同的染色体上,同时这些基因作用的方向或正或负,表现型乃是正负作用达到平衡状态上的产物。

1902年英国医生贾洛德从对人类黑尿病和其它遗传疾病的研究,提出《先天性代谢错误》学说。

毕德尔等研究面包霉菌,于1941年发现《基因——酵素》观念。

研究基因与个体发育间关系的遗传学可称为发育遗传学,也可称为胚胎遗传学。

5.起飞中的族群遗传学:

族群遗传学主要的研究范围有三:第一、在杂交族群中,研究各个有亲缘关系个体间的遗传相关; 第二、分析自交、选型交配和随机交配等交配系统;第三、分析演化动力,例如天择、突变、迁移和随机遗传漂变等的影响。

赖特于1917人年发表随机遗传漂变的假说,在1921至1923年间发明《路径系数分析法》,可用来推演在不同交配制度下的遗传结果,又导出一个估算近亲繁殖系数,并于1931年发表《孟德尔族群的演化》。

费歇于1930年发表《天择的遗传理论》,他认为天择可以增加生物之生殖的适应度,演化的过程系决定于一个对偶基因优于其它的对偶基因。

英国的哈尔丹《数学对于天择论的贡献》文章中,寻出各种强度不同的天择对于所有染色体上显性或隐性基因频率的影响,并估算族群中不良基因的突变率。

四、鼎盛期(1941年以后)

1. 基因内的研究:

基因重组观念之建立,例如果蝇的伪对偶基因、噬菌体基因微构图的建立、基因的互补作用、不可逆性的基因重组等等。

2. 遗传物质的研究:DNA才是遗传物质

格里菲斯、艾维瑞、麦里奥和麦考提对肺炎双球菌遗传性状转化作用的研究。

赫希和杰斯研究大肠菌之噬菌体T2 感染大肠菌的机制。佛兰克尔-康拉特和桑格对于烟草嵌纹病毒素之重组合接种试验的研究;证明了生物细胞内只有核酸才是遗传物质。

3. 核酸构造与复制的研究

沃森和克利克于1953年,提出DNA双螺旋构造假说。

沃森和克里克提出DNA 的复制作用是半保留式复制。

1956年,柯恩柏格利用DNA聚合酶成功的在细胞外合成DNA。

4. 生化遗传学的研究

毕德尔和塔特姆以面包霉菌作试验材料,于1941年提出《一基因一酵素观念》。

1949年,鲍灵和其同僚观察到正常人血色素与患镰刀形血球贫血症患者的血色素有化学上的差异。

1956年英格朗姆找出两种血色素分子的差异,只是由于一个氨基酸分子的不同。

杨诺夫斯基发现突变体在基因内的位置与多肽链上氨基酸发生置换的位置有相关关系,这种现象特称为基因与蛋白质间的共线性。

细胞内各种代谢作用的快慢与各有关成分合成速度的快慢直接相关。细胞内合成量的多少是在极有效率极有规则的调节机构控制之下,细菌细胞的操纵子观念乃是一种最重要的调节机构假说。

提姆和巴尔的摩发现反转录,RNA可用做合成DNA的模版,经反转录作用形成DNA。

5. 遗传密码的研究

1961年是遗传密码研究的起飞年,三个核苷酸即为密码子决定一个氨基酸,在mRNA 上,遗传密码的读法有方向性,密码子与密码子间没有重叠的部份,又常常有好几个密码子代表同一个氨基酸,而在不同生物细胞中,大家的密码子可能都相同。

6. 细菌遗传与噬菌体遗传的研究

细菌细胞间遗传物质的交换主要有三个途径:第一种是转化作用,即一个细菌品系的DNA片段,可以进入另一细菌品系的细胞内,而使后者的遗传性状改变;第二种是接合作用,

就是雌雄细胞间的交配,直到1946李德保和塔特姆才发现细菌也有雌雄之分,也有有性生殖,当然也有有性重组的发生;第三种是转导作用,这是经由噬菌体的帮助来达成的,是1952年辛德尔和李德保所发现。

1915年,特渥特首先发现噬菌体的存在。

7. 遗传工程的研究

在1970年柯朗纳和他的研究小组合成了第一个基因,它是酵母菌的丙氨酸-tRNA基因,这是基因选殖的开始。

1973年柯恒和波义耳成功的将核酸分子嵌接至质体,并纳入大肠菌细胞内,成为一个新的且具遗传能力的组合体,而且能在大肠菌细胞内继续增殖,并有转录作用和转译作用形成蛋白质,这是遗传工程的开始。

阿柏,史密特和南施丝因为研究限制内核酸酶成功。

当遗传工程在微生物应用成功之后,就延伸到高等动植物和人类,如个体的选殖、细胞融合,也就是体细胞杂交或无性繁殖。

遗传工程已被应用于制造数种重要的药剂:例如胰岛素、体制素、干扰素和B型肝炎疫苗等。

五、21世纪的新趋势

1991-1997年,中国曾邦哲[杰]发表《结构论-泛进化理论》系列论文,阐述系统医药学、系统生物工程与系统遗传学的概念,提出经典、分子与系统遗传学发展观,以及于2003年、2008年于国际遗传学大会,采用结构、系统、图式遗传学的词汇来描述系统科学方法、计算机技术研究生物系统遗传结构、生物系统形态图式之间的“基因型-表达型”复杂系统研究领域,以细胞信号传导、基因调控网路为核心研究细胞进化、细胞发育、细胞病理、细胞药理的细胞非线性系统动力学。

2003年挪威科学家称之为整合遗传学并建立了研究中心。

2005年,国际上Cambien F.和Laurence T.发表动脉硬化研究的系统遗传学观,Morahan G., Williams RW.等2007年论述系统遗传学将成为下一代遗传学。

2005-2008年,国际系统遗传学飞速发展,欧美建立了许多系统遗传学研究中心和实验室。

2008年在美国召开了整合与系统遗传学国际会议,2008年美国国立卫生研究院设立了肿瘤的系统遗传学研究专项基金。

2009年荷兰举办了系统遗传学国际会议。

系统遗传学,采用计算机建模、系统数学方程、纳米高通量生物技术、微流控芯片实验等方法,研究基因组的结构逻辑、基因组精细结构进化、基因组稳定性、生物形态图式发生的细胞发生非线性系统动力学。

