常用刀具材料分类、特点、应用及发展

常用刀具材料分类、特点、应用及发展
常用刀具材料分类、特点、应用及发展

金属切削原理

读书报告

《常用刀具材料分类、特点及应用》

姓名

学号

班级

学院

二○一五年五月

摘要

机械制造工业是制造业最重要的组成之一,它担负着向国民经济的各个部门提供机械装备的任务。我国现代化建设的发展速度在很大程度上要取决于机械制造工业的发展水平,因此,从这个意义上说,机械制造工业的发展水平是关系全局的。机械制造中的加工方法很多,其中材料去除加工精度较高、表面质量较好,有很强的加工适应性,是目前机械制造中应用最广泛的加工方法。材料去除加工时,刀具在工作时,要承受很大的压力。同时,由于切削产生的金属塑性变形以及各部的摩擦,使刀具切削刃上产生很高的温度和受到很大的应力,在这样的条件下,刀具将迅速磨损或破损。因此刀具材料性能应满足;高的硬度和耐磨性、足够的强度和韧性、高的耐热性、良好的热物理性能和耐热冲击性能、良好的工艺性能和经济性等要求。常用的刀具材料有高速钢、硬质合金、涂层刀具以及其他刀具材料包括陶瓷、金刚石和立方氮化硼等。其中陶瓷材料和超硬刀具材料对常规刀具材料的竞争越来越激烈,且所占比重快速增长。随着上述刀具材料的发展,使车削加工的切削速度提高了100多倍,而且新刀具材料出现的周期也越来越短。但在较长时间内,各种刀具材料将仍是相互补充,相互竞争。

关键词:刀具材料性能,刀具材料分类,刀具材料特点,刀具材料应用

目录

引言 (3)

第一章绪论 (3)

1.1金属切削技术的发展概况 (3)

1.2金属切削材料的研究意义 (4)

第二章刀具材料性能 (4)

2.1刀具切削环境 (4)

2.2刀具材料性能要求 (4)

2.3刀具材料主要性能 (6)

第三章刀具材料分类 (7)

3.1高速钢 (7)

3.1.1 普通高速钢 (8)

3.1.2高性能高速钢 (8)

3.1.3粉末冶金高速钢 (9)

3.2硬质合金 (9)

3.2.1钨钴类硬质合金 (10)

3.2.2钨钛钴类硬质合金 (10)

3.2.3钨钛钽(铌)钴类硬质合金 (11)

3.2.4硬质合金的选用 (11)

3.3涂层刀具 (12)

3.4其它刀具材料 (13)

3.4.1陶瓷材料 (13)

3.4.2金刚石 (14)

3.4.3立方氮化硼(简称CBN) (15)

第四章刀具材料发展 (15)

参考文献 (16)

引言

随着制造业的发展,采用高强度、高耐磨性、高耐热性和高化学稳定性等材料越来越多,它们的加工难度较大,虽然可以使用硬质合金涂层、金刚石、立方氮化硼和陶瓷等刀具加工,但这些刀具价格昂贵,又不抗冲击,所以一般工厂采用不多。淬火钢的硬度一般在45HRC以上,材料硬度高、塑性变形性差、切削阻力大、切削温度高,加工刀具容易磨损,切削很困难;高硅铝合金具有较高的高温强度、良好的热稳定性和高的耐磨性,是一种理想的耐磨材料,近年来高硅铝合金在汽车、摩托车、军工及航天等领域得到了广泛的应用[1]。因此,探讨这些难加工材料的切削加工性能,选择合适的刀具材料十分必要。

第一章绪论

1.1金属切削技术的发展概况

制造业是人类财富在20世纪空前膨胀的主要贡献者,可以说没有制造业的发展,就没有人类今天的现代物质文明。有资料统计,美国财富的68%来自制造业, 2000年我国财政收入的三分之一来自制造业。我国现代化的发展速度在很大程度上要取决于机械制造工业的发展水平,从这个意义上说,机械制造业的发展水平是关系全局的[2]。

机械制造中的加工方法很多,按照工件在加工过程中质量的变化,可将加工方法分为材料去除加工、材料成形加工和材料累积加工。材料去除加工是通过在被加工对象上去除一部分材料后才制成一合格零件的。与其他方法相比,其加工精度相对较高、表面质量相对较好,并且有很强的适应性,至今仍是机械制造业中应用最广泛的加工方法,而且在未来相当长的时期内仍将占有重要地位。

