碳碳复合材料概述

碳碳复合材料概述
碳碳复合材料概述

碳碳复合材料概述

1概述

碳/碳复合材料是由碳纤维(或石墨纤维)为增强体,以碳(或石墨)为基体的复合材料,是具有特殊性能的新型工程材料,也称为“碳纤维增强碳复合材料”。碳/碳复合材料完全是由碳元素组成,能够承受极高的温度和极大的加热速率。它具有高的烧蚀热和低的烧蚀率,抗热冲击和在超热环境下具有高强度,被认为是超热环境中高性能的烧蚀材料。在机械加载时,碳/碳复合材料的变形与延伸都呈现出假塑件性质,最后以非脆性方式断裂。

它的主要优点是:抗热冲击和抗热诱导能力极强,具有一定的化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下的强度和刚度可保持不变,抗辐射,易加工和制造,重量轻。

碳/碳复合材料的缺点是非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差.制造加工周期长,设计方法复杂,缺乏破坏准则。

1958年,科学工作者在偶然的实验中发现了碳/碳复合材料,立刻引起了材料科学与工程研究人员的普遍重视。尽管碳/碳复合材料具有许多别的复合材料不具备的优异性能,但作为工程材料在最初的10年间的发展却比较缓慢,这主要是由于碳/碳的性能在很大程度上取决于碳纤维的性能和谈集体的致密化程度。当时各种类型的高性能碳纤维正处于研究与开发阶段,碳/碳制备工艺也处于实验研究阶段,同时其高温氧化防护技术也未得到很好的解决。

在20世纪60年代中期到70年代末期,由于现代空间技术的发展,对空间运载火箭发动机喷管及喉衬材料的高温强度提出了更高要求,以及载人宇宙飞船开发等都对碳/碳复合材料技术的发展起到了有力的推功作用。那时,高强和高模量碳纤维已开始应用于碳/碳复合材料,克服碳/碳各向异性的编织技术也得到了发展,更为主要的是碳/碳的制备工艺也由浸渍树脂、沥青碳化工艺发展到多种CVD沉积碳基体工艺技术。这是碳/碳复合材料研究开发迅速发展的阶段,并且开始了工程应用。由于20世纪70年代碳/碳复合材料研究开发工作的迅速发展,从而带动了80年代中期碳/碳复合材料在制备工艺、复合材料的结构设计,以及力学性能、热性能和抗氧化性能等方面基础理论及方法的研究,进一步促进和扩大了碳/碳复合材料在航空航天、军事以及民用领域的推广应用。尤其是预成型体的结构设计和多向编织加工技术日趋发展,复合材料的高温抗氧化性能已达1700oC,复合材料的致密化工艺逐渐完善,并在快速致密化工艺方面取得了显著进展,为进一步提高复合材料的性能、降低成本和扩大应用领域奠定了基础。目前人们正在设法更有效地利用碳和石墨的特性,因为无论在低温或很高的温度下,它们都有良好的物理和化学性能。碳/碳复合材料的发展主要是受宇航工业发展的影响,它具有高的烧蚀热.低的烧蚀率.在抗热冲击和超热环境下具有高强度等一系列优点,被认为是超热环境中高性能的烧蚀材料。例如,碳/碳复合材料制作导弹的鼻锥时,烧蚀率低且烧蚀均匀,从而可提高导弹的突防能力和命中率。碳/碳复合材料具有一系列优异性能,使它们在宁宙飞船、人造卫星、航大飞机、导弹、原子能、航空以及一般工业部门中都得到了日益广泛的应用。它们作为宇宙飞行器部件的结构材料和热防护材料,不仅可满足苛刻环境的要求,而且还可以大大减轻部件的重量,提高有效载荷、航程和射程。碳/碳复合材料还具有优异的耐摩擦性能和高的热导率,使其在飞机、汽车刹车片和轴承等方面得到了应用。碳与生物休之间的相容性极好,再加上碳/碳复合材料的优异力学性能,使之适宜制成生物构件插入到活的生物机体内作整形材料,例如:人造骨路,心脏瓣膜等。今后,随着生产技术的革新,产量进步扩大.廉价沥青基碳纤维的开发及复合工艺的改进,使碳/碳复合材料将会有更大的发展。2碳/碳复合材料的制造工艺

最早的碳/碳复合材料是由碳纤维织物二向增强的,基体由碳收率高的热固性树脂(如酚醛树脂)热解获得。采用增强塑料的模压技术,将二向织物与树脂制成层压体,然后将层压体进行热处理,使树脂转变成碳或石墨。这种碳/碳复合材料在织物平面内的强度较高,在其他方向上的性能很差,但因其抗热应力性能和韧性有所改善,并且可以制造尺寸大、形状复杂的零部件,因此,仍有一定用途。

为了克服两向增强的碳/碳复合材料的缺点,研究开发了多向增强的碳/碳复合材料。这种复合材料可以根据需要进行材料设计,以满足某一方向上对性能的最终要求。控制纤维的方向、某一方向的体积含量、纤维间距和基体密度,选择不同类型的纤维、基体和工艺参数,可以得到具有需要的力学、物理及热性能的碳/碳复合材料。多向增强的碳/碳复合材料的制造分为两大步:首先是制备碳纤维预制件,然后将预制件与基体复合,即在预制件中渗入碳基体。碳/碳复合材料制备过程包括增强体碳纤维及其织物的选择、基体碳先驱体的选择、碳/碳预成型体的成型工艺、碳基体的致密化工艺,以及最终产品的加工、检测等环节。(1)碳纤维的选择

碳纤维纱束的选择和纤维织物结构的设计是制造碳/碳复合材料的基础。可以根据材料的用途、使用的环境以及为得到易于渗碳的预制件来选择碳纤维。通过合理选择纤维种类和织物的编织参数(如纱束的排列取向、纱束间距、纱束体积含量等),可以改变碳/碳复合材料的力学性能和热物理性能,满足产品性能方向设计的要求。通常使用加捻、有涂层的连续碳纤维纱。在碳纤维纱上涂覆薄涂层的目的是为编织方便,改善纤维与基体的相容性。用做结构材料时,选择高强度和高模量的纤维.纤维的模量越高,复合材料的导热性越好;密度越大,膨胀系数越低。要求导热系数低时,则选择低模量的碳纤维。一束纤维中通常含有1000-10000根单丝,纱的粗细决定着基体结构的精细性。有时为了满足某种编织结构的需要,可将不同类型的纱合在一起。另外,还应从价格、纺织形态、性能及制造过程中的稳定性等多方面的因素来选用碳纤维。