六、实践意义

遗传学是在育种实践基础上发展起来的。在人们进行遗传规律和机制的理论性探讨以前,育种工作只限于选种和杂交。遗传学的理论研究开展以后,育种的手段便随着对遗传和变异的本质的深入了解而增加。美国在20年代中应用杂种优势这一遗传学原理于玉米育种而取得显著的增产效果;中国在70年代把此原理成功地推广应用于水稻生产。多倍体的生长优势同样在中国得到应用,小黑麦异源多倍体的培育成功便是一例。人工诱变也是广泛应用的育种方法之一。数量遗传学和生物统计遗传学的研究结果,被应用到动、植物选种工作中而使育种效率得以提高。

遗传学论文

本科生课程论文 论文题目:基因治疗______ 课程名称:分子遗传学____ 任课老师:__ 专业:生物技术 班级:2010级___ ___ 学号: 姓名: _____ 2012年12月24日

基因治疗 胡志刚学号:222010326022006 西南大学农学与生物科技学院,重庆400715 摘要:基因治疗是一种新的治疗手段,近年来被逐渐应用于癌症、遗传病等顽固疾病的治疗 中。在临床应用中也遇到了很多困难,如其靶向性,转移效率较低等问题亟待解决,其安全性更是长期困扰着人们。本文主要对基因治疗的一般方法步骤、基因治疗存在的问题和前景进行了综述。 关键词:基因治疗载体遗传病癌症 Gene therapy Hu Zhi-Gang Student ID:222010326022006 College of Agronomy and biotechnology,Southwest China Normal University, Chongqing 400715, China Abstract: Gene therapy is a new treatment in recent years is gradually applied to the treatment of cancer, genetic diseases and other intractable diseases. Also encountered a lot of difficulties in clinical applications, as it targeted, lower transfer efficiency problems to be solved, and its security is long plagued people. This paper focuses on the general steps of gene therapy, gene therapy problems and scenarios are reviewed. Keywords: gene therapy;the carrier,;genetic diseases; cancer 1 基因治疗的定义 基因治疗(gene therapy)是指将外源正常基因导入靶细胞,以纠正或补偿因基因缺陷和异常引起的疾病,以达到治疗目的。也就是将外源基因通过基因转移技术将其插入病人的适当的受体细胞中,使外源基因制造的产物能治疗某种疾病。从广义说,基因治疗还可包括从DNA水平采取的治疗某些疾病的措施和新技术。 2 基因治疗的一般方法与步骤 2.1目的基因的选择和制备 基因治疗的首要问题是选择用于治疗疾病的目的基因。对遗传病而言只要已经研究清楚某种疾病的发生是由于某个基因的异常所引起的,其野生型基因就可被用于基因治疗,如用ADA基因治疗ADA缺陷病。但在现在的条件下,仅此是不够的。可用于基因治疗的基因需满足以下几点:(1)在体内仅有少量的表达就可显著改善症状;(2)该基因的过高表达不会对机体造成危害。在抗病毒和病

西南大学[1194]《生活中的DNA科学》答案

1、下面哪种酶是在重组DNA技术中不常用到的酶() 1.限制性核酸内切酶 2.DNA聚合酶 3.DNA连接酶 4.DNA解链酶 2、长期接触X射线的人群,后代遗传病发病率明显升高,主要原因是该人群生 殖细胞发生() 1.基因重组 2.基因突变 3.基因互换 4.基因分离 3、朊病毒的主要组成成分是:( ) 1.RNA 2.蛋白质 3.多糖 4.DNA 4、Western blot是() 1.检测DNA的方法 2.检测RNA的方法 3.检测蛋白的方法 4.检测酶的方法 5、针对耐药菌日益增多的情况,利用噬菌体作为一种新的抗菌治疗手段的研究 备受关注。下列有关噬菌体的叙述,正确的是() 1.利用宿主菌的氨基酸合成子代噬菌体的蛋白质 2.以宿主菌DNA为模板合成子代噬菌体的核酸 3.外壳抑制了宿主菌的蛋白质合成,使该细菌死亡 4.能在宿主菌内以二分裂方式增殖,使该细菌裂解 6、在真核细胞中肽链合成的终止原因是( ) 1.已达到mRNA分子的尽头 2.具有特异的tRNA识别终止密码子 3.终止密码子本身具有酯酶作用,可水解肽酰与tRNA之是的酯键 4.终止密码子被终止因子(RF)所识别 7、tRNA的作用是( ) 1.将一个氨基酸连接到另一个氨基酸上 2.把氨基酸带到mRNA位置上

3.将mRNA接到核糖体上 4.增加氨基酸的有效浓度 8、“转基因动物”是指( ) 1.含有可利用基因的动物 2.基因组中插入外源基因的动物 3.本身具有抗体蛋白类的动物 4.能表达基因信息的动物 9、a和b是不同顺反子的突变,基因型ab/++和a+/+b的表型分别为() 1.野生型和野生型 2.野生型和突变型 3.突变型和野生型 4.突变型和突变型 10、法医DNA科学涉及的学科有() 1.分子遗传学 2.生物化学 3.生物统计学 4.以上都是 11、下列哪种碱基不属于DNA/RNA的碱基() 1.腺嘌呤 2.鸟嘌呤 3.次黄嘌呤 4.胸腺嘧啶 12、下列哪项不是法医DNA分析技术的衍生技术() 1.RT-PCR 2.SSP - PCR 3.PCR - SSOP 4.MVR – PCR 13、下列哪项不属于现在主要开发研究的微型化DNA分析仪器() 1.微芯片毛细管电泳装置 2.微型热循环仪 3.杂交阵列 4.流式细胞仪 14、不属于质粒被选为基因运载体的理由是() 1.能复制