材料去除加工又可分切削加工和特种加工两种加工方法。

特种加工主要是利用机械能以外的其他能量(如光、电、化学、声、热能等直接去除材料的加工方法,目前常用的特种加工方法主要有电火花加工、电解加工、激光加工、超声波加工等。

切削加工是利用切削刀具从工件表面切除多余的材料,使工件达到规定的几何形状、尺寸精度和表面质量的一种机械加工方法。金属切削刀具是切削加工

的基本工具,其选择、使用与设计是工艺技术人员的基本技术技能。

1.2金属切削材料的研究意义

随着工件材料的力学性能不断提高,产品的品种和批量逐渐增多,加工精度的要求日益提高,工件的机构和形状不断复杂化和多样化,各种难加工材料的出现和应用,先进制造系统、高速切削、超精密加工、绿色制造的发展和付诸实用都对刀具提出了更高、更新的要求,进一步加强刀具材料的研究和开发,并合理地选择刀具材料,是推动切削技术应用和发展的重要前提。本文中简单介绍了适用于切削加工的各种刀具材料,包括涂层刀具、陶瓷刀具、金属陶瓷刀具、立方氮化硼刀具等,并分析各种刀具材料的合理选用。

第二章 刀具材料性能

2.1刀具切削环境

刀具切削时,由于要克服被加工材料对弹性变形的抗力、对塑性变形的抗力以及切屑—刀具—已加工平面相互间的摩擦等,要承受很大的切削力。此外,由于切削时消耗的变形功,刀具与切屑、刀具与工件的摩擦功,在切削层产生高温。在高温与应力下,刀具会发生磨损(硬质点磨损、粘结磨损、扩散磨损、化学磨损)与破损(脆性破损:崩刃、碎断、剥落、裂纹破损;塑性破损),而工件会产生加工硬化,进一步阻碍切削。因此,要基于切削环境,来选择刀具材料的性能。

2.2刀具材料性能要求

(1)高的硬度和耐磨性

硬度是刀具材料应具备的基本特性。刀具要从工件上切下切屑,其硬度必须比工件材料的硬度大。

耐磨性是材料抵抗磨损的能力。一般来说,刀具材料的硬度越高,耐磨性就越好。组织中硬质点(碳化物、氮化物等)的硬度越高,数量越多,颗粒越小,分布越均匀,则耐磨性越高。但刀具材料的耐磨性实际上不仅取决于它的硬度,而且也和它的化学成分、强度、纤维组织及摩擦区的温度有关。

考虑到材料的品质因素,可用下式表示材料的耐磨性:

0.50.843R Ic W K E H -=

常用刀具材料分类、特点及应用

常用刀具材料分类、特点及应用 刀具材料的切削性能直接影响着生产效率、工件的加工精度、已加工表面质量和加工成本等,所以正确选择刀具材料是设计和选用刀具的重要容之一。 1.刀具材料应具备的性能 金属切削时,刀具切削部分直接和工件及切屑相接触,承受着很大的切削压力和冲击,并受到工件及切屑的剧烈摩擦,产生很高的切削温度,即刀具切削部分是在高温、高压及剧烈摩擦的恶劣条件下工作的。因此,刀具切削部分材料应具备以下基本性能。 1.1 高的硬度和耐磨性 硬度是刀具材料应具备的基本特性。刀具要从工件上切下切屑,其硬度必须比工件材料的硬度大。 耐磨性是材料抵抗磨损的能力。一般来说,刀具材料的硬度越高,耐磨性就越好。组织中硬质点(碳化物、氮化物等)的硬度越高,数量越多,颗粒越小,分布越均匀,则耐磨性越高。但刀具材料的耐磨性实际上不仅取决于它的硬度,而且也和它的化学成分、强度、纤维组织及摩擦区的温度有关。 1.2 足够的强度和韧性 要使刀具在承受很大压力,以及在切削过程常要出现的冲击和振动的条件下工作,而不产生崩刃和折断,刀具材料就必须具有足够的强度和韧性。 1.3 高的耐热性 耐热性是衡量刀具材料切削性能的主要标志。它是指刀具材料在高温下保持硬度、耐磨性、强度和韧性的性能。 1.4 导热性好 刀具材料的导热性越好,切削热越容易从切削区散走,有利于降低切削温度。刀具材料的导热性用热导率表示。热导率大,表示导热性好,切削时产生的热量就容易传散出去,从而降低切削部分的温度,减轻刀具磨损。

1.5 具有良好的工艺性和经济性 既要求刀具材料本身的可切削性能、耐磨性能、热处理性能、焊接性能等要好,且又要资源丰富,价格低廉。 2.常用刀具材料分类、特点及应用 刀具材料可分为工具钢、高速钢、硬质合金、瓷和超硬材料等五大类。常用刀具材料的主要性能及用途见表2-1。