可供选用的碳纤维种类有粘胶基碳纤维、聚丙烯腊(PAN)基碳纤维和沥青基碳纤维。目前,最常用的PAN基高强度碳纤维(如T300)具有所需的强度、模量和适中的价格。如果要求碳/碳复合材料产品的强度与模量高及热稳定性好,则应选用高模量、高强度的碳纤维;如果要求热传导率低,则选用低模量碳纤维(如粘胶基碳纤维)。在选用高强碳纤维时,要注意碳纤维的表面活化处理和上胶问题。采用表面处理后活性过高的碳纤维,使纤维和基体的界面结合过好,反而使碳/碳呈现脆性断裂,导致强度降低。因此,要注意选择合适的上胶胶料和纤维织物的预处理制度,以保证碳纤维表面具有合适的活性。(2)碳纤维预制体的制备

预制体是指按照产品的形状和性能要求,先将碳纤维成型为所需结构形状的毛坯,以便进一步进行碳/碳致密化工艺。按增强方式可分为单向纤维增强、双向织物和多向织物增强,或分为短纤维增强和连续纤维增强。短纤维增强的预制体常采用压滤法、浇铸法、喷涂法、热压法。对于连续长丝增强的预制体,有两种成型方法:一种是采用传统的增强塑料的方法,如预浸布、层压、铺层、缠绕等方法做成层压板、回旋体和异形薄壁结构;另一种是近年得到迅速发展的纺织技术——多向编织技术,如三向编织、四向编织、五向编织、六向编织以至十一向编织、极向编织等。

单向增强可在一个方向上得到最高拉伸强度的碳/碳。双向织物常常采用正交平纹碳布和8枚缎纹碳布。平纹结构性能再现性好,缎纹结构拉伸强度高,斜纹结构比平纹容易成型。由于双向织物生产成本较低,双向碳/碳在平行于布层的方向拉伸强度比多晶石墨高,并且提高了抗热应力性能和断裂韧性,容易制造大尺寸形状复杂的部件,使得双向碳/碳继续得到发展。双向碳/碳的主要缺点是:垂直布层方向的拉伸强度较低,层间剪切强度较低,因而易产生分层。多向编织技术能够针对载荷进行设计,保证复合材料中纤维的正确排

列方向及每个方向上纤维的含量。最简单的多向结构是三向正交结构。纤维按三维直角坐标轴x、y、z排列,形成直角块状预制件。纱的特性、每一点上纱的数量以及点与点的间距,决定着预制件的密度、纤维的体积含量及分布。在x、y、z三轴的每一点上,各有一束纱的结构的充填效率最高,可达75%,其余25%为孔隙。由于纱不可能充填成理想的正方形以及纱中的纤维间有孔隙,因而实际的纤维体积含量总是低于75%。在复合材料制造过程中,多向预制件中纤维的体积含量及分布不会发生明显变化,在树脂或沥青热解过程中,纤维束和孔隙内的基体将发生收缩,不会明显改变预制件的总体尺寸。三向织物研究的重点在细编织及其工艺、各向纤维的排列对材料的影响等方面。三向织物的细编程度越高,碳/碳复合材料的性能越好,尤其是作为耐烧蚀材料更是如此。为了形成更高各向同性的结构,在三向纺织的基础上,已经发展了很多种多向编织,可将三向正交设汁改型,编织成四、五、七和十一向增强的领制件。九向结构是在三向正交结构的基础上,在xy平面内补充两个45o 的方向,在三向正交结构中,如果按上下面的四条对角线或上下面各边中点的四条连线补充纤维纱,则得七向预制件。在这两种七向预制件中去掉二个正交方向上的纱,便得四向结构。在三向正交结构中的四条对角线上和四条中点连线上同时补充纤维纱,可得非常接近各向同性结构的十一向预制件。将纱按轴向、径向和环向排列,可得圆筒和回转体的预制件。为了保持圆筒形编织结构的均匀性,轴向纱的直径应由里向外逐步增加,或者在正规结构中增加径向纱。在编织截头圆锥形结构时,为了保持纱距不变和密度均匀,轴向纱应是锥形的。根据需要可将圆筒形和截头圆锥形结构变形,编织成带半球形帽的圆筒和尖形官窿的预制件。制造多向预制件的方法有:干纱编织、织物缝制、预固化纱的编排、纤维缠绕以及上述各种方法的组合。1) 干纱编织干纱编织是制造碳/碳复合材料最常用的一种方法。按需要的间距先编织好x和y方向的非交织直线纱,x、y层中相邻的纱用薄壁钢管隔开,预制件织到需要尺寸时,去掉这些管子,用垂直(z向)的碳纤维纱代替。预制件的尺寸决定于编织设备的大小。用圆筒形编织机能使纤维按环向、轴向、径向排列,因而能制得回转体预制件。先按设计做好扎板,再将金属杆插入孔板,编织机自动地织好环向和径向纱,最后编织机自动取出金属杆以碳纤维纱代替。2)穿刺织物结构如果用两向织物代替三向干纱编织预制什中x、y方向上的纱,就得到穿刺织物结构。具体制法是:将二向织物层按设计穿在垂直(z向)的金属杆上.再用未浸过或浸过树脂的碳纤维纱并经固化的碳纤维——树脂杆换下金属杆即得最终顶制件。在x、y方向可用不同的织物,在z向也可用各种类型的纱。同种石墨纱用不同方法制得的预制件的特性差别显著,穿刺织物预制件的纤维总含量和密度都较高.有更大的通用性。3)预固化纱结构预固化纱结构与前两种结构不向,不用纺织法制造:这种结构的基本单元体是杆状预固化碳纤维纱,即单向高强碳纤维浸酚醛树脂及固化后得的杆。这种结构比较有代表性的是四向正规四面体结构,纤维按二向正交结构中的四条对角线排列,它们之间的夹角为70.5o。预固化杆的直径为1~1.8mm,为了得到最大充填密度,杆的截面呈六角形,碳纤维的最大体积含量为75%,根据预先确定的几何图案很容易将预固化的碳纤维杆组合成四向结构。用非纺织法也能制造多向圆筒结构。先将预先制得的石墨纱——酚醛预固化杆径向排列好,在它们的空间交替缠绕上涂树脂的环向和轴向纤维纱,缠绕结束后进行固化得到二向石墨——酚醛圆筒,再经进一步处理,即成碳/碳复合材料。3碳/碳的致密化工艺,碳/碳致密化工艺过程就是基体碳形成的过程,实质是用高质量的碳填满碳纤维周围的空隙,以获得结构、性能优良的碳/碳复合材料。最常用的有两种制做工艺:液相浸渍法和化学气相沉积法。1)液相浸渍法液相浸债工艺是制造碳/碳的一种主要工艺。按形成基体的浸渍剂,可分为树脂浸渍、沥青浸渍及沥青树脂混浸工艺;按浸渍压力,可分为低压、中压和高压浸渍工艺。通常可用做先驱体的有热固性树脂,例如:酚醛树脂和呋喃树脂以及煤焦油沥青和石油沥青。①浸渍用基体先驱体的选择在选择基体的先驱体时,应考虑下列特性:黏度、