分子遗传学名词解释

2014分子遗传学复习 一、名词解释 1、结构基因(Structural gene):可被转录形成mRNA,并进而翻译成多肽链,构成各种结构蛋白质,催化各种生化反应的酶和激素等。 2、调节基因(Regulatory gene):指某些可调节控制结构基因表达的基因,合成阻遏蛋白和转录激活因子。其突变可影响一个或多个结构基因的功能,或导致一个或多个蛋白质(或酶)量的改变。 3、基因组(genome):基因组(应该)是整套染色体所包含的DNA分子以及DNA 分子所携带的全部遗传指令。或单倍体细胞核、细胞器或病毒粒子所含的全部DNA或RNA。 4、C值悖理(C-v a l u e p a r a d o x):生物基因组的大小同生物在进化上所处的地位及复杂性之间无严格的对应关系,这种现象称为C值悖理(C——value paradox)。 N值悖理(N-v a l u e p a r a d o x):物种的基因数目与生物进化程度或生物复杂性的不对应性,这被称之为N(number of genes)值悖理(N value paradox)或G(number of genes)值悖理。 5、基因家族(gene family):由同一个祖先基因经过重复(duplication)与变异进化而形成结构与功能相似的一组基因,组成了一个基因家族。 6、孤独基因(orphon):成簇的多基因家族的偶尔分散的成员称为孤独基因(orphon) 。 7、假基因(pseudogene): 多基因家族经常包含结构保守的基因,它们是通过积累突变产生,来满足不同的功能需要。在一些例子中,突变使基因功能完全丧失,这样的无功能的基因拷贝称为假基因,经常用希腊字母表示 8、①卫星DNA(Satellite DNA):是高等真核生物基因组重复程度最高的成分,由非常短的串联多次重复DNA序列组成。 ②小卫星DNA(Minisatellite DNA) :一般位于端粒处,由几百个核苷酸对的单元重复组成。 ③微卫星DNA (Microsatellite DNA):由2-20个左右的核苷酸对的单元重复成百上千次组成。 ④隐蔽卫星DNA(cryptic satellite DNA):用密度梯度离心分不出一条卫星带,但仍然存在于DNA主带中的高度重复序列 9、DNA指纹(DNA fingerprints):小卫星DNA是高度多态性的,不同个体,各自不同。但其中有一段序列则在所有个体中都一样,称为“核心序列”,如果把核心序列串联起来作为探针,与不同个体的DNA进行分子杂交,就会呈现出各自特有的杂交图谱,它们和人的手纹一样,具有专一性和特征性,因个体而异,因而称为“DNA指纹”。 10、超基因(super gene) :是指真核生物基因组中紧密连锁的若干个基因座,它们作用于同一性状或一系列相关性状。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 11、单核苷酸多态性(single nucleotide polymorphism,SNP):主要是指基因组水平上由单个核苷酸的变异所引起的DNA顺序多态性。它是人类可遗传变异中最常见的一种,占所有已知多态性的90%以上。 12、遗传标记(Genetic marker):可示踪染色体、染色体片段、基因等传递轨

分子遗传学综述作业

视网膜母细胞瘤研究进展 姓名:学号:学院:医学院 [摘要]视网膜母细胞瘤(Retinoblastoma,Rb)是一种起源于视网膜胚胎性核层细胞的恶性肿瘤,通常发生于5岁之前的儿童。Rb由位于13q14.1-q14.2RB1区Rb1基因突变引起,其发生率约为1:15000,在新生儿中约为1:20000,我国每年新发患儿数在1100-1500例左右。临床上Rb以白瞳症、斜视、青光眼、眼眶蜂窝织炎、葡萄膜炎、前房出血、玻璃体出血等为特征;临床治疗Rb以眼球摘除术、化学疗法、温热疗法、放射疗法和基因疗法为主。本文结合最新的研究进展,对Rb的临床特征、发病机理、检测方法和治疗方法等方面,进行以下综述。[关键词]Rb;Rb1;临床特征;发病机理;检测;治疗 1概述 1.1分类与研究现状 Rb通常按3种不同的方式:家族性或散发性、单侧或双侧、遗传性或非遗传性进行分类[1]。临床上我们倾向于使用前两种分类法[2]。因此,Rb临床病例可分别归类为单侧散发性、双侧散发性、单侧家族性及双侧家族性。 Rb患者中,约60%的患者为单侧,平均诊断年龄为24个月。单侧患者的RB肿瘤通常为单病灶,少数为多灶性肿瘤(单侧多发性Rb)。大多数人的单侧Rb无家族史,肿瘤较大,有时不能确定是否是一个单一的肿瘤。约40%的患者有双侧RB,平均诊断年龄为15个月。初步诊断时,两只眼睛均受累。双侧Rb患者表现为多肿瘤灶,有些孩子最初诊断为单侧RB也可发展为双侧RB。极少数情况下,双侧Rb和松果体母细胞瘤同时发生称为三侧Rb,且通常致死。 发生Rb后,其他特异性的眼外原发肿瘤的发生风险增加(统称为继发性肿瘤)。大部分的继发性肿瘤为骨肉瘤、软组织肉瘤(大多数为肉瘤和横纹肌肉瘤)或黑色素瘤[3]。这些肿瘤通常在青春期或成年期出现。在接受外放射治疗的RB患者中,继发性肿瘤的发病率会增加50%[4]。即使没有暴露于高剂量的放疗的遗传性视网膜母细胞瘤幸存者一生发展的迟发性癌的风险也会增加[5]。 我国Rb的临床和基础研究一直是眼科学重点探索的研究课题之一,近15年国家自然科学基金资助项目,仅Rb研究课题就有11项。其研究不仅从染色体和分子水平证明了Rb基因的异常[6],建立了多个Rb瘤细胞系[7],制备Rb单克隆抗体和开展了Rb的免疫导向和基因治疗等实验性研究[8];更重要的是在我国形成了多个以Rb为研究的团队,近20年国内各期刊发表的Rb有关文章共531篇,其中临床研究314篇(59.31%),基础研究217篇(40.87%),其内容广泛且有深度 1.2临床特征 Rb是一种通常发生于小于5岁的儿童的视网膜的恶性肿瘤。RB来源于具有癌症突变倾向的细胞,这些细胞均含有RB1基因的重复序列。Rb呈单灶或多灶分布,大约60%患者的RB1基因来源于单系,平均诊断年龄为24个月;另外40%患者的RB1基因来源于双系,平均诊断年龄为15个月。遗传性的RB是一种常染色体RB易感疾病,患有遗传性的RB个体患其它非眼部的肿瘤的风险也会增加。 1.3临床描述 视网膜母细胞瘤(Rb)。最常见的症状是一种白色瞳孔反射(白瞳症)。斜视是第二个最常见的症状,可能伴随或之前的白瞳症。不正常的症状还包括青光眼、眼眶蜂窝织炎、葡