机加工中刀具材料的应用及发展趋势

机加工中刀具材料的应用及发展趋势 金属切削加工是现代机械制造工业中一种最基本的加工方法,在其过程中,刀具直接完成切削余量和形成已加工表面的任务,而刀具材料又是决定刀具切削性能的根本因素,它对加工效率、加工质量、加工成本以及刀具耐用度的影响极大。就拿切削速度来说,在最初使用碳素工具钢作为刀具材料时,切削速度只有每分钟10米左右;19世纪末20世纪初出现了高速钢刀具材料,切削速度提高到每分钟几十米;30年代出现了硬质合金,切削速度提高到每分钟100~500米;20世纪中叶以后又出现了复合陶瓷、金刚石、CBN超硬刀具材料等,高速钢和硬质合金则发展了许多新品种。迄今,已使切削速度提高到每分钟一千米以上。历史事实表明,在切削加工的发展过程中,刀具材料始终是最积极的因素。同时,被加工材料的发展也大大地推动了刀具材料的发展。因此,我们应当重视刀具材料的正确选择和合理使用,关注新型刀具材料的研制和发展趋势。1刀具材料应具备的性能性能优良的刀具材料,是保证刀具高效工作的基本条件。刀具切削部分在强烈摩擦、高压、高温下工作,应具备如下的基本要求:一是高硬度和高耐磨性;二是足够的强度与冲击韧性;三是高耐热性、导热性和小的膨胀系数;四是良好的工艺性和经济性。2常用刀具材料常用刀具材料有工具钢(包括碳素工具钢、合金工具钢、高速钢)、硬质合金、超硬刀具材料和陶瓷。碳素工具钢和合金工具钢因其耐热性很差,仅用于手工工具。陶瓷和超硬刀具材料则由于性质脆、工艺性差及价格昂贵等原因,目前尚在有限的范围内使用。当今,用得最多

的为高速钢和硬质合金, 几乎各占一半。2.1高速钢高速钢是一种加入了较多的钨、铬、钒、钼等合金元素的高合金工具钢,有良好的综合性能。其强度和韧性是现有刀具材料中最高的。高速钢的制造工艺简单,容易刃磨成锋利的切削刃,锻造、热处理变形小,目前在复杂的刀具,如麻花钻、丝锥、拉刀、齿轮刀具和成形刀具制造中,仍占有主要地位。2.2硬质合金硬质合金是高强度难溶的金属化合物(主要是WC、TiC等,又称高温碳化物)微米级的粉末,用钴或镍等金属作粘结剂烧结而成的粉末冶金制品。其中高温碳化物的含量超过高速钢,绝大多数车刀、端铣刀和部分立铣刀、钻孔绞刀等均已采用其制造,切削速度可达到100~200m/min以上,是最主要的刀具材料之一。但因其工艺性较差,用于复杂刀具尚受到很大限制。3新型刀具材料3.1涂层刀具涂层刀具材料是近20年出现的一种新型刀具材料。它是在一些韧性较好的硬质合金或高速钢刀具基体上,涂覆一层耐磨性高的难熔化金属化合物而获得的,是刀具材料发展中的一项重要突破。涂层技术可提高刀具的耐磨性而不降低其韧性,较好的解决了刀具材料存在的强度和韧性之间的矛盾,是切削刀具发展的一次革命。从上世纪70年代初首次在硬质合金基体上涂覆一层碳化钛(TiC)后,到1981年就把普通硬质合金刀具的切削速度从80m /min提高到300m/min。在高速钢基体上刀具涂层多为TiN,常用物理气相沉积法(PVD法)涂覆,相当于一般硬质合金的硬度,耐用度可提高2~5倍,切削速度可提高20%~40%;在韧性较好的硬质合金基体上,涂层多为高耐磨、难熔化的金属化合物,一般采用化学

