勾股定理的证明方法(完整版)

勾股定理的证明方法(完整版)
勾股定理的证明方法(完整版)

勾股定理的证明方法

勾股定理的证明方法

第一篇:

勾股定理的证明方法

勾股定理的证明方法

绪论

勾股定理是世界上应用最广泛,历史最悠久,研究最深入的定理之一,是数学、几何中的重要且基本的工具。而数千年来,许多民族、许多个人对于这个定理之证明数不胜数,达三百余种。可见,勾股定理是人类利用代数思想、数学思想解决几何问题、生活实际问题的共同智慧之结晶,也是公理化证明体系的开端。

第一节勾股定理的基本内容

文字表述:

在任何一个的直角三角形中,两条直角边的长度的平方和等于斜边长度的平方。数学表达:

如果直角三角形的两直角边长分别为a,b,斜边长为,那么

a^2+b^2=^2 事实上,它是余弦定理之一种特殊形式。

第二节勾股定理的证明

1欧洲

在欧洲,相传最早证明勾股定理的是毕达哥拉斯,故在欧洲该定理得名毕达哥拉斯定理;又因毕达哥拉斯在证毕此定理后宰杀一百头牛庆祝,故亦称百牛定理。

欧洲最早记载这一定理之书籍,属欧几里得《几何原本》。

毕达哥拉斯的证明方法(相传):

一说采用拼图法,一说采用定理法。

做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为,再做三个边长分别为a、b、的正方形,把它们像左图那样拼成两个正方形。

从图上可以看到,这两个正方形的边长都是a + b,所以面积相等。

a2+b2+4×12ab = 2+4×12ab ,整理即可得到。

定理法就是几何原本当中的证法:

设△ab为一直角三角形,其中a为直角。从a点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在正式的证明中,我们需要四个辅助定理如下:

如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(sas定理)三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个四方形的面积等于其二边长的乘积(据辅助定理

3)。证明的概念为:

把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。

2 中国

《周髀算经》、《九章算术》当中都有相关问题的记载。

周髀算经的证明方法:

“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广

三,股修

四,径隅五。既方之,外半其一矩,环而共盘,得成三四五,两矩共长二十有五,是谓积矩。”——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有边长三勾方、边长四股方、边长五弦方三个正方形。验算勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是大正方形减去右上、左下两个长方形面积后为勾方股方之和。因三角形为长方形面积的一半,可推出四个三角形面积等于右上、左下两个长方形面积,所以勾方+股方=弦方。赵爽弦图或许是中国人最著名的一种证法。

赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形abde是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab2;中间的小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab

2)+(b-a)2 = 2;

化简后便可得:

a2 + b2= 2

亦即:

=√(a2 + b

2)

可见,中国古人主要采取拼图法进行证明。后来美国总统加菲尔德也曾采用拼图法,利用面积巧妙的证明了勾股定理,他用了两个全等的直角三角形拼成一个梯形,利用面积法进行证明,非常巧妙。

3 其他方法

最快:

射影定理法,利用相似形来证明。

面积思想:

利用三角形五心的性质,利用面积来证明。

综上所述,勾股定理的证明是人类智慧的结晶。

第二篇:

勾股定理证明方法

勾股定理证明方法

勾股定理是初等几何中的一个基本定理。所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。

中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:

我听说您对数学非常精通,我想请教一下:

天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?商高回答说:

数的产生来源于对方和圆这些形体的认识。其中有一条原理:

当直角三角形‘矩'得到的一条直角边‘勾'等于

3,另一条直角边’股'等于4的时候,那么它的斜边'弦'就必定是5。这个原理是大禹在治水的时候就总结出来的呵。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦

5,正是勾股定理的一个应用特例。所以现在数学界把它称为勾股定理是非常恰当的。

在《九章算术》一书中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”《九章算术》系统地总结了战国、秦、汉以来的数学成就,共收集了246个数学的应用问题和各个问题的解法,列为九章,可能是所有中国数学著作中影响最大的一部。

中国古代的数学家们最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,

用形数结合得到方法,给出了勾股定理的详细证明。

上中间的那个小正方形组成的。

每个直角三角形的面积为ab2;

中间的小正方形边长为b-a,则面积为(b-a)2。

于是便可得如下的式子:

4×(ab

2)+(b-a)2=2

化简后便可得:

a2+b2=2

在这幅“勾股圆方图”中,以弦为边长得到正方形abde是由4个相等的直角三角形再加

刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来,移到以弦为边的正方形的空白区域内

结果刚好填满,完全用图解法就解决了问题。

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的证法。81年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法

古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。

第三篇:

勾股定理的证明方法

这个直角梯形是由2个直角边分别为、,斜边为的直角

三角形和1个直角边为的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式

化简得

,。

第四篇:

勾股定理的证明方法

勾股定理的证明方法

这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。

的平方=3的平方+4的平方

在图一中,dab为一直角三角形,其中 a为直角。我们在边ab、b和a之上分别画上三个正方形abfg、bed和akh。过a点画一直线al 使其垂直於de并交de於l,交b於m。不难证明,dfb全等於dabd。所以正方形abfg的面积=2 dfb的面积=2 dabd的面积=长方形bmld的面积。类似地,正方形akh的面积=长方形mel的面积。即正方形bed 的面积=正方形abfg的面积+正方形akh的面积,亦即是ab2+a2=b2。由此证实了勾股定理。

这个证明巧妙地运用了全等三角形和三角形面积与长方形面积的关系来进行。不单如此,它更具体地解释了,「两条直角边边长平方之和」的几何意义,这就是以ml将正方形分成bmld和mel的两个部分!

这个证明的另一个重要意义,是在於它的出处。这个证明是出自古希腊大数学欧几里得之手。

欧几里得约生於公元前325年,卒於约公元前265年。他曾经在古希腊的文化中心亚历山大城工作,并完成了著作《几何原本》。

《几何原本》是一部划时代的著作,它收集了过去人类对数学的知识,并利用公理法建立起演绎体系,对后世数学发展产生深远的影响。而书中的第一卷命题47,就记载著以上的一个对勾股定理的证明。

图二中,我们将4个大小相同的直角三角形放在一个大正方形之内,留意大正方形中间的浅黄色部分,亦都是一个正方形。设直角三角形的斜边长度为,其余两边的长度为a和b,则由於大正方形的面积应该等於4个直角三角形和中间浅黄色正方形的面积之和,所以我们有

2=4+2

展开得a2+2ab+b2=2ab+2

化简得a2+b2=2

由此得知勾股定理成立。

第五篇:

勾股定理证明方法

勾股定理证明方法

勾股定理的种证明方法

【证法1】

做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为.把它们拼成如图那样的一个多边形,使d、e、f在一条直线上.过作a的延长线交df于点p.

∵d、e、f在一条直线上,且rtδgef≌rtδebd,

∴∠egf=∠bed,

∵∠egf+∠gef=90°,

∴∠bed+∠gef=90°,

∴∠beg=180 ―90 =90 .

又∵ab=be=eg=ga=,

∴abeg是一个边长为的正方形.

∴∠ab+∠be=90 .

∵rtδab≌rtδebd,

∴∠ab=∠ebd.

∴∠ebd+∠be=90 .

即∠bd=90 .

又∵∠bde=90 ,∠bp=90 ,

b=bd=a.

∴bdp是一个边长为a的正方形.

同理,hpfg是一个边长为b的正方形.

设多边形ghbe的面积为s,则

,

∴.

【证法2】

做两个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为.再做一个边长为的正方形.把它们拼成如图所示的多边形,使e、a、三点在一条直线上.

过点q作qp‖b,交a于点p.

过点b作bm⊥pq,垂足为m;再过点

f作fn⊥pq,垂足为n.

∵∠ba=90 ,qp‖b,

∴∠mp=90 ,

∵bm⊥pq,

∴∠bmp=90 ,

∴bpm是一个矩形,即∠mb=90 .

∵∠qbm+∠mba=∠qba=90 ,

∠ab+∠mba=∠mb=90 ,

∴∠qbm=∠ab,

又∵∠bmp=90 ,∠ba=90 ,bq=ba=,

∴rtδbmq≌rtδba.

同理可证rtδqnf≌rtδaef.

【证法3】

做两个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为.再做一个边长为的正方形.把它们拼成如图所示的多边形.

分别以f,ae为边长做正方形fji和aeig,

∵ef=df-de=b-a,ei=b,

∴fi=a,

∴g,i,j在同一直线上,

∵j=f=a,b=d=,

∠jb=∠fd=90 ,

∴rtδjb≌rtδfd,

同理,rtδabg≌rtδade,

∴rtδjb≌rtδfd≌rtδabg≌rtδade

∴∠abg=∠bj,

∵∠bj+∠bj=90 ,

∴∠abg+∠bj=90 ,

∵∠ab=90 ,

∴g,b,i,j在同一直线上,

【证法4】

做三个边长分别为a、b、的正方形,把它们拼成如图所示形状,使h、、b三点在一条直线上,连结

bf、d.过作l⊥de,

交ab于点m,交de于点

l.

∵af=a,ab=ad,

∠fab=∠gad,

∴δfab≌δgad,

∵δfab的面积等于,

δgad的面积等于矩形adlm

的面积的一半,

∴矩形adlm的面积=.

同理可证,矩形mleb的面积=.

∵正方形adeb的面积

=矩形adlm的面积+矩形mleb的面积

∴,即.

勾股定理的别名

勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因

为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。

我国是发现和研究勾股定理最古老的国家。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高答周公曰“勾广

三,股修

四,经隅五”,其意为,在直角三角形中“勾

三,股

四,弦五”.因此,勾股定理在我国又称“商高定理”.在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。

在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。

在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.