全国高中生物竞赛大纲

全国高中生物竞赛大纲Last revision on 21 December 2020

全国中学生生物学竞赛纲要 理论部分 全国竞赛理论考试应当注意那些适用于同一类群中大多数生物的生物学概念。考试不应包括特殊事实、例外或者需要特殊或地方经验的某地特有生物的知识。 大部分试题应当考查学生的理解力、科学工作技能以及他们生物学知识的应用。单纯考识记的试题应尽可能的少,不应超过总分的25%。 理论部分应按注明的比例包括以下7个部分: Ⅰ.细胞生物学 25%细胞的结构和功能 * 化学成分 * 细胞器 * 细胞代谢 * 蛋白质合成 * 通过膜的转运 * 有丝分裂和减数分裂 微生物学 生物工程学 Ⅱ.植物解剖和生理(重点是种子植物) 15%

组织和器官的结构和功能 * 光合作用、蒸腾作用和气体交换 * 水分、矿物质和同化物的运输 * 生长和发育 * 生殖(包括蕨类和苔藓) Ⅲ.动物解剖和生理(重点是脊椎动物) 15%组织和器官的结构和功能 * 消化和营养 * 呼吸作用 * 血液循环 * 排泄调节(神经的和激素的) * 生殖和发育 * 免疫 Ⅳ.动物行为学 5% * 行为的体系 * 行为的原因 * 争斗行为 * 习得性行为

Ⅴ.遗传学与进化 15% * 变异:突变和渐变 * 孟德尔遗传 * 多等位性、重组、伴性遗传 * 哈迪温伯格定律 * 演化的机理 Ⅵ.生态学 15% * 生态系统 * 食物关系 * 能流 * 生物地球化学系统 * 演替 * 种群结构和动态 * 生物圈和人 Ⅶ.生物系统学 10%结构和功能;主要类群中典型生物之间的演化和生态的关系 在上述各主题中均应包括有科学思维的原则和生物学方法的原理的题目。 全国竞赛考纲细目

第十六章表观遗传学(答)

第十一章表观遗传学 、名词解释 epige netics; huma n epige nome project,HEP; hist one code 一、A型题 1脆性X综合征是何基因发生重新甲基化而沉默导致?(D) A.H19基因 B. MeCP2基因 C. IGF2基因 D. FMR1 基因 2、对表观遗传的生物学意义的表述错误的是(D) A、补充了“中心法则”,阐明核酸并不是存储遗传信息的唯一载体。 B “表观遗传修饰”可以影响基因的转录和翻译。 C表观遗传学修饰的可遗传性在基因和环境的共同作用中起重要作用。 D“表观遗传修饰”不能在个体世代间遗传。 3、 Prader-Willi ( PW$综合征是由于 __________________ 印记基因缺失引起。(A) A、父源15q11-q13缺失 B 、母源15q11-q13 缺失 C父源和母源15q11-q13缺失 D 、父源11P15.5缺失 4、 Amgelma n (AS)综合征是由于 ________________ 印记基因缺失引起。(B) A、父源15q11-q13缺失 B 、母源15q11-q13 缺失 C父源和母源15q11-q13缺失 D 、父源11P15.5缺失 5、表观遗传学三个层面的含义不包括:(D) A、可遗传性,可在细胞或个体世代间遗传; B、基因表达的可变性; C、无DNA序列的变化。 D、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传; 6、 siRNA相关沉默修饰的作用机制是:(A ) A.与靶基因互补而降解靶基因 B. 抑制靶mRNA翻译 C.去除靶mRNA勺多聚腺苷酸尾巴,使其被 3 '核酸外切酶水解

96-02分子遗传学试题(博)

博士研究生入学考试试题 一九九六年分子遗传学 一、请说明高等动植物的基因工程与大肠杆菌基因工程的异同。什么是当前真核生物基因工 程的前沿?你认为目前动植物基因工程进一步发展的瓶颈是什么?(20分) 二、在遗传学的发展中模式生物的应用起了重要的作用,请用一种你最熟悉的模式生物,较 为系统地阐述应用该模式生物进行研究对分子遗传学的贡献。(15分) 三、从突变产生的机制看能否实现定向突变?试从离体和活体两种情况予以说明。(15分) 四、什么是基因组大小与C值的矛盾?造成这种矛盾的因素有哪些?如何估计真核生物基因 组的基因数目?在进化过程中自然选择是否作用于基因组的大小,请阐述你的观点。(15分) 五、水稻黄矮病毒含有负链RNA基因组,在完成对该病毒核衣壳蛋白基因(N)序列测定的 基础上,将N的编码序列置于水稻Actl基因(是一种组成性表达的基因)的启动子下游,通过基因枪方法导入一个水稻的粳稻品种,研究结果表明转基因的水稻植株在攻毒试验中表现出对黄矮病毒的抗性。请你进一步设计实验,证明以下两点: 1.转基因水稻的抗性确实是由于N基因导入水稻基因组表达的结果,而不是在转化过程中由于突变造成的; 2.转基因水稻的抗性是由于N基因的转录产物造成的,而不是该基因的翻译产物造成的。(20分) 六、限制性核酸内切酶在分子遗传学中广泛地用于各类研究,请具体地说明限制性内切酶在 研究工作中的应用范围。 (15分)