产谈率、焦炭的微观结构和晶体结构。这些特性都与碳/碳复合材料制造过程中的时间-温度-压力关系有关。绝大多数热固性树脂在较低温度(低于250oC)下聚合成高度交联的、不熔的非晶固体。热解时形成玻璃态碳,即使在3000 oC时也不能转变成石墨,产碳率为50%—56%,低于煤焦油沥青。加压碳化并不使碳收率增加,密度也较小(小于1,5g/cm3)。酚醛树脂的收缩率可达20%,这样大的收缩率将严重影响二向增强的碳/碳复合材料的性能。收缩对多向复合材料性能的影响比二向复合材料小。预加张力及先在400—600oC范围内碳化,然后再石墨化都有助于转变成石墨结构。沥青是热塑性的,软化点约为400oC,用它作为基体的先驱体可归纳成以下要点:0.1MPa下的碳收率约为50%;在大于或等于10 MPa 压力下碳化,有些沥青的碳收率可高达90%;焦炭结构为石墨态,密度约为2g/cm3,碳化时加压将影响焦炭的微观结构。②低压过程预制件的树脂浸渍通常将领制体置于浸渍罐中,在温度为50 oC左右的真空下进行浸渍,有时为了保证树脂渗入所有孔隙也施加一定的压力,浸渍压力逐次增加至3~5MPa,以保证织物孔隙被浸透。浸渍后,将样品故入固化罐中进行加压固化,以抑制树脂从织物中流出。采用酚醛树脂时固化压力为l MPa左右,升温速度为5~10oC/h,固化温度为140~170oC,保温2h;然后,再将样品放入碳化炉中,在氮气或氩气保护下,进行碳化的温度范围为650~1100oC,升温速度控制在10~30oC/h,最终碳化温度为1000 oC,保温1h。沥青浸渍工艺常常采用煤沥青或石油沥青作为浸渍剂,先进行真空浸渍,然后加压浸渍。将装有织物预制体的容器故人真空罐中抽真空,同时将沥青放人熔化罐中抽真空并加热到250oC,使沥青融化,强度变小;然后将熔化沥青从熔化罐中注入盛有预制体的容器中,使沥青浸没预制体.待样品容器冷却后,移人加压浸渍罐中,升温到250℃进行加压涅渍,使沥青进一步浸入预制体的内部空隙中,随后升温至600~700oC进行加压碳化。为了使碳/碳具有良好的微观结构和性能,在沥青碳化时要严格控制沥青中间相的生长过程,在中间相转变温度(430~460℃).控制中间相小球生长、合并和长大。在碳化过程中树脂热解,形成碳残留物,发生质量损失和尺寸变化,同时在样品中留下空隙。因此,浸渍——热处理需要循环重复多次,直到得到一定密度的复合材料为止。低压过程中制得的碳/碳复合材料的密度为1.6~1.65g/cm3。,孔隙率为8%—10%。

⑧高压过程先用真空——压力浸渍方法对纤维预制体浸渍沥青,在常压下碳化,这时织物被浸埋在沥青碳中,加工以后取出已硬化的制品,把它放入一个薄壁不锈钢容器(称为“包套”)中,周围填充好沥青,并将包套袖真空焊封起来;然后将包套放进热等静压机中慢慢加热,温度可达600~700oC,同时施加7~100 MPa的压力。经过高压浸渍碳化之后,将包套解剖,取出制品,进行粗加工.去除表层;最后在2500~2700oC的温度和氩气保护下进行石墨化处理。上6碳/碳复台材料的氧化保护碳/碳复合材料具有优异的高温性能,当工作温度超过2000oC时,仍能保持其强度,它是理想的耐高温工程结构材料,已在航空航天及军事领域得到广泛应用。但是,在有氧存在的气氛下,碳/碳复合材料在400oC以上就开始氧化。碳/碳复合材料的氧化敏感性限制了它的扩大应用。解决碳/碳复合材料高温抗氧化的途径主要是,采用在碳/碳复合材料表面施加抗氧化涂层,使C与O2隔开,保护碳/碳复合材料不被氧化。另一个解决高温抗氧化的途径是,在制备碳/碳复合材料时,在基体中预先包含有氧化抑制剂。1)抗氧化涂层法在碳/碳复合材料的表面进行耐高温氧化材料的徐层,阻止与碳/碳复合材料的接触,这是一种十分有效地提高复合材料抗氧化能力的方法。一般而言,只有熔点高、耐氧化的陶瓷材料才能作为碳/碳复合材料的防氧化涂层材料。通常,在碳/碳复合材料表面形成涂层的方法有两种:化学气相沉积法和固态扩散渗透法。防氧化涂层必须具有以下特性:与碳/碳复合材料有适当的黏附性,既不脱粘,又不会过分渗透到复合材料的表面;与碳/碳复合材料有适当的热膨胀匹配,以避免涂覆和使用时因热循环造成的热应力引起涂层的剥落;低的氧扩散渗透率,即具有较高的阻氧能力,在高温氧化环境中氧延缓通过涂层与碳/碳复合材料接触;与碳/碳复合材料的相容稳定性,