前任美国第二十届总统加菲尔德证明了勾股定理。

证明

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思的pthagoreanproposition一书中总共提到367种证明方式。

有人会尝试以三角恒等式来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明。

勾股定理的证明方法,

附送:

勾股定理证明

勾股定理证明

第一篇:

勾股定理的证明方法

这个直角梯形是由2个直角边分别为、,斜边为的直角

三角形和1个直角边为的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式

化简得

,。

第二篇:

勾股定理的证明

勾股定理的证明

一、基本情况

组长:

曾烨秋

组员:

邱丽璇、李锐、陈应飞、黄富荣、贾雪梅指导老师:

何建荣

相关课程:

数学

一、问题提出

1、背景:

初中时就学习了直角三角形的勾股定理,我们对此很感兴趣,便想探究勾股定理的证明方法。

2、目的:

3、意义:

探究出勾股定理的证明方法

二、研究过程

1、查阅资料:

利用课间等休息时间在图书室或计算机室查阅资料。

2、整理资料:

在网上下载部分

第三篇:

勾股定理证明

勾股定理证明

直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广

三,股修

四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。

以下即为一种证明方法:

如图,这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。

∵△abe+△aed+△ed=梯形abd

∴(ab+ab+

2)÷2=2 ∴

∴2=a2+b

2,即在直角三角形中,斜边长的平方等于两直角边的平方和

初二十四班秦煜暄

第四篇:

奇特的勾股定理的证明

如图所示,正方形abd连接a,bd.

因为四边形abd是正方形

所以a垂直于bd图中的每个三角形都是直角三角形解:设ao为a,bo为b,ab为

所以正方形的面积就是a*b2*4=2a*b=2ab

正方形的面积也可以表示为^2

所以2ab=^2

ab+ab=^2

因为此图是正方形所以ao=bo

所以a=b

所以把第一个ab中的b换成a.把第二个a换成b.所以

a*a+b*b=^2

所以a^2+b^2=^2

第五篇:

勾股定理专题证明

勾股定理专题证明

1.我们给出如下定义:

若一个四边形中存在一组相邻两边的平方和等于一条对角线的平方,

则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边。

写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:-----,----- ;

如图

1,已知格点o(0,0),a(3,0),b请你画出以格点为顶

点,oa,ob为勾股边且对角线相等的两个勾股四边形oamb ;

如图

2,将△ab绕顶点b按顺时针方向旋转60°,得到△dbe,连结ad,d,∠db=

30°。写出线段d,a,b的数量关系为------;

(1)如图

1,已知∠aob,oa=ob,点e在ob边上,四边形aebf 是平行四边形,

请你只用无刻度的直尺在图中画出∠aob的平分线.(保留作图痕迹,不要求写作法)

(2)如图2 ,10×10的正方形网格中,点a(0,0)、b(

5,0)、(

3,

6)、d(-

1,

3),

①依次连结a、b、、d四点得到四边形abd,四边形abd的形状是-------;

②在x轴上找一点p,使得△pd的周长最短(直接画出图形,不要求写作法);

此时,点p的坐标为------- ,最短周长为--------;

3. 如图正方形abd ,e 为ad边上一点,f为d边上一点,

∠fea=∠eb,若ae= ked, 探究df与f的数量关系;

4.如图1 等腰直角△ab,将等腰直角△dmn如图放置,△dmn 的斜边mn与△ab的一直角边a重合.

⑴ 在图1中,绕点 d旋转△dmn,使两直角边dm、dn分别与交于点e ,f如图2 ,求证:

ae2+bf2=ef2 ;

⑵ 在图1 中,绕点旋转△dmn,使它的斜边m、直角边 d的延长线分别与 ab交于点e ,f,如图

3,此时结论ae2+bf2=ef2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

⑶ 如图

4,在正方形 abd中,e、f 分别是边b、d 上的点且满足△ef 的周长等于正方形abd 的周长的一半,ae、af 分别与对角线 bd交于点m、n . 线段bm 、mn 、dn 恰能构成三角形. 请指出线段bm 、mn 、dn 所构成的三角形的形状,并给出证明;

5. 将一块直角三角板的直角顶点绕矩形abd(ab<b)的对角线的交点o旋转(如图

③),图中的m、n分别为直角三角形的直角边与矩形abd的边

d、b的交点,

⑴如图

①三角板一直角边与od重合,则线段bn、d、n间的数量关系为-------------;

⑵如图

②三角板一直角边与o重合,则线段bn、d、n间的数量关系为-------------;

⑶如图

③,探究线段bn、n、m、dm间的数量关系,写出你的结论,加以说明;

④若将矩形abd改为边长为1的正方形abd,直角三角板的直角顶点绕o点旋转到图

④,两直角边与ab、b分别交于m、n,探究线段bn、n、m、dm 间的数量关系,写出你的结论,加以说明;

6. 如图,四边形abd, ad∥b,ad≠b ,∠b=90° ,ad=ab ,点e是ab边上一动点,连结ed,过ed的中点f作ed的垂线,交ad于点g,交b于点k,过点k作km⊥ad于m.若ab=k ae , 探究dm与dg 的数量关系;(用含的式子表示).