1997年博士研究生入学试题 分子遗传学(A卷) 一、在通过测序获得一个基因组克隆的DNA序列后,怎样才能了解该序列可能具有的基因功能,请提出你的研究方案。(20分) 二、请简单介绍你的硕士论文研究(或相当于硕士论文研究)的工作。如果这些工作涉及分子遗传学,请提出你深入研究的设想;如果你以前的工作与分子遗传学无关,也请你提出深入到分子水平的设想。(20分) 三、请指出目前阶段基因工程技术的局限性,并分析这些局限性的原因(你可以在人类基因冶疗,动物基因工程和植物基因工程三个方面任选一个来回答,也可以都回答)。(20分) 四、请说明基因组计划与生物技术的关系。(20分) 五、请说明真核生物染色体的结构和组成在分子水平上的特征。(20分) 1997年博士研究生入学试题 分子遗传学(B卷) 一、请简单介绍你的硕士论文研究(或相当于硕士论文研究)的工作。如果这些工作涉及分子遗传学,请提出你深入研究的设想,如果你以前的工作与分子遗传学无关,也请你提出深入到分子水平的设想。(20分) 二、请说明真核生物染色体的结构和组成在分子水平上的特征。(20分) 三、目前在遗传图谱和物理图谱的研究中使用哪些分子标记?请说明每种标记的

(完整版)大学遗传学试卷—计算题

第二章遗传学的细胞学基础 1.小鼠在下述几种情况下分别能产生多少配子?(1)5个初级精母细胞; (2)5个次级精母细胞;(3)5个初级卵母细胞;(4)5个次级卵母细胞。 答:(1)20 (2)10 (3)5 (4)5 [解析](1)每个初级精母细胞产生2个次级精母细胞,继续分裂产生4个精子即雄配子,所以5个产生5×4=20; (2)每个次级精母细胞产生2个雄配子,所以5个产生5×2=10; (3)每个初级卵母细胞产生1个次级卵母细胞,继续分裂产生1个卵细胞即雌配子,所以5个产生5×1=5; (4)每个次级卵母细胞分裂产生1个卵细胞即雌配子,所以5个产生5×1=5. 2.果蝇的基因组总共约有1.6×108个碱基对。DNA合成的数率为每秒30个碱基对。在早期的胚胎中,全部基因组在5min内复制完成。如果要完成这个复制过程需要多少个复制起点? 答:需要约1.77×105起始点。 [解析]在只有一个复制起始点的情况下,果蝇基因组复制一次需要的时间为: 1.6×108个碱基对/(30个碱基对/s)=5.3×107s; 如果该基因组在5min内复制完成,则需要的复制起始点为: 5.3×107/5×60≈1.77×105(个起始点) 3.如果某个生物的二倍体个体染色体数目为16,在有丝分裂的前期可以看到多少个染色体单体?在有丝分裂后期,有多少染色体被拉向细胞的每一极? 答:32条染色体单体16条染色体被拉向每一极 [解析]从细胞周期来讲,一个细胞周期包括物质合成的细胞间期和染色体形态发生快速变化的分裂期,染色体的复制发生在细胞分裂间期。所以,在细胞分裂前期,每一条染色体都包括两条单体。因为该二倍体生物2n=16,所以在有丝分裂的前期可以见到16×2=32条单体。 在有丝分裂后期,着丝粒复制完成,此时,每条染色体上的两条单体彼此分离,分别移向细胞两极,即每一极都有16条染色体分布,且每条染色体都只包含一条单体。

遗传学发展历史及研究进展(综述)

遗传学发展历史及研究进展 湛江师范学院09生本一班徐意媚2009574111 摘要:遗传学是一门探索生命起源和进化历程的学科,起源于人类的育种实践,于1910年进入现代遗传学阶段,并依次经历个体遗传学时期、细胞遗传学时期、数量遗传学和群体遗传学时期、细胞水平向分子水平过渡时期、分子遗传学时期。目前遗传学在医学、农牧业等领域取得重大突破,如表遗传学在肿瘤的治疗方面。21世纪将是遗传学迅猛发展的世纪,在经济、微生物、工业、制造业等许多领域都将有重大的突破。 关键词:遗传学发展历史研究现状发展前景 1 现代遗传学发展前 1.1遗传学起源于育种实践 人类在新石器时代就已经驯养动物和栽培植物,渐渐地人们学会了改良动植物品种的方法。写于公元60年左右的《论农作物》和533~544年间中国学者贾思勰在所著的《齐民要术》中均记载了嫁接技术,后者还特别记载了果树的嫁接,树苗的繁殖,家禽、家畜的阉割等技术。[1] 1.2 18世纪下半叶和19世纪上半叶期间 许多人都无法阐明亲代与子代性状之间的遗传规律,直到18世纪下半叶之后,拉马克和达尔文对生物界遗传和变异进行了系统的研究。拉马克通过长颈鹿的颈、家鸡的翅膀等认为环境条件的改变是生物变异的根本原因,并提出用进废退学说和获得性状遗传学说。达尔文达尔文以博物学家的身份进行了五年的考察工作,广泛研究遗传变异与生物进化关系,终于在1859年发表著作《物种起源》,书中提出自然选择和人工选择的进化学说,认为生物是由简单到复杂、低级再到高级逐渐进化的。除此之外,达尔文承认获得性状遗传的一些论点,并提出了“泛生论”假说,但至今未获得科学的证实。 1.3 新达尔文主义 以魏斯曼(Weismann A.,1834-1914) 为代表的等人支持达尔文选择理论否定获得性遗传,魏斯曼等人提出种质连续论,认为种质是世代连续不绝的。他们还通过对老鼠22代的割尾巴试验,否定后天获得性遗传,明确地区分种质和体质,认为种质可以影响体质,而体质不能影响种质,在理论上为遗传学的发展开辟了道路。[2] 2.现代遗传学的发展阶段