既可防止涂层被碳还原而退化,又可防止碳通过涂层向外扩散氧化;具有低的挥发性,避免高温下自行退化和防止在高速气流中很快被侵蚀。硅基陶瓷具有最佳的热膨胀相容性,在高温时具有最低的氧化速率,比较硬且耐烧蚀。SiC具有以上优点并且原料易得,当02分压较高时,其氧化产物固态SiO2在1650oC以下是稳定的,形成的玻璃态SiO2薄膜能防止02进一步向内层扩散。因此,在碳/碳表面渗上一层SiC涂层,能有效地防止碳/碳在高温使用时的氧化。在碳/碳表面形成SiC涂层的方法有两种:一种方法是采用固体扩散渗SiC工艺,另一种方法是近年来采用的化学气相沉积法。此外,利用硅基陶瓷涂层(SiC、Si3C4)对碳/碳进行氧化防护,其使用温度一般在1700~1800oC以下,高于1800oC使用的碳/碳复合材料的氧化防护问题还有待研究解决。2)抑制剂法从碳/碳复合材料内部抗氧化措施原理来说,可以来取两种办法,即内部涂层和添加抑制剂。内部涂层是指在碳纤维上或在基体的孔隙内徐覆可起到阻挡氧扩散的阻挡层。但由于单根碳纤维很细(直径约7um),要预先进行涂层很困难,而给碳/碳复合材料基体孔隙内涂层,在工艺上也是相当困难的。因此,内部涂层的办法受到很大限制。而在碳/碳复合材料内部添加抑制剂,在工艺上相对容易得多,而且抑制剂或可以在碳氧化时抑制氧化反应,或可先与氧反应形成氧化物,起到吸氧剂作用。在碳、石墨以及碳/碳复合材料中,采用抑制剂主要是在较低温度范围内降低碳的氧化。抑制剂是在碳/碳复合材料的碳或石墨基体中,添加容易通过氧化而形成玻璃态的物质。研究表明,比较经济而且有效的抑制剂主要有B203,、B4C和ZrB2等硼及硼化物。硼氧化后形成B202;具有较低的熔点和强度,因而在碳和石墨氧化的温度下,可以在多孔体系的碳/碳复合材料中很容易流动,井填充到复合材料内连的孔隙中去,起到内部涂层作用,既可阻断氧继续侵入的通道,又可减少容易发生氧化反应的敏感部位的表面积。同样,B4C、ZrD2等也可在碳氧化时生成一部分CO后,形成B302,例如B4C依以下反应形成B203。研究表明,抑制剂在起到抗氧化保护时,碳/碳复合材料有一部分已经被氧化。硼酸盐类玻璃形成后,具有较高的蒸气压以及较高的氧的扩散渗透率。因此,一般碳/碳复合材料采用内含抑制剂的方法,大都应用在600oC以下的防氧化。3碳/碳复合材料的性能碳/碳复合材料的性能与纤维的类型、增强方向、制造条件以及基体碳的微观结构等因素密切相关,但其性能可在很宽的范围内变化。由于复合材料的结构复杂和生产工艺的不同.有关文献报道的数据分散性较大,仍可以从中得出一些一般性的结论。(1)碳/碳复合材料的化学和物理性能碳/碳复合材料的体积密度和气孔率随制造工艺的不同变化较大,密度最高的可达2.o 6/cm 5,开f[气孔率为2%—3%。树脂碳用做基体的盼碳复合材料,体积密度约又1.5g/cm J。耐碳复合材料除含有少量的氢、氮和微量的金属元素外.99%以亡都是由元素碳组成‘因此,碳/碳复合材料与石墨样具合化学稳定性.它勺一舱的酸、碱、盐溶液不起反应p不溶于有机溶剂,只与浓氧化性酸溶液起反应。碳在石墨态下,只有加热到4000霓,才会熔化(在压力超过12cPa条件产);只有加热到2500 Y以上,才能测出其塑性变形;在常压下加热致3删吧,碳才仆始升华。伊碳复合材料具有碳的优良性能,包括耐高温、抗腐蚀、较低的邦膨胀系数和较好的抗热冲击性能。份碳复合材料在常温下不与氧作用,开始氧化的温度为则Y(特别是当微量K、Na、c5 等分属杂质存在时),温度高于600 Y将会发生严重氧化。队碳复合材料的最大缺点是耐匀化性能差。碳/碳复合材料的热物理件能仍然典有碳和石墨材料的特征,主要表现为以下特点:①热导率较高酣碳复合材料的热导率随石墨化程度的提高而增加。阶碳复合材料热寻率还勺纤维(特别是石墨纤维)的方向有关。热导率高的阶碳复合材料具有较好的抗效应力性能,但却给结构设计带来困难(要求采取绝热措施)。队碳复合材料的热导率—‘般为2*50 W/(m·K)。②热膨胀系数较小多晶碳和心墨的热膨胀系数主要取决于品体的取向度,同时也受到扎陈度和裂纹的影响。因此,碳/碳复合材料的热膨胀系数随着柯墨化程度的提高而降低。热膨胀系数小,使得阶碳复合材料结构在温度

变化时尺寸稳定性特别好。由于热膨胀系数小(一般(o 5—1.5)M10‘/Y),胁碳复合材料的抗热应力性能比较好。所有这些性能对1;在宁航方圆的设计和应用非常重要。③比热容大与碳和石墨材料柏近,室洲至2删℃,比热容约为800—2删J/(kg·K)L)l [2)矽碳复台材料的力学性能耐碳复合材料的力学性能主要取决于碳纤维的种类、取向、含量和制备工艺等。研究友明.酣碳复合材料的高强度、高模量特性主要是来自碳纤维,碳纤维强度的利用率一般可达25%—50%:碳/碳复合材料在温度高达1627记时,仍能保持其室温时的强度,甚至还有所提高,这是L1前工程材料中唯伤保持这一持性的材料。碳纤维在份碳复合材料中的取向明203

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。在这款最新一代的大型飞机上,复合材料的使用比例有望..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必 不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质 量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具 实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳 纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当 于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测, 预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握 关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维 复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新 一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最 大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品; 汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

新型复合材料论文

陶瓷基复合材料的生产应用及发展前景 概论:科学技术的发展对材料提出了越来越高的要求,陶瓷基复合材料由于在破坏过程中表现出非脆性断裂特性,具有高可靠性,在新能源、国防军工、航空航天、交通运输等领域具有广阔的应用前景。 陶瓷基复合材料是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷或复相陶瓷。 陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷复合材料。其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料。 连续纤维增强复合材料是以连续长纤维为增强材料,金属、陶瓷等为基体材料制备而成。金属基复合材料是以陶瓷等为增强材料,金属、轻合金等为基体材料而制备的。从20世纪60年代起各国都相继对金属基复合材料开展了大量的研究,因其具有高比强度、高比模量和低热膨胀系数等特点而被应用于航天航空及汽车工业。陶瓷材料具有熔点高、密度低、耐腐蚀、抗氧化和抗烧蚀等优异性能,被广泛用于航天航空、军事工业等特殊领域。但是陶瓷材料的脆性大、塑韧性差导致了其在使用过程中可靠性差,制约了它的应用范围。而纤维增强陶瓷基复合材料方面克服了陶瓷材料脆性断裂的缺点,另一方面保持了陶瓷本身的优点及纳米陶瓷。 (1) 基体 陶瓷基复合材料的基体为陶瓷,这是一种包括范围很广的材料,属于无机化合物而不是单质,所以它的结构远比金属合金复杂得多。现代陶瓷材料的研究,最早是从对硅酸盐材料的研究开始的,随后又逐步扩大到了其他的无机非金属材料。 目前被人们研究最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。 (2) 增强体 陶瓷基复合材料中的增强体,通常也称为增韧体。从几何尺寸上增强体可分为纤维(长、短纤维)、晶须和颗粒三类。 a. 纤维: 在陶瓷基复合材料中使用得较为普遍的是碳纤维、玻璃纤维、硼纤维等; b. 晶须: 晶须为具有一定长径比(直径0.3~1μm,长0~100 μm) 的小单晶体。晶须的特点是没有微裂纹、位错、孔洞和表面损伤等一类缺陷,因此其强度接近理论强度由于晶须具有最佳的热性能、低密度和高杨氏模量,从而引起了人们对其特别的关注。 在陶瓷基复合材料中使用得较为普遍的是SiC、A12O3及Si3N4晶须。 c.颗粒