刀具分类

一、刀具分类 刀具材料的种类很多,常用的材料有工具钢、硬质合金、陶瓷和超硬材料四大类。 1、碳素工具钢 碳素工具钢是指碳的质量分数为0.65%~1.35%的优质高碳钢。用做刀具的牌号一般是T10A和T12A。常温硬度60~64HRC。当切削刃热至200~250℃时,其硬度和耐磨性就会迅速下降,从而丧失切削性能。碳素工具钢多用于制造低速手用工具,如锉刀、手用锯条等。 2、合金工具钢 为了改善碳素工具钢的性能,常在其中加入适量合金元素如锰、铬、钨、硅和钒等,从而形成了合金工具钢。常用牌号有9SiCr、GCrl5、CrWMn等。合金工具钢与碳素工具钢相比,其热处理后的硬度相近,而耐热性和耐磨性略高,热处理性也较好。但与高速钢相比,合金工具钢的切削速度和使用寿命又远不如高速钢,使其应用受到很大的限制。因此,合金工具钢一般仅用于取代碳素工具钢,作一些低速、手动刀具,如手用丝锥、手动铰刀、圆板牙、搓丝板等。 3、高速钢 高速钢是一种含钨、铝、铬、钒等合金元素较多的高合金工具钢。高速钢主要优点是具有高的硬度、强度和耐磨性,且耐热性和淬透性良好,其允许的切削速度是碳素工具钢和合金工具钢的两倍以上。高速钢刃磨后切削刃锋利,故又称之为“锋钢”和“白钢”。高速钢是一种综合性能好、应用范围较广的刀具材料,常用来制造结构复杂的刀具,如成形车刀、铣刀、钻头、铰刀。拉刀、齿轮刀具等。 高速钢按其用途和性能不同,可分普通高速钢和高性能高速钢;按其化学成分不同,又可分为钨系高速钢和钨钼系高速钢。 1) 普通高速钢是指加工一般金属材料用的高速钢。常用牌号有W18Cr4V和W6Mo5Cr4V2。 ① W18Cr4V属钨系高速钢,它具有性能稳定,刃磨及热处理工艺控制方便等优点,但因钨价较高,且使用寿命短故使用较少。 ② W6Mo5Cr4V2属钨钼系高速钢,它的碳化物分布均匀,抗弯强度,冲击韧度和高温塑性都比W18Cr4V好,但磨削工艺略差。因其使用寿命长、价格低,故被广泛使用。 2) 高性能高速钢是在普通高速钢中再加入一些合金元素,以进一步提高它的耐热性、耐磨性。其切削速度可达50~lOOm/min。主要用于不锈钢、耐热钢、高强度钢等难加工材料的切削加工。有高钒高速钢和超硬高速钢等。 ①高矾高速钢(W12Cr4V4Mo)由于钒、碳含量的增加提高了耐磨性,刀具寿命比普通高速钢提高2~4倍,但是随着钒含量的提高使其磨削性能变差。故使用较少。 ②超硬高速钢是为了加工一些难以加工的材料而发展起来的。其常温硬度。高温硬度、耐热性和耐磨性都比普通高速钢高,具有良好的综合性能,可以加工

刀具材料的研究现状及展望

刀具材料的研究现状及展望 2012034110 李贺 【摘要】随着难加工材料的日益增多以及对加工效率的要求的提高,刀具的发展对提高生产效率和加工质量具有直接影响。本文以刀具材料为主线,介绍了高速钢、硬质合金、陶瓷、超硬材料等刀具材料的性能以及现状。根据刀具材料的优缺点提出其适合的加工切削条件,同时在理论层面提出对未来发展的思考。 【关键词】高速钢;硬质合金;陶瓷;超硬材料;研究现状;展望 1 刀具失效形式和性能要求 刀具磨损是刀具的主要失效形式,常见的失效形式有:磨粒磨损、氧化磨损、粘结磨损、扩散磨损等正常磨损;卷刀、崩刃、崩碎、打刀等非正常磨损[1]。由此,刀具材料应具有良好的力学性能,另外还应具有良好的工艺性能以及可最大限度降低刀具成本的经济性[2]。 2 高速钢刀具材料 高速钢刀具材料可分为传统熔融高速钢、粉末冶金高速钢和少无莱氏体高速钢。但随着加工材料的发展,虽然其能满足通用工程材料切削加工的要求,但其性能已不够先进。 2.1 传统熔融高速钢 熔融高速钢刀具材料分为:普通高速钢;高性能高速钢。普通高速钢具有较好的塑性,常温硬度63~66HRC,而在高温下,硬度很差。高性能高速钢的硬度普遍比普通高速钢提高2~4 个HRC,高温硬度也较好,但是其抗弯强度、韧性较低[3]。 2.2 粉末冶金高速钢、少无莱氏体高速钢 粉末冶金高速钢及少无莱氏体高速钢解决了熔炼高速钢在冷凝过程中产生的粗大碳化物偏析及碳化物粗大问题。 少无莱氏体钢在热处理时需要进行渗碳处理提高表层的含碳量,以增加硬度,表层经淬火及回火后硬度可达66~67HRC 以上,成为超硬高速钢。少无莱氏体高速钢刀具有芯韧表硬的特点,具有好的综合性能[4]。 3 硬质合金刀具材料 硬质合金是由硬度和熔点很高的碳化物(称硬质相)和金属(称粘结相)。近年来随着材料技术的发展,将其分为P、M、K、H、S、N 六个系列[5]。P 类,主要用于切削钢材;K 类,主要用于切削铸铁;M 类,为普通型硬质 合金;H 类,主要用于切削高硬材料,如淬硬钢,冷硬铸铁等;S 类,用于切削耐热材料、高温合金等;N 类,用于切削有色金属[6]。 3.1 传统硬质合金刀具材料 分类:碳化钨基硬质合金、碳(氮)化钛基硬质合金。 性能:硬度为89.5~94HRA,具有较好的红硬性、耐磨性等综合性能,其适于加工未淬火的钢材。