2021年春普通遗传学-作业题(整理

东北农业大学网络教育学院 普通遗传学网上作业题(一) 第一章绪论 一、名词解释 1遗传学 2遗传 3变异 4遗传学研究 二、判断题 1遗传是相对的变异是绝对的。() 2 遗传和变异的表现与环境无关。() 3进化论可以离开遗传学独立发展。() 三、填空题 1()和()生物界最普遍和最基本的两个特征。 2()、()和()是生物进化和新品种选育的三大因素。3()在1859年发表了《物种起源》。 4()是分子遗传学中最重要的研究方向。 四、简答题 1简述遗传学研究的任务? 五、论述题 1简述遗传学在科学和生产发展中的作用? 普通遗传学作业题(二) 第二章遗传的细胞学基础 一、名词解释 1细胞器 2细胞周期 3无融合生殖 4无性生殖

5有性生殖 6主缢痕 7孤雌生殖 8受精 9胚乳直感 10果实直感 11随体 12同源染色体 13性染色体 14联会 15单倍体 16多倍体 17拟核 18细胞骨架 19次缢痕 20核型分析 21无丝分裂 22无融合结子 23单性生殖 24单性结实 25生活周期 26世代交替 27低等生物无性世代 28低等生物有性世代 二、判断题 1细胞是生物体结构和生命活动的基本单位。() 2植物细胞的DNA都储存在细胞核和叶绿体内。() 3只有高等动物细胞才有中心体。() 4染色质和染色体实际是同一物质。() 5人体内不存在细胞无私分裂。() 6细胞周期分为G1期、S期和G2期。() 7常染色体主要是由常染色质所组成.() 8无性繁殖的后代不象有性繁殖的后代那样发生分离。() 9我们通常在分裂后期研究染色体的形态。() 10细胞周期中一个最重要的控制点就是决定细胞是否进入S期。()11高等动物都是雌雄异体的。()

2015年武汉大学885分子生物学研究生入学考试初试真题

一、专业术语翻译与解释(共10小题,每小题4分,共40分) 1.Exon 2.Promoter 3.Proteomics 4.Frame-shift mutation 5.Wobble hypothesis 6.Single-strand binding protein 7.Tandem affinity purification 8.Chromation remodeling 9.Single Nucleotide Polymorphisms 10.Alternative splicing 二、简答题(共5小题,每小题10分,共50分) 1.真核细胞蛋白质磷酸化主要发生在哪三种氨基酸上?催化蛋白质磷酸化和去磷酸化的酶是什么?请举两个例证说明蛋白磷酸化对功能的影响。 2.请简述三种RNA在蛋白质生物合成中的作用。 3.什么是RNA干扰(RNA interference,RNAi)?请简述RNA于扰的作用机制。 4.遗传密码有哪些特点?请简述。 5.什么是表观遗传学?为什么研究与组蛋白乙酸化修饰相关的酶是表观遗传学领域的一个热点?

三、论述题(共3小题,每小题20分,共60分) 1.1953年,沃森和克里克发现了DMA双螺旋的结构,开启了分子生物学时代。请从主链、碱基配对、大沟小沟以及结构参数等多方面介绍DNA双螺旋结构。 2.请从基本结构、作用形式、功能特点等多方面论述原核生物和真核生物mRNA的主要区别。 3.假设你想要分析在果蝇发育过程中基因的表达变化情况。为此,你从果蝇胚胎和成虫中分别提取了总mRNA,并针对果蝇发育过程中必需的基因Z的mRNA序列,利用特异识别该基因编码区中间部分的DNA标记探针进行了Northern Blot杂交实验,结果如图1所示。

分子遗传学

第一章
公元前4000年,伊拉克 的古代巴比伦石刻上记 载了马头部性状在5个 世代的遗传。
浙江大学


第一节 遗传学研究的对象 和任务
遗传学第一章
1
浙江大学
遗传学第一章
2
1.遗传学的研究内容: 1.遗传学的研究内容:
(1).是研究生物遗传和变异的科学: 遗传学与生命起源和生物进化有关。 (2).是研究生物体遗传信息和表达规律的科学: 解决问题:物种 代代相传; 性状 遗传。 (3).是研究和了解基因本质的科学: 遗传物质是什么? 遗传物质 性状?
浙江大学 遗传学第一章 3
∴ 遗传学是一门涉及生命起源和生物进化的理论科学, 同时也是一门密切联系生产实际的基础科学,直接指导 医学研究和植物、动物、微生物育种。
浙江大学
遗传学第一章
4
2.遗传和变异的概念: 2.遗传和变异的概念:
(1).遗传(heredity):亲子间的相似现象。 “种瓜得瓜、种豆得豆” (2).变异(variation):个体之间的差异。 “母生九子,九子各别” (3).遗传和变异是一对矛盾。 (4).遗传、变异和选择是生物进化和新品种选育的 三大因素: 遗传 + 变异 + 自然选择 遗传 + 变异 + 人工选择 形成物种 动、植物品种
自然选择
人工选择
(5).遗传和变异的表现与环境不可分割。
浙江大学 遗传学第一章 5 浙江大学 遗传学第一章 6

3.遗传学研究的对象: 3.遗传学研究的对象:
以微生物(细菌、真菌、病毒)、
植物和动物以及人类为对象,研究其 遗传变异规律。
4.遗传学研究的任务: 4.遗传学研究的任务:
(1).阐明:生物遗传和变异现象 (2).探索:遗传和变异原因 (3).指导:动植物和微生物育种 表现规律; 物质基础 内在规律;
提高医学水平。
浙江大学
遗传学第一章
7
浙江大学
遗传学第一章
8
第二节
遗传学的发展
一、现代遗传学发展前
浙江大学
遗传学第一章
9
浙江大学
遗传学第一章
10
1.遗传学起源于育种实践:
人类 生产实践 遗传和变异 选择
2. 18世纪下半叶和19世纪上半叶期间,拉马克和达尔文对
生物界遗传和变异进行了系统的研究: (1).拉马克(Lamarck J. B., 1744~1829): ①.环境条件改变是生物变异的根本原因; ②.用进废退学说和 获得性状遗传学说 如长颈鹿、家鸡翅膀。
育成优良品种。
浙江大学
遗传学第一章
11
浙江大学
遗传学第一章
12