勾股定理的证明及其应用2

2017年3月2 勾股定理的证明及其应用 2 P253P25P27?????木板能否过门问题学习内容:勾股定理的类应用梯子下移问题 特别推荐:“海螺图” (27页) 热身:观察以下几组勾股数,并寻找规律:① 3, 4, 5;② 5,12,13;③ 7,24,25; ④ 9,40,41;……请你写出有以上规律的第⑤组勾股数: . 问题1:木板能否过门问题 例1:一个门框的尺寸如图所示,一块长3m ,宽2.2m 的薄木板能否从门框内通过?为什么?(236.25≈) 模仿1:有一个边长为50dm 的正方形洞口,想用一个圆盖盖住这个洞口,圆的直径至少多长 (结果保留整数). 问题2:梯子下移问题 例2:如图,一个3m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时AO 的距离为2.5m ,如 果梯子的顶端A 沿墙下滑0.5m ,那么梯子底端B 也外移0.5m 吗?(658.175.2≈) 解:可以看到,BD=OD —OB ,求BD ,可以先求OB ,OD 。 ∵ 在Rt AOB ?中,∠O =90° ∴ OB= . ∵在Rt COD ?中,∠O =90° ∴ OD= . ∴ BD= , ∴ 梯子的顶端沿墙下滑0.5m ,梯子底端外移 . 模仿2:宝典B 本,第10页,第2题 2m B 木板 C A O B D

问题3 : (1)我们知道,数轴上的点,有的表示有理数,有的表示无理数 (2)复习有理数的表示方法 在数轴上表示下列各数 2 — 2 1 9 4.5 0 画图: (3)思考:无理数如何表示? 例3:在数轴上画出表示2的点. (小组画一画,议一议) 在数轴上找到点A ,使OA= ,作直线l 垂直于OA ,在l 上取点B ,使AB= , 以原点O 为圆心,以OB 为半径作弧,弧与数轴的交点C 即为表示2的点. 画图: 模仿3:分组讨论,理解课本P27图17.1-10,利用勾股定理,在数轴上画出表示5,4,3,2,1的点。 五分钟测试 1、直角三角形中,有两边长分别是6和8,那么第三边长的平方为( ) A 、10 B 、28 C 、100 D 、28或者100 2、在一个直角三角形中,两直角边之比为3﹕4,且斜边长10cm ,则该直角三角形面积( ) A 、24cm 2 B 、36cm 2 C 、48cm 2 D 、60cm 2 3、如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理 数的边数是( ) A . 0 B . 1 C . 2 D . 3 4、 如图所示,在△ABC 中,三边a ,b ,c 的大小关系是( ) A. a <b <c B. c <a <b C. c <b <a D. b <a <c 5、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边 长为7cm ,则正方形A ,B ,C ,D 的面积之和为_______cm 2. A B C 第3题 第4题 第5题

勾股定理的证明方法探究

a2+c2=b2,c=b2-a2!=42-32!=!7(cm).二、忽视定理成立的条件例2在边长都是整数的△ABC 中,AB>AC,如果AC=4cm,BC=3cm,求AB的长.误解:由“勾3股4弦5”知 AC=4cm,BC=3cm,AB>AC,∴AB=5cm.剖析:这种解法受“勾3股4弦5”思维定势的影响,见题中有BC=3,AC=4,就认为AB=5,而忘记了“勾3股4弦5”是在直角三角形的条件下才成立,而本题中没有指明是直角三角形,因此,只能用三角形三条边之间的关系来解。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂。