复合材料论文碳纤维复合材料的成型工艺与应用现状

复合材料概论 课程论文 碳纤维复合材料的成型工艺与应用现状院、部:材料与化学工程学院 专业班级: 学生姓名: 指导教师: 完成时间:2020/11/3

摘要 本文简述了碳纤维复合材料的性能、特点、成型工艺及应用领域现状、碳纤维复合材料的主流加工工艺,阐述了碳纤维复合材料在航空航天、汽车、风电、体育休闲等领域的应用现状,研究了该产业的发展趋势,并且提出了相关建议。 关键字:碳纤维;复合材料;成型工艺;应用;趋势 Abstract In this paper, the performance, characteristics, molding technology and application field status of carbon fiber composite materials, the mainstream processing technology of carbon fiber composite materials are briefly described. The application of carbon fiber composite materials in aerospace, automobile, wind power, sports and leisure fields is described. The development trend of the industry is studied, and relevant suggestions are put forward. Keywords:carbon fiber;composite material;molding process;applicaton; tren 1

碳碳复合材料概述

碳/碳复合材料概述 摘要本文介绍了碳碳复合材料的发展、工艺、特性以及应用。 关键词碳碳复合材料制备工艺性能应用 1前言 C/C复合材料是指以碳纤维或各种碳织物增强,或石墨化的树脂碳以及化学气相沉积(CVD)所形成的复合材料。碳/碳复合材料在高温热处理之后碳元素含量高于99%, 故该材料具有密度低,耐高温, 抗腐蚀, 热冲击性能好, 耐酸、碱、盐,耐摩擦磨损等一系列优异性能。此外, 碳/碳复合材料的室温强度可以保持到2500℃, 对热应力不敏感, 抗烧蚀性能好。故该复合材料具有出色的机械特性, 既可作为结构材料承载重荷, 又可作为功能材料发挥作用, 适于各种高温用途使用[1]。因而它广泛地应用于航天、航空、核能、化工、医用等各个领域。 2碳碳复合材料的发展 碳碳复合材料是高技术新材料,自1958年碳碳复合材料问世以来,经历了四个阶段: 60年代——碳碳工艺基础研究阶段,以化学气相沉积工艺和液相浸渍工艺的出现为代表; 70年代——烧蚀碳碳应用开发阶段,以碳碳飞机刹车片和碳碳导弹端头帽的应用为代表; 80年代——碳碳热结构应用开发阶段,以航天飞机抗氧化碳碳鼻锥帽和机翼前缘的应用为代表; 90年代——碳碳新工艺开发和民用应用阶段,致力于降低成本,在高性能燃气涡轮发动机航天器和高温炉发热体等领域的应用。 由于碳碳具有高比强度、高比刚度、高温下保持高强度,良好的烧蚀性能、摩擦性能和良好抗热震性能以及复合材料的可设计性,得到了越来越广泛的应用。当今,碳碳复合材料在四大类复合材料中就其研究与应用水平来说,仅次于树脂基复合材料,优先于金属基复合材料和陶瓷基复合材料,已走向工程应用阶段。从技术发展看,碳碳复合材料已经从最初阶段的两向碳碳复合材料发展为三向、四向等多维碳碳复合材料;从单纯抗烧蚀碳碳复合材料发展为抗烧蚀—抗侵蚀和抗烧蚀—抗侵蚀—稳定外形碳碳复合材料;从但功能材料发展为多功能材料。目前碳碳复合材料面对的最主要问题是抗氧化问题[2]。 3碳碳复合材料的制备加工工 艺[3] C/ C 复合材料的制备工艺: 碳 纤维的选择→胚体的预制成型→胚体 的致密化处理→碳碳复合材料的高温 热处理(如图[4]) 3.1碳纤维的选择 CF 的选择可以改变碳碳复合材 料的力学和热力学性能。纤维的选择 主要依赖于成本、织物结构、性能及 纤维的工艺稳定性。 常用CF 有三种, 即人造丝CF, 聚丙烯腈( PAN ) CF 和沥青CF。 3.2坯体的预制成型 坯体的成型是指按产品的形状和性能要求先把CF 预先成型为所需结构形状的毛坯, 以便进一步进行C/ C 复合材料的致密化处理工艺。

材料概论论文

材料概论论文碳纤维复合材料 班级:2011级材料化学 姓名:邓开菊 学号:20110513454

摘要:主要介绍了碳纤维复合材料的基本概述,并对它的一些结构性能、应用(主要在航空领域的应用)、发展,并分析了目前我国碳纤维复合材料的研究进展和应用前景。 关键字:碳纤维复合材料、碳纤维树脂基复合材料、碳/碳复合材料、结构性能、发展、航空领域。 1、引言 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的“比强度”。碳纤维属于聚合物碳,是有机纤维经固相反应转变为纤维状的无机碳化合物。碳纤维是一种新型非金属材料,它和它的复合材料具有高强度、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热、比重小和热胀胀系数小等优异性能,碳纤维单独使用时主要是利用其耐热性、耐蚀性、导电性和其它性质。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP(即碳纤维复合材料)的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。目前,碳纤维不仅广泛应用军事工业,而且在汽车构件、风力发电叶片、核电、油田钻探、体育用品、碳纤维复合芯电缆以及建筑补强材料领域也存在巨大应用空间,而其在航空领域的光辉业绩尤为引人注目。 2、碳纤维的发展 碳纤维的出现是材料史上的一次革命。碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。现已广泛应用于航天、航空和军事领域。世界各国均把发展高性能碳纤维产业放在极其重要的位置。碳纤维除了在军事领域上的重要应用外,在民品的发展上有着更加广阔的空间,并已经开始深入到国计民生的