浙江大学遗传学习题答案

朱军遗传学(第三版)习题答案第一章绪论 1.答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。 遗传:是指亲代与子代相似的现象。如种瓜得瓜、种豆得豆。 变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。 2.答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。 遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。 3.答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。同时经过人工选择,才育成适合人类需要的不同品种。因此,遗传、变异和选择是生物进化和新品种选育的三大因素。 4.答:因为任何生物都必须从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。生物与环境的统一,是生物科学中公认的基本原则。所以,研究生物的遗传和变异,必须密切联系其所处的环境。 5.答:孟德尔在前人植物杂交试验的基础上,于1856~1864年从事豌豆杂交试验,通过细致的后代记载和统计分析,在1866年发表了"植物杂交试验"论文。文中首次提出分离和独立分配两个遗传基本规律,认为性状传递是受细胞里的遗传因子控制的,这一重要理论直到1900年狄·弗里斯、柴马克、柯伦斯三人同时发现后才受到重视。因此,1900年孟德尔遗传规律的重新发现,被公认为是遗传学建立和开始发展的一年。1906年是贝特生首先提出了遗传学作为一个学科的名称。 6.答:遗传学100余年的发展历史,已从孟德尔、摩尔根时代的细胞学水平,深入发展到现代的分子水平。其迅速发展的原因是因为遗传学与许多学科相互结合和渗透,促进了一些边缘科学的形成;另外也由于遗传学广泛应用了近代化学、物理学、数学的新成就、新技术和新仪器设备,因而能由表及里、由简单到复杂、由宏观到微观,逐步深入地研究遗传物质的结构和功能。因此,遗传学是上一世纪生物科学领域中发展最快的学科之一,遗传学不仅逐步从个体向细胞、细胞核、染色体和基因层次发展,而且横向地向生物学各个分支学科渗透,形成了许多分支学科和交叉学科,正在为人类的未来展示出无限美好的前景。 7.答:在生物科学、生产实践上,为了提高工作的预见性,有效地控制有机体的遗传和变异,加速育种进程,开展动植物品种选育和良种繁育工作,都需在遗传学的理论指导下进行。例如我国首先育成的水稻矮杆优良品种在生产上大面积推广,获得了显著的增产。又例如,国外在墨西哥育成矮杆、高产、抗病的小麦品种;在菲律宾育成的抗倒伏、高产,抗病的水稻品种的推广,使一些国家的粮食产量有所增加,引起了农业生产发展显著的变化。医学水平的提高也与遗传学的发展有着密切关系。 目前生命科学发展迅猛,人类和水稻等基因图谱相继问世,随着新技术、新方法的不断出现,遗传学的研究范畴更是大幅度拓宽,研究内容不断地深化。国际上将在生物信息学、功能基因组和功能蛋白质组等研究领域继续展开激烈竞争,遗传学作为生物科学的一门基础学科越来越显示出其重要性。 第二章遗传的细胞学基础 1.答:原核细胞:一般较小,约为1~10mm。细胞壁是由蛋白聚糖(原核生物所特有的化学物质)构成,起保护作用。细胞壁内为细胞膜。内为DNA、RNA、蛋白质及其它小分子物质构成的细胞质。细胞器只有核糖体,而且没有分隔,是个有机体的整体;也没有任何内部支持结构,主要靠其坚韧的外壁,来维持其形状。其DNA存在的区域称拟核,但其外面并无外膜包裹。各种细菌、蓝藻等低等生物由原核细胞构成,统称为原核生物。 真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。 染色体:含有许多基因的自主复制核酸分子。细菌的全部基因包容在一个双股环形DNA构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。

分子遗传学综述

分子遗传学综述 【摘要】:分子遗传学是在分子水平上研究生物遗传和变异机制的遗传学分支学科。经典遗传学的研究课题主要是基因在亲代和子代之间的传递问题;分子遗传学则主要研究基因的本质、基因的功能以及基因的变化等问题。 关键词:医学分子遗传学发展内容研究方法 分子遗传学是遗传学中的一门新兴分支学科。分子生物学的重要组成部分。广义地说,分子遗传学是研究分子水平描述的遗传体系或其组分的情形。狭义地说,它是研究遗传机理的分子基础以及受遗传物质控制的代谢过程。从分子水平研究遗传和变异的物质基础,是在遗传物质脱氧核糖核酸(DNA)的分子结构确认后迅速发展起来的。20世纪以来,随着对大分子化合物的研究不断取得突破,特别是脱氧核糖核酸分子双螺旋结构模型的建立,人们能够从主要生命物质结构的分予层次上得以合理地解释基因复制的机理、信息传递的途径、阐明生物遗传变异的运动形态,从而使整个遗传学的研究由形态描述、逻辑推理为主,转变为以物质结构与功能相统一为分析着眼点的新的发展阶段。分子遗传学的目的在于阐明脱氧核糖核酸的复制机理,脱氧核糖核酸、核糖核酸与蛋白质之间的关系,基因的本质、表达、传递及其调节机制,基因突变的分子基础,核外遗传的分子机制,以及细胞核质之间的关系等等.可从分子层次为探索生物发育、分化和进化等重大问题提供新的理论说明和实验手段.分子遗传学是遗传学发展的一个重要方向,遗传工程是分子遗传学的应用。

一、发展简史 1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端。1955年,美国分子生物学家本泽用基因重组分析方法,研究大肠杆菌的T4噬菌体中的基因精细结构,其剖析重组的精细程度达到DNA 多核苷酸链上相隔仅三个核苷酸的水平。这一工作在概念上沟通了分子遗传学和经典遗传学。 关于基因突变方面,早在1927年马勒和1928年斯塔德勒就用X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢,直到以微生物为材料广泛开展突变机制研究和提出DNA分子双螺旋模型以后才取得显著成果。例如碱基置换理论便是在T4噬菌体的诱变研究中提出的,它的根据便是DNA复制中的碱基配对原理。 美国遗传学家比德尔和美国生物化学家塔特姆根据对粗糙脉孢菌的营养缺陷型的研究,在40年代初提出了一个基因一种酶假设,它沟通了遗传学中对基因的功能的研究和生物化学中对蛋白质生物合成的研究。 按照一个基因一种酶假设,蛋白质生物合成的中心问题是蛋白质分子中氨基酸排列顺序的信息究竟以什么形式储存在DNA分子结构中,这些信息又通过什么过程从DNA向蛋白质分子转移.前一问题是