我们都喜欢把日子过成一首诗,温婉,雅致;也喜欢把生活雕琢成一朵花,灿烂,美丽。可是,前行的道路有时会曲折迂回,让心迷茫无措。生活的上空有时会飘来一场风雨,淋湿了原本热情洋溢的心。 不是每一个人都能做自己想做的事情,也不是每一个人都能到达想去的远方。可是,既然选择了远方,便只有风雨兼程。也许生活会辜负你,但你不可以辜负生活。 匆匆忙忙地奔赴中,不仅要能在阳光下灿烂,也要能在风雨中奔跑!真正的幸福不是拥有多少财富,而是在前行中成就一个优秀的自己! 生命没有输赢,只有值不值得。坚持做对的事情,就是值得。不辜负岁月,不辜负梦想,就是生活最美的样子。 北大才女陈更曾说过:“即使能力有限,也要全力以赴,即使输了,也要比从前更强,我一直都在与自己比,我要把最美好的自己,留在这终于相逢的决赛赛场。” 她用坚韧和执着给自己的人生添上了浓墨重彩的一笔。 我们都无法预测未来的日子是阳光明媚,还是风雨如晦,但前行路上点点滴滴的收获和惊喜,都是此生的感动和珍藏。 有些风景,如果不站在高处,你永远欣赏不到它的美丽;脚下有路,如果不启程,你永远无法揭晓远方的神秘。 我们踮起脚尖,是想离太阳更近一点儿;我们努力奔跑,是想到达远方欣赏最美的风景。 我们都在努力奔跑,我们都是追梦人!没有伞的时候,学会为自己撑伞;没有靠山的时候,学会自己屹立成一座伟岸的山! 远方有多远?多久能达到?勇敢往前冲的人,全世界都会向他微笑。相信,只要启程,哪怕会走许多弯路,也会有到达的那一天。

勾股定理9种证明(有图)

勾股定理的9种证明(有图) 【证法1】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面 积等于ab 21 . 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、 F 、C 三点在一条直线上,C 、 G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2 b a +. ∴ ()2 22 14c ab b a +?=+. ∴ 2 22c b a =+. 【证法2】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P. ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ ∴ ∠EGF = ∠BED , ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180o―90o= 90o.

勾股定理的证明和应用

第3章勾股定理知识结构: 勾股定理1.勾股定理 (1)直角三角形中两直角边的平方和等于斜边的平方 (2)勾股定理的验证-------用拼图法,借助面积不变的关系来证明 (3)应用 1.在直角三角形中已知两边求第三边 2.在直角三角形中已知两边求第三边上的高 2.勾股定理 的逆定理 (1)如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角 三角形 (2)勾股数 1.满足a2+b2=c2的三个正整数a,b,c称为 勾股数 2.常见的勾股数 (1)3,4,5 (2)5,12,13 (3)8,15,17 3.应用 (1)勾股定理的简单应用 求几何体表面上两点间的最短距离 解决实际应用问题 (2)勾股定理逆定理的应用---------判定某个三角形是否为直角三角

形 勾股定理 一、求网格中图形的面积 求网格中图形的面积,通常用两种方法:“割”或“补”。 二、勾股定理 直角三角形两条直角边的平方和等于斜边的平方。 拓展延伸:(1)勾股定理揭示的是直角三角形的三边关系,所以必须注意“在直角三角形中”这一前提。 (2)勾股定理主要用于求线段的长度,因此,遇到求线段的长度问题时,首先想到的是把所求线段转化为某一直角三角形的边,然后利用勾股定理求解。 三、勾股定理的验证 运用拼图的方式,利用两种不同的方法计算同一个图形的面积来验证勾股定理。 勾股定理的逆定理 一、勾股定理的逆定理 如果三角形的三边长分别为a,b,c且a2+b2=c2,那么这个三角形是直角三角形。 注意:(1)还没确定一个三角形是否为直角三角形时,不能说“斜边”“直角边”。 (2)不是所有的c都是斜边,要根据题意具体分析。当满足a2+b2=c2时,c是斜边,它所对的角是直角。 勾股定理与勾股定理的逆定理之间既有区别,又有联系,如下表所示:

勾股定理的证明

勾股定理的证明 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 2 142 142 2 2 ? +=? ++, 整理得 2 2 2 c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 2 1. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF , ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE , ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于() 2 b a +. ∴ () 2 2 2 14c ab b a +? =+. ∴ 2 2 2 c b a =+. D G C F A H E B a b c a b c a b c a b c b a b a b a b a c b a c b a c b a c b a c b a c b a

初中数学:勾股定理的多种证明 (1)

初中数学:勾股定理的多种证明 勾股定理的证明方法1 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a的平方加b的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理得a的平方加b的平方等于c的平方。 勾股定理的证明方法2

以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o. ∴四边形EFGH是一个边长为c的 正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o,

∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于a+b的平方。 ∴a加b的平方等于4乘二分之一ab,加上c的平方。. ∴a的平方加b的平方等于c的平方。 勾股定理的证明方法3 以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab。把这四个直角三角形拼成如图所示形状。 ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o,

勾股定理逆定理八种证明方法

勾股定理逆定理八种证 明方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

证法1 作四个的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF =90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC =90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,