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

碳纤维及其复合材料产业现状及发展趋势

国内外碳纤维及其复合材料产业现状及发展趋势 自上世纪60年代碳纤维首次商业化以来,产业规模不断扩大,产品品质不断提高,2014年全球碳纤维产能(365天连续生产12K/24K 碳纤维丝束计算)已达到12.6万吨。尽管碳纤维与传统的玻璃纤维在价格上仍不能相比,但高性能碳纤维以其高比强度、高模量、可设计、防腐蚀和抗疲劳等突出特点,具有玻璃纤维所不能比拟的优势,已成为发展先进武器装备的关键材料,并在航空航天、国防军工、风能产业、土木工程、体育休闲等领域得到了广泛应用。 当前,国际复合材料产业呈现蓬勃发展态势,据估计,未来5年,先进复合材料将以每年5%的增速发展,而随着民用航空、汽车工业等领域的快速发展,全球高性能碳纤维需求量的年增幅可达10%,亚太地区将会有更高的增长率,即碳纤维及其复合材料产业将面临前所未有的发展空间和机遇。 因此,在目前碳纤维产业快速发展的关键时期,我们更应该认清国际碳纤维产业的发展形势、对照国外先进企业找差距找问题,通过理性思考寻求解决途径,适时把握发展机遇,落实行动、注重实效,努力推进国内碳纤维及其复合材料产业的健康快速发展。 1、国外碳纤维产业现状及发展趋势 1)产业方面 根据前躯体原料的不同,碳纤维可分为聚丙烯腈(PAN)基、沥青基和粘胶基碳纤维等。由于粘胶基碳纤维在制备过程中会释放出毒

性物质二硫化碳,且工艺流程长、生产成本高、整体性能不高,因此目前,国际碳纤维产业领域,前两种碳纤维获得了更大规模的生产和应用。其中,PAN基碳纤维又占据绝对优势,国际市场占有率超过90%。PAN基碳纤维的九大生产商包括:日本东丽、东邦、三菱丽阳、美国赫氏(Hexcel)、氰特(Cytec)、卓尔泰克(Zoltek,已被东丽收购)、台塑、土耳其阿克萨(AKSA)和德国西格里(SGL)。沥青基碳纤维的生产和应用居其次,主要生产企业三家,分别是Cytec、三菱塑料和日本碳素纤维。 PAN基碳纤维分为小丝束(1-24K)和大丝束(36K及以上)两类。全球小丝束碳纤维市场主要被日本东丽、东邦、三菱丽阳三家公司所垄断,而来自中国、土耳其和韩国的企业,正不断扩充小丝束的全球产能,同时也降低了三家日本公司的市场份额。 大丝束碳纤维生产商主要有Zoltek、SGL和三菱丽阳三家。另外,中国国企蓝星集团英国分公司拥有大丝束碳纤维原丝的供应能力,Cytec于2014年与德国腈纶企业合作开展低成本大丝束碳纤维的研制开发。预计在未来10年中,其它制造商也会陆续加入大丝束碳纤维生产领域。 为满足高速发展的航空航天与汽车市场对碳纤维的需要,几乎所有的碳纤维巨头都宣布了扩产计划。例如,日本东丽拥有以日本本土为核心的日美法韩4个生产基地,目前已形成11000~12000吨/年的T700S和4500吨/年的T800碳纤维生产能力,并宣布PAN基碳纤维的总产能于2015年达到27100吨,2020年扩大至50000吨。另外,Hexcel

复合材料

《复合材料概论》课程论文 论文题目:玻璃纤维增强材料 姓名:郑显波 学院:材料科学与工程学院 班级:材料121班 学号:2012141010

玻璃纤维增强材料 郑显波 (齐齐哈尔大学材料科学与工程学院) 摘要:本文从玻璃纤维增强材料的特点用途开篇,通过介绍玻璃纤维国内外的发展现状,与玻璃纤维增强材料生产中所体现出的问题,进而对玻璃纤维增强材料的发展前景做出预测。 Glass fiber reinforced materials Xianbo Zheng (Qiqihar University of Science and Technolog) Abstract:this article from the characteristics of glass fiber reinforced materials use, through the introduction of the current situation of the development of glass fiber at home and abroad, and in the production of glass fiber reinforced materials reflects the problems, and make prediction on the development of glass fiber reinforced materials 关键词:玻璃纤维增强材料发展现状发展前景特点 引言:玻璃纤维增强材料简称(GFRP)俗名玻璃钢。它是以玻璃纤维及其制品(玻璃布、带、毡、纱等)作为增强材料,以合成树脂作基体材料的一种复合材料。复合材料的概念是指一种材料不能满足使用要求,需要由两种或两种以上的材料复合在一起.组成另一种能满足人们要求的材料,即复合材料。单一种玻璃纤维,虽然强度很高,但纤维间是松散的,只能承受拉力.不能承受弯曲、剪切和压应力,还不做成固定的几何形状.是松软体。如果用合成树脂把它们粘合在一起,就可以做成各种具有固定形状的坚硬制品.既能承受拉应力,又可承受弯曲、压缩和剪切应力这就组成了玻璃纤维增强的塑料基复合材料。根据合成树脂的不同玻璃钢主要有环氧玻璃钢、酚醛玻璃钢、聚酯玻璃钢。 1.玻璃纤维增强材料的特点、用途 玻璃纤维增强复合材料强度高、质量轻,具有减震性、抗疲劳性、耐化学品腐蚀性等优点,并且具有优异的抗弹、降噪性能,而且是价格低廉[1]。在汽车中应用玻璃纤维增强材料,可以提高汽车用材料的力学性能,降低汽车零部件的制造成本,加快汽车的装配速度,减轻汽车的重量,节省燃料. 随着汽车工业的迅速发展,对玻璃纤维及其复合材料的市场需求量将与日俱增,因此对玻璃纤维增强材料研究有很大的现实意义。 2.玻璃纤维增强材料成型工艺 喷射成型技术是手糊成型的改进,半机械化程度。喷射成型技术在复合材料成型工艺中所占比例较大,如美国占9.1%,西欧占11.3%,日本占21%。目前国内用的喷射成型机主要是从美国进口。

碳碳复合材料论文

碳/碳复合材料 概述 C/C复合材料是指以碳纤维作为增强体,以碳作为基体的一类复合材料。作为增强体的碳纤维可用多种形式和种类,既可以用短切纤维,也可以用连续长纤维及编织物。各种类型的碳纤维都可用于C/C复合材料的增强体。碳基体可以是通过化学气相沉积制备的热解碳,也可以是高分子材料热解形成的固体碳。C/C 复合材料作为碳纤维复合材料家族的一个重要成员,具有密度低、高比强度比模量、高热传导性、低热膨胀系数、断裂韧性好、耐磨、耐烧蚀等特点,尤其是其强度随着温度的升高,不仅不会降低反而还可能升高,它是所有已知材料中耐高温性最好的材料。因而它广泛地应用于航天、航空、核能、化工、医用等各个领域。 C/C复合材料的致密化工艺 C/C复合材料的制备工艺主要有两种方法:化学气相法(CVD 或CVl)和液相浸渍一碳化法。前者是以有机低分子气体为前驱体,后者是以热塑性树脂(石油沥青、煤沥青、中间相沥青)或热固性树脂(呋喃、糠醛、酚醛树脂)为基体前驱体,这些原料在高温下发生一系列复杂化学变化而转化为基体碳。为了得到更好的致密化效果,通常将化学气相法和液相浸渍一碳化法进行复合致密化,得到具有理想密度的C/C复合材料。 1、化学气相法