浅谈表观遗传学

浅谈表观遗传学 摘要:表观遗传学改变包括DNA甲基化、组蛋白修饰、非编码RNA作用等,产生基因组印记、母性影响、基因沉默、核仁显性、休眠转座子激活等效应。表观遗传变异是环境因素和细胞内遗传物质间交互作用的结果,其效应通过调节基因表达,控制生物学表型来实现。本文则从以上几个方面简述了表观遗传学的改变以及基本原理。 经典遗传学认为,核酸是遗传的分子基础,生命的遗传信息储存在核酸的碱基序列。每个个体内虽然所有细胞所含有的遗传信息是相通的,但由于基因的选择性表达,即不同细胞所表达的基因种类不同,这些来源相同的细胞经过增殖分化后将变成功能形态各不相同的细胞,从而组成机体内不同的组织和器官。几年来发现,在DNA序列不发生改变的情况下,基因表达也可发生能够遗传的改变,这种现象就被定义为表观遗传。它的主要论点是生命有机体的大部分性状是由DNA序列中编码蛋白质的基因传递的,但是DNA序列以外的化学标记编码的表观遗传密码,对于生命有机体的健康及其表型特征,同样也有深刻的影响。 表观遗传学的调节机制主要包括组蛋白修饰、DNA甲基化、非编码RNA作用等,通过这些调节模式,影响基因转录和(或)表达,从而参与调控机体的生长、发育、衰老及病理过程。这些调节模式相比核酸蛋白质的经典遗传途径更容易受环境的影响,因此表观遗传学更加关注环境诱导的表观遗传变异。因为表观遗传的这些调节机制易受环境影响,而任何一种调节机制发生异常都可能导致细胞状态、功能等发生紊乱,进而引起各种疾病,同时又由于许多表观遗传变异是可逆的,导致表观遗传异常引发的疾病相对容易治疗,因此近年来表观遗传学致病的研究成为了热门的话题之一。 组蛋白在DNA组装中发挥了关键作用, 利用核心组蛋白的共价修饰包括组蛋白甲基化、乙酰化、磷酸化、泛素化、ADP-核糖基化及特定氨基酸残基N-末端的SUMO化传递表观遗传学信息。修饰的主要靶点是组蛋白氨基末端上的赖氨酸、精氨酸残基,这些组蛋白翻译后修饰对基因特异性表达的调控,是其表观遗传学的重要标志。正常机体内,组蛋白修饰保持着可逆的动态平衡,当平衡打破,组蛋白去乙酰化则使得乙酰基从乙酰化组蛋白转移到乙酰辅酶A上,形成了致密的染色质状态, 从而使基因转录下降或沉默。

分子遗传学复习题及答案-

分子遗传学复习题 1.名词解释: DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。 ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。ENCODE计划的实施分为3个阶段:试点阶段(a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。 gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。 GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。 miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码RNA,它们主要参与基因转录后水平的调控。 RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。 RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。 RNA指导的DNA甲基化(RNA Directed DNA Methylation RDDM):活性RISC进入核内,指导基因发生DNA的甲基化。 密码子摆动假说(wobble hypothesis):密码子的第1,2位核苷酸(5’→3’)与反密码子的第2,3核苷酸正常配对;密码子的的第3位与反密码子的第1位配对并不严谨,当反密码子的第1位为U时可识别密码子第3位的A或G,而G则可识别U或C,I(次黄嘌呤)可识别U或C或A。 比较基因组学(comparative genomics):是一门通过运用数理理论和相应计算机程序,对不同物种的基因组进行比较分析来研究基因组大小和基因数量、基因排列顺序、编码序列与非编码序列的长度、数量及特征以及物种进化关系等生物学问题的学科。 表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。 代谢组学(metabolomics):是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。 端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。

遗传学-北京师范大学生命科学学院

遗传学实验 Experiments of Genetics 【课程编号】1410012【课程类别】学科基础课 【学分数】1.5学分【适用专业】生物科学、生物技术 【学时数】48学时【编写日期】2009年6月 一、教学目标 根据北京师范大学生物科学和技术学专业的培养目标,学生应符合基础理论扎实、专业技能娴熟、综合素质过硬的高要求,实验课程应建设成为知识与技能相结合、理论与实际相联系的教学体系;要求实验教学活动注重学生的观察、动手能力,培养学生的分析、思维能力。本课程要求将经典遗传学规律同现代遗传学内容有机结合,在基本规律、基础理论的基础上,用体现基本知识点、充分利用所需实验技术、有助于理解概念和解决实际问题的实验内容训练学生,使学生习得理论知识和应用技能。 二、教学内容和学时分配 模块1:基本遗传规律(实验1-4) 实验一、果蝇的表型观察与性别鉴定2学时基础性 主要内容:果蝇的表型观察、性别鉴定。 教学要求:了解果蝇的生长和遗传特性,果蝇的科学研究价值;理解利用果蝇进行遗传分析的方法;掌握果蝇的基本形态、果蝇的遗传特征和遗传方式。 重点、难点:生长不良果蝇的性别鉴定,特殊性状的准确鉴别、各代之间的时间把握。 其它教学环节:讲授观察方法、实验基本原理,研讨准确判断果蝇特征的方法技巧。 实验二、果蝇杂交实验设计及结果统计分析6学时综合性 主要内容:果蝇的培养和基本实验体系建立,设计杂交实验方案,对杂交结果的统计与分析,研究与验证单基因位点、多基因位点和伴性基因的遗传规律。 教学要求:了解果蝇的基本遗传学规律;理解利用果蝇进行遗传分析的方法,杂交设计的基本原理——与研究的规律相符,准确、简便、科学;掌握果蝇杂交实验的全部过程和注意事项。 重点、难点:果蝇的培养和基本实验体系建立,果蝇杂交实验的设计与操作。 其它教学环节:讲授实验基本原理,小组实验经验交流(果蝇杂交实验的设计、方法、杂交结果分析)。

相关文档
最新文档