勾股定理毕达哥拉斯定理及各种证明方法

勾股定理(毕达哥拉斯定理) 勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。勾股数组方程a 2+b 2=c 2的正整数组(a ,b ,c )。(3,4,5)就是勾股数。也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方。 勾股定理 命题1如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么 。 勾股定理的逆定理 命题2如果三角形的三边长a ,b ,c 满足 ,那么这个三角形是直角三角形。 【证法1】(赵爽证明) 以a 、b 为直角边(b>a ),以c 为斜边作四个全等的直角三角形,则每 个直角三角形的面积等于2 1ab.把这四个直角三角形拼成如图所示形状. ∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB. ∵∠HAD+∠HAD=90o,∴∠EAB+∠HAD=90o, ∴ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵EF=FG=GH=HE=b―a,∠HEF=90o. ∴EFGH 是一个边长为b―a 的正方形,它的面积等于. ∴ ∴. 【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b ,所以面积相等. 即,整理得. 【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC. ∵∠AED+∠ADE=90o,∴∠AED+∠BEC=90o.∴∠DEC=180o―90o=90o. ∴ΔDEC 是一个等腰直角三角形,它的面积等于 .又∵∠DAE=90o,∠EBC=90o,∴AD∥BC.∴ ABCD 是一个直角梯形,它的面积等于

勾股定理与几何证明答案(可编辑修改word版)

1、勾股定理与几何证明的综合问题练习一、利用勾股定理证明一些重要的几何定理 1、如图,在Rt△ABC 中,∠ACB=90°,CD 是AB 边上的高. 证明:(1)CD2=AD ?BD (这个结果表明,利用勾股定理可以导出三角形相似的一系列结果) 1 1 1 (2)AC 2+ BC 2 = CD2 练习二、将勾股定理应用于四边形 1、四边形ABCD 的对角线为AC 和BD. (1)证明:若AC ⊥BD ,则AB2+CD2=AD2+BC 2; 2、一个四边形的顶点分别在一个边长为1 的正方形各边上,其边长依次为a、b、c、d. 求证: 2 ≤a2+b2+c2+d 2≤ 4 . 假设MNPQ 分别将正方形ABCD 的四个边分成了线段:m1 m2 n1 n2 p1 p2 q1 q2 ∵MNPQ 都在正方形ABCD 的四个边上,所以有四个直角三角形 ∴a2+b2+c2+d2=m12+m22+n12+n22+p12+p22+q12+q22∵m1+m2=正方形边长即为“1”(其他同理)∴a2+b2+c2+d2=m12+(1-m1)2+n12+(1-n1)2+p12+(1-p1)2+q12+(1-q1)2整理之后得到: a2+b2+c2+d2=2*(m1-/2)2+1/2+2*(n1-/2)2+1/2+2*(p1-/2)2+1/2+2*(q1-/2)2+1/2=2*[(m1-1/2)2+(n1-1/2)2+(p1-1/2)2+(q1-1/2)2] + 2 m1、n1、p1、q1 的长都是最大为1 最小为0 它们都等于1/2 时值最小,都等于1 时值最大那么a2+b2+c2+d2的最小值就是2,最大值就是4

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 做 8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【 证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

勾股定理的证明的方法

【】() 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三 个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上, B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHA E ≌ R t ΔEBF,

∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o.∴四边形EFGH是一个边长为c的正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB.

勾股定理16种经典证明方法与在实际生活中的应用

2 证法 1】(课本的证明) 做 8 个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为 c ,再做三个边长分别为 a 、b 、 c 的正 方形,把它们像上图那样拼成两个正方形 . 从图上可以看到,这两个正方形的边长都是 a + b ,所以面积相等 . 即 证法 2】(邹元治证明) ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠ BEF. ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180 o ― 90o= 90 o. ∴ 四边形 EFGH 是一个边长为 c 的 正方形 . 它的 面积等于 c 2. ∵ Rt Δ GDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180 o. ∴ ABCD 是一个边长为 a + b 的正方形,它的面积 等于 ∠HEF = 90 o. EFGH 是一个边长为 b ―a 的正方形,它的面积等于 1 ab 以 a 、 b 为直角边,以 c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等 于 角形拼成如图所示形状,使 A 、E 、B 三点在一条直线上, B 、F 、C 三点在一条直 线上, 把这四个直角三 C 、G 、D 三点在一条直线上 b 2 4 12 ab c 2 4 1 ab 2 整理得 c 2 1 4 ab 2 c 2 a 2 b 2 c 2 【证法 3】(赵爽证明) 以 a 、 b 为直角边( b>a ), 以 c 为斜 边作四个全等的直角三角形,则每个直角 1ab 三角形的面积等于 把这四个直角三 角形拼成如图所示形状 ∵ Rt Δ DAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB. ∵ ∠HAD + ∠HAD = 90o , ∴ ∠EAB + ∠HAD = 90o , ∴ ABCD 是一个边长为 c 的正方形,它的面积等于 c 2. ∵ EF = FG =GH =HE = b ― a , ba

勾股定理16种证明方法

v1.0 可编辑可修改 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.

v1.0 可编辑可修改 ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o. ∴ EFGH是一个边长为b―a的正方形,它的面积等于()2a b-. ∴ ()2 2 2 1 4c a b ab= - + ? .