化学气相法(cVD或cVI)是直接在坯体孔内沉积碳,以达到填孔和增密的目的。沉碳易石墨化,且与纤维之间的物理兼容性好,而且不会像浸渍法那样在再碳化时产生收缩,而这种方法的物理机械陛能比较好。但在cVD过程中,如果碳在坯体表面沉积就会阻止气体向内部孔的扩散。对于表面沉积的碳应用机械的方法除去,再进行新一轮沉积。对于厚制品,CVD法也存在着一定的困难,而且这种方法的周期也很长。 2、液相浸渍法一碳化法 液相浸渍法相对而言设备比较简单,而且这种方法适用性也比较广泛,所以液相浸渍法是制备C/C复合材料的一个重要方法。它是将碳纤维制成的预成型体浸入液态的浸渍剂中,通过加压使浸渍剂充分渗入到预成型体的空隙中,再通过固化、碳化、石墨化等一系列过程的循环,最终得到C/C复合材料。它的缺点是要经过反复多次浸渍、碳化的循环才能达到密度要求。液相浸渍法中浸渍剂的组成和结构十分重要,它不仅影响致密化效率,而且也影响制品的机械性能和物理性能。提高浸渍剂碳化收率,降低浸渍剂的黏度一直是液相浸渍法制备C/C复合材料所要解 决的重点课题之一。浸渍剂的高黏度和低碳化收率是目前C/C 复合材料成本较高的重要原因之一。提高浸渍剂的性能不仅能提高C/C复合材料的生产效率,降低其成本,也可提高C/C复合材料的各种性能。C/C复合材料的抗氧化处理碳纤维在空气中,于360℃开始氧化,石墨纤维要略好于碳纤维,其开始氧化的温度

碳纤维及其复合材料的发展和应用(精)

·开发与创新· Development and Applications of Carbon Fiber and Its Composites GAO Bo ,XU Zi-Li (Wuhan Textile University ,Wuhan Hubei 430073,China Abstract:This paper introduces performance and features of carbon fiber,briefly overviews the history,including both foreign and domestic.And analyses the properties and applications of carbon fiber composite material,emphasizes the related performance that carbon fiber adds to the metal matrix composites and points out its research prospects.Key words:carbon fiber ;composite ;metal matrix 0引言 碳纤维是含碳量高于90%的无机高分子纤维,是由有机母体纤维(聚丙烯睛、粘胶丝或沥青等采用高温分解法在1000~3000℃高温的惰性气体下碳化制成的。它是一种力学性能优异的新材料,比重不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,而其复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa ,也高于钢。碳纤维按其原料可分为三类:聚丙烯腈基(PAN 碳纤维、石油沥青基碳纤维和人造丝碳纤维三类。其中聚丙烯腈基碳纤维用途最广,需求也最大[1]。 1碳纤维的发展史 1.1国外碳纤维的发展历史 20世纪50年代美国开始研究粘胶基碳纤维,1959 年生产出了粘胶基纤维Thormel-25,这是最早的碳纤维产品。同一年,日本发明了用聚丙烯腈基(PAN 原丝

2016-2020中国碳纤维复合材料行业发展前景预测分析报告

深圳中企智业投资咨询有限公司

2016-2020年中国碳纤维复合材料行业发展前景 预测分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.360docs.net/doc/ce2679038.html, 1

目录 2016-2020年中国碳纤维复合材料行业发展前景预测分析 (3) 第一节2016-2020年中国碳纤维复合材料行业发展预测分析 (3) 一、未来碳纤维复合材料发展分析 (3) 二、未来碳纤维复合材料行业技术开发方向 (3) 2、自动化生产 (3) 3、大规模生产 (3) 4、碳纤维复合材料废旧部件的再生回用技术 (4) 三、总体行业“十三五”整体规划及预测 (4) 第二节2016-2020年中国碳纤维复合材料行业市场前景分析 (4) 一、产品差异化是企业发展的方向 (4) 二、渠道重心下沉 (5) 2

2016-2020年中国碳纤维复合材料行业发展前景预测分析 第一节2016-2020年中国碳纤维复合材料行业发展预测分析 一、未来碳纤维复合材料发展分析 碳纤维复合材料作为新兴的非金属材料具有广阔的应用前景。首先其广泛的应用于航空、航天等军事领域,并随着在军事领域应用的不断深入,相关的制造及使用技术日臻成熟,从而带动了碳纤维复合材料在民用领域应用的极大发展,主要应用在机械电子、建筑材料、文体、化工、医疗等方面,并正在快速的取代传统金属材料成为结构用材的首选。 二、未来碳纤维复合材料行业技术开发方向 1、3D打印成型技术 3D打印技术技术是有望成为高效低成本制备各种碳纤维复合材料结构部件的创新工艺,为此近年来企业界、大学、科研院所、政府机构等,都在安排研发和改进3D打印技术,并取得了产业化成果。以往制备塑料和金属的3D打印机部件,能耗较高,尺寸有限,而应用于碳纤维复合材料时,不仅部件强度与刚性可提高,还可提高导热性和降低热膨胀系数,因此无需使用炉子,可消除所有尺寸限制。 2、自动化生产 汽车生产厂家现都采用机器人组装相对小和固定形状的部件,但这些机器人并不能加工大型碳纤维复合材料部件,因为这些部件缺乏形状固定性,因而多采用手铺制造和热压罐固化。如何加工大型碳纤维复合材料是未来重要的技术开发方向之一。 3、大规模生产 5年前日本公司在市场上导入了“Sereebo”长碳纤维增强热塑性树脂(CFRTP),并与GM汽车公司等合作开发其潜在市场。其中碳纤维的分布和取向是可控的,基材的各向同性可保持到最终部件,成型时间只有60s,它比铝合金轻20%~30%,并具有更好的耐疲劳性和抗冲击性而价格略高些,适用于汽车结 3