运用勾股定理证明与计算

勾股定理 学习目标 掌握勾股定理,会用面积法证明勾股定理。 导学过程 一、 忆一忆 1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示) (1)两锐角之间的关系: (2)若D 为斜边中点,则斜边中线是 (3)若∠B=30°,则∠B 二、学一学 1、(1)、画一个直角边为3cm 和4cm 的直角△ABC (2)、再画一个两直角边为5和12的直角△ABC 问题:你是否发现23+24与25,25+212和213 命题1:如果直角三角形的两直角边分 么 。 三、合作探究: 方法1、已知:在△ABC 中,∠C=90°,∠A 、∠B 求证: 222a b c += 证明:4S △+S 小正=S 大正 根据的等量关系:由此我们得出勾股定理 的内容是 b b

方法2、已知:在△ABC 中,∠C=90°,∠A 、∠B 、 ∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 根据如图所示,利用面积法证明勾 股定理 四、练一练: 1、在Rt △ABC ,∠C=90° (1)已知a=b=5,求c 。(2)已知a=1,c=2, 求b 。(3)已知c=17,b=8, 求a 。 ⑷已知a :b=1:2,c=5, 求a 。⑸已知b=15,∠A=30°,求a ,c 2、一个直角三角形的两边长分别为3cm 和4cm,则第三边的长为 。 3.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________. 4.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 5.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、32 6、已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高. 求 ①AD 的长;②ΔABC 的面积. 7.如图,小李准备建一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积. b c c a A E B 3m 4m 20m

勾股定理的证明方法及应用研究开题报告

天津师范大学津沽学院2015届本科毕业论文(设计)选题审批表 学生姓名顾鹏飞学号13583115 指导教师张筱玮职称教授所选题目名称:勾股定理的证明方法及应用研究 选题性质:()A.理论研究(√)B.应用研究()C.应用理论研究 选题的目的和理论、实践意义: 勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。 它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。为以后学习三角函数奠定基础。 勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。 勾股定理作为一个被人类早期发现并证明的重要数学定理之一,对数学的发展产生了不可小视的影响。勾股定理使人们以代数的思想与概念来解决几何问题,正是“数形结合”思想的体现,这样的思想角度是十分重要的。同时,勾股定理的发现推动了人类对数学几何更深的探索;通过勾股定理,我们可以推导出许多其它真命题与定理,这大大地方便了我们对几何问题的解决,也使数学的发展迈出了一大步。[12]更为重要的是,其后 希帕索斯根据勾股定理发现了第一个无理数( 2),导致第一次数学危机。 指导教师意见: 签字:年月日系领导小组意见: 签字:年月日备注:

天津师范大学津沽学院2015届本科毕业论文(设计)开题 报告 系别:理学系专业:数学与应用数学 论文题目勾股定理的证明方法及应用研究 指导教师张筱玮职称教授学生姓名顾鹏飞学号13583115 一、研究目的(选题的意义和预期应用价值) 勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。为以后学习三角函数奠定基础, 勾股定理作为一个被人类早期发现并证明的重要数学定理之一,对数学的发展产生了不可小视的影响。勾股定理使人们以代数的思想与概念来解决几何问题,正是“数形结合”思想的体现,这样的思想角度是十分重要的。同时,勾股定理的发现推动了人类对数学几何更深的探索;通过勾股定理,我们可以推导出许多其它真命题与定理,这大大地方便了我们对几何问题的解决,也使数学的发展迈出了一大步。[12]更为重要的是,其后希帕索斯根据勾股定 理发现了第一个无理数( 2),导致第一次数学危机。 二、与本课题相关的国内外研究现状,预计可能有所突破和创新的方面(文献综述) 中国:公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。 公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。 在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。 外国:在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。 公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。

勾股定理逆定理八种证明方法

证法1 作四个全等的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条直线上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC 的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC = 90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上,

勾股定理的证明和应用

知识结构: 2. 勾股定理 的逆定理 (2)勾股数 (1)勾股定理的简单应用 3. 应用 (2)勾股定理逆定理的应用 a,b,c 满足a 2+b 2=c 2 ,那么这个三角形是直角 三 1. 满 足 a 2+ b 2=c 2 的三个正整数 a,b,c 称为勾 股数 (1)3,4,5 2. 常见的勾股数 (2)5,12,13 (3)8,15,17 求几何体表面上两点间的最短距离 解决实际应用问题 ----- 判定某个三角形是否为直角三角形 3.1 勾股定理 一、 求网格中图形的面积 求网格中图形的面积,通常用两种方法: “割 ”或“补”。 二、 勾股定理 直角三角形两条直角边的平方和等于斜边的平方。 拓展延伸 :(1)勾股定理揭示的是直角三角形的三边关系, 所以必须注意 “在直角三角形中 这一前提。 (2)勾股定理主要用于求线段的长度,因此,遇到求线段的长度问题时,首先想到的是把 所求线段转化为某一直角三角形的边,然后利用勾股定理求解。 三、 勾股定理的验证 运用拼图的方式,利用两种不同的方法计算同一个图形的面积来验证勾股定理。 第 3 章 勾股定理 勾股定理 (1)直角三角形中两直角边的平方和等于斜边的平方 (2)勾股定理的验证 1.勾股定理 1.在直角三角形中已知两边求第三边 (3)应用 2.在直角三角形中已知两边求第三边上的高 (1)如果三角形的三边长 角形 用拼图法 ,借助面积不变的关系来证明

3.2勾股定理的逆定理 一、勾股定理的逆定理 如果三角形的三边长分别为a,b,c且a2 3+b2=c2,那么这个三角形是直角三角形。 注意:(1)还没确定一个三角形是否为直角三角形时,不能说斜边”直角边”。 (2)不是所有的c都是斜边,要根据题意具体分析。当满足a2+b2=c2时,c是斜边,它所 对的角是直角。 下表所示: 二、勾股数 满足关系a2+b2=c2的3个正整数a,b,c称为勾股数。 勾股数必须是正整数。 一组勾股数中各数的相同的正整数倍也是一组新的勾股数。 记住常用的勾股数可以提高做题速度。 3.3勾股定理的简单应用 一、勾股定理的应用 运用勾股定理可以解决生活中的一些实际问题。在应用勾股定理解决实际问题时,应先 构造出直角三角形,然后把直角三角形的某两条边表示出来。 注意:应用勾股定理解决实际问题时,先弄清直角三角形中哪边是斜边,哪两条边是直角边, 以便进行计算或推理。对于实际问题,应从中抽象出直角三角形或通过添加辅助线构造出直角三角形,以便正确运用勾股定理。

勾股定理证明(7种方法)

证明一 图一 在图一中,D ABC 为一直角三角形,其中D A 为直角。我们在边 AB、BC 和 AC 之上分别画上三个正方形 ABFG、BCED 和 ACKH。过 A 点画一直线 AL 使其垂直於 DE 并交 DE 於 L,交 BC 於 M。不难证明,D FBC 全等於 D ABD(S.A.S.)。所以正方形 ABFG 的面积 = 2 ′ D FBC 的面积 = 2 ′ D ABD 的面积 = 长方形 BMLD 的面积。类似地,正方形 ACKH 的面积 = 长方形 MCEL 的面积。即正方形 BCED 的面积 = 正方形 ABFG 的面积 + 正方形 ACKH 的面积,亦即是 AB2 + AC2 = BC2。由此证实了勾股定理。 这个证明巧妙地运用了全等三角形和三角形面积与长方形面积的关系来进行。不单如此,它更具体地解释了,「两条直角边边长平方之和」的几何意义,这就是以 ML 将正方形分成 BMLD 和MCEL 的两个部分! 这个证明的另一个重要意义,是在於它的出处。这个证明是出自古希腊大数学欧几里得之手。 欧几里得(Euclid of Alexandria)约生於公元前 325 年,卒於约公元前 265 年。他曾经在古希腊的文化中心亚历山大城工作,并完成了著作《几何原本》。《几何原本》是一部划时代的著作,它收集了过去人类对数学的知识,并利用公理法建立起演绎体系,对后世数学发展产生深远的影响。而书中的第一卷命题 47,就记载著以上的一个对勾股定理的证明。 证明二 图二 图二中,我们将4个大小相同的直角三角形放在一个大正方形之内,留意大正方形中间的浅黄色部分,亦都是一个正方形。设直角三角形的斜边长度为 c,其余两边的长度为 a 和 b,则由於大正方形的面积应该等於 4 个直角三角形和中间浅黄色正方形的面积之和,所以我们有 (a + b)2 = 4(1/2 ab) + c2 展开得 a2 + 2ab + b2 = 2ab + c2 化简得 a2 + b2 = c2 由此得知勾股定理成立。 证明二可以算是一个非常直接了当的证明。最有趣的是,如果我们将图中的直角三角形翻转,拼成以下的图三,我们依然可以利用相类似的手法去证明勾股定理,方法如下: 图三

勾股定理16种经典证明方法

ab c ab b a 2 1421422 2 ?+=?++ 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21 . 把这四个直角三 角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2 . ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2 b a +.

∴ ()2 22 4c ab b a +?=+. ∴ 2 22c b a =+. 【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角 三角形的面积等于ab 21 . 把这四个直角三 角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB . ∵ ∠HAD + ∠HAD = 90o, ∴ ∠EAB + ∠HAD = 90o, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2 . ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90o. ∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2 a b -. ∴ ()2 2 214c a b ab =-+?. ∴ 2 22c b a =+. 【证法4】(1876年美国总统Garfield 证明) 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21 . 把这两个直角三 角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC . ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC 是一个等腰直角三角形, 它的面积等于2 21c .

相关文档
最新文档