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

复合材料论文

汽车活塞复合材料选择与加工 (单位湖北汽车工业学院机械工程学院) 摘要:活塞有着汽车发动机“心脏”之称,由此可见其对发动机以及整车的重要性,作为发动机上的极重要的一个零件工作环境却是十分恶劣,承受着高温高压的热负荷和机械负荷。其材料有着很高的要求:密度小、质量轻、热传导性好、热膨胀系数小;并具有足够的高温强度、耐磨和耐蚀性能、尺寸稳定性好。另外还应具有容易制造、成本低廉的特点。本论文通过分析零件的工作环境及失效原因了解其性能要求以选出最适合材料,即用新型铝基复合材料代替传统材料作为发动机活塞材料,该材料具有较高的耐磨性、高温强度、疲劳强度和抗咬合性能,同时具有热膨胀系数更小,导热性更好等特点,故在汽车引擎的应用渐增。颗粒增强铝基复合材料作为先进的材料,具有优异的性能,同时原材料资源丰富,相对成本较低,故虽仍存在部分技术问题,但仍在各专业领域有着广泛的应用。 关键词:发动机活塞;铝基;复合材料;SiCp/Al;碳纳米管。 Abstract Automotive engine piston with "heart," ,we can see it and the importance of the engine of the vehicle, as a very important part of the engine on the working environment is very bad, suffer thermal and mechanical loads high temperature and pressure. Its materials with high demands: density, light weight, good thermal conductivity, thermal expansion coefficient; and has sufficient high temperature strength, wear and corrosion resistance, good dimensional stability. It should also be easily manufactured with low cost. In this paper, by analyzing the components of the work environment and failure to understand the reasons of their performance in order to select the most suitable material, which uses novel aluminum matrix composite materials instead of traditional materials as an engine piston material which has a high abrasion resistance, high temperature strength, fatigue and anti-seizure properties, also has a smaller thermal expansion coefficient, thermal

材料科学与工程专业培养计划(080401)

材料科学与工程专业培养计划() () 一、培养目标 按照“厚基础、宽口径、复合型、高素质”的人才培养模式,培养德、智、体、美全面发展,了解现代材料学 科发展,适应社会经济和科学技术发展要求,具有坚实的自然科学基础、材料科学与工程专业基础和人文社会科 学基础,具有较强的工程意识、工程素质、实践能力、自我获取知识的能力、创新素质、创业精神、国际视野、 沟通和组织管理能力的高素质专门人才。材料类专业毕业的学生,既可从事材料科学与工程基础理论研究,新材 料、新工艺和新技术研发,生产技术开发和过程控制、材料应用等材料科学与工程领域的科技工作,也可承担相 关专业的教案、科技管理和经营工作。 本科生毕业后经过年左右的实际工作,能够达成如下目标: 培养目标:能够运用数理、材料专业基础知识和理论,对复杂的材料科学问题进行有效探索和系统性分析, 并提供解决方案; 培养目标:熟悉材料工程技术的发展现状及相关领域的发展动态,具备一定的工程创新意识与能力,能够运 用现代工具及材料专业知识,从事本领域相关工艺技术及产品的设计、研发与生产管理; 培养目标:具备卓越工程师的职业道德规范、强烈的爱国敬业精神和社会责任感,综合考虑法律、环境与可 持续发展等因素影响,在工程实践中能坚持公众利益优先; 培养目标:具备健康的身心和良好的人文科学素养,拥有团队精神、有效的沟通表达能力和工程项目管理能 力; 培养目标:拥有职业发展中的终生学习与自我完善能力,具有一定的全球化意识和国际视野,能够积极主动适应不断变化的自然环境和社会环境,持续提高专业素养和自身素质。 二、毕业要求 本专业的毕业要求如下: .工程知识:掌握工程领域所需的数学、自然科学、工程基础和材料科学与工程学科专业知识,并能够用于 解决材料工程领域复杂工程问题。 掌握相关数学知识,并能运用于实际工程问题进行数学建模、求解与数据处理; 掌握相关自然科学的基础原理和思维方法,并能将其应用于解决工程科学和技术问题; 掌握相关工程知识,能将其用于解决工程装备设计等工程问题; 掌握材料科学与工程专业基础知识,并能用于解决热处理、材料组织性能分析及控制等材料科学和工程技术

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

碳纤维_论文

碳纤维在航空航天中的应用 摘要:碳纤维就是纤维状的碳,由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。碳纤维的微观结构类似人造石墨,是乱层石墨结构。本文将针对碳纤维的结构、性能、制备方法及其在航空航天中的应用介绍。 引言 20世纪纳米科技取得了重大发展,而纳米材料是纳米技术的基础,碳纤维是一种比强度比钢大,比重比铝轻的材料,它在力学,电学,热学等方面有许多特殊性能,碳纤维的强度比玻璃钢的强度高;同时它还具有优异的导电、抗磁化、耐高温和耐化学侵蚀的性能,被认为是综合性能最好的先进材料,因此它在各个领域中的应用推广非常迅速。在近代工业中,特别是在航空航天中起着十分重要的作用。 1.碳纤维的概念 碳纤维就是纤维状的碳,由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。与传统的玻璃纤维(GF)相比,杨氏模量是其3 倍多;它与凯芙拉纤维(KF-49)相比,不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。有学者在1981年将PAN基CF浸泡在强碱NaOH溶液中,时间已过去30多年,它至今仍保持纤维形态。 2.碳纤维的结构 碳纤维的结构决定于原丝结构和炭化工艺。对有机纤维进行预氧化、炭化等工艺处理,除去有机纤维中碳以外的元素,形成聚合多环芳香族平面结构。在碳纤维形成过程中,随着原丝的不同,质量损失可达10~80%,形成了各种微小的缺陷。但无论用哪种材料,高模量的碳纤维中的碳分子平面总是沿纤维轴平行的取向。用x一射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构。碳纤维呈现乱层石墨结构。在乱层石墨结构中,石墨层片仍是最基本结构单元,一般由数张到数十张层片组成石墨微晶,这是碳纤维的二级结构单元。层片之间的距离叫面间距d,由石墨微晶再组成原纤维,其直径为50nm左右,长度为数百nm,这是纤维的三级结构单元。最后由原纤维组成碳纤维的单丝,直径一般为6—8μm。原纤维并不笔直,而是呈弯曲、裙皱、彼此交叉的许多条带组成的结构。在这些条带的结构中,存在着针形孔隙,其宽度为1.6—1.8nm,长度可达几十nm。在碳纤维结构中的石墨微晶与纤维轴构成一定的夹角,称为取向角,这个角的大小影响纤维模量的高低。如聚丙烯脯基碳纤维的d为0.337nm,取向角为8°。碳纤维结构是高倍拉伸的、沿轴向择优取向的原纤维和空穴构成的高度有序织态结构。影响碳纤维强度的重要因素是纤维中的缺陷。碳纤维中的缺陷主要来自两方面,一方面是原丝带来的缺陷,另一方面是炭化过程中产生的缺陷。原丝带来的缺陷在炭化过程中可能消失小部分,而大部分将保留下来,变成碳纤维的缺陷。同时,在炭化过程中,由于大量的元素以及各种气体的形成逸出,使纤维表面和内部形成空穴和缺陷。 3.碳纤维的性能 3.1 碳纤维的力学性能

相关文档
最新文档