刀具的材料及其应具备的性能

刀具的材料及其应具备的性能 刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工质量、加工成本以及刀具耐用度影响很大。使用碳工具钢作为刀具材料时,切削速度只有10m/min左右;20世纪初出现了高速钢刀具材料,切削速度提高到每分钟几十米;30年代出现了硬质合金,切削速度提高到每分钟一百多米至几百米;当前陶瓷刀具和超硬材料刀具的出现,使切削速度提高到每分钟一千米以上;被加工材料的发展也大大地推动了刀具材料的发展。 一刀具材料应具备的性能 性能优良的刀具材料,是保证刀具高效工作的基本条件。刀具切削部分在强烈摩擦、高压、高温下工作,应具备如下的基本要求。 高硬度和高耐磨性 刀具材料的硬度必须高于被加工材料的硬度才能切下金属,这是刀具材料必备的基本要求,现有刀具材料硬度都在60HRC以上。刀具材料越硬,其耐磨性越好,但由于切削条件较复杂,材料的耐磨性还决定于它的化学成分和金相组织的稳定性。 足够的强度与冲击韧性 强度是指抵抗切削力的作用而不致于刀刃崩碎与刀杆折断所应具备的性能。一般用抗弯强度来表示。冲击韧性是指刀具材料在间断切削或有冲击的工作条件下保证不崩刃的能力,一般地,硬度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。 高耐热性 耐热性又称红硬性,是衡量刀具材料性能的主要指标。它综合反映了刀具材料在高温下保持硬度、耐磨性、强度、抗氧化、抗粘结和抗扩散的能力。 良好的工艺性和经济性 为了便于制造,刀具材料应有良好的工艺性,如锻造、热处理及磨削加工性能。当然在制造和选用时应综合考虑经济性。当前超硬材料及涂层刀具材料费用都较贵,但其使用寿命很长,在成批大量生产中,分摊到每个零件中的费用反而有所降低。因此在选用时一定要综合考虑。 二常用刀具材料 常用刀具材料有工具钢、高速钢、硬质合金、陶瓷和超硬刀具材料,目前用得最多的为高速钢和硬质合金。 高速钢 高速钢是一种加人了较多的钨、铬、钒、相等合金元素的高合金工具钢,有良好的综合性能。其强度和韧性是现有刀具材料中最高的。高速钢的制造工艺简单,容易刃磨成锋利的切削刃;锻造、热处理变形小,目前在复杂的刀具,如麻花钻、丝锥、拉刀、齿轮刀具和成形刀具制造中,仍占有主要地位。高速钢可分为普通高速钢和高性能高速钢。 普通高速钢,如W18Cr4V广泛用于制造各种复杂刀具。其切削速度一般不太高,切削普通钢料时为40-60m/min。 高性能高速钢,如W12Cr4V4Mo是在普通高速钢中再增加一些含碳量、含钒量及添加钴、铝等元素冶炼而成的。它的耐用度为普通高速钢的1.5-3倍。 粉末冶金高速钢是70年代投入市场的一种高速钢,其强度与韧性分别提高30%-40%和80%-90%.耐用度可提高2-3倍。目前我国尚处于试验研究阶段,生产和使用尚少。

常用刀具材料分类特点及应用

金属切削原理读书报告 常用刀具材料分类特点及应用 姓名: 班级: 学号: 2014年5月7日

摘要 本文在阅读有关论文和专著的基础上对现阶段常用的刀具材料进行了总结和分析,总结出了碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石、立方碳化硼等刀具材料的特点及应用范围,同时针对几种常见的切削工序中刀具材料的应用做了简单的分析。

目录 摘要 (1) 1刀具材料的发展历史 (2) 2 常用刀具材料及特点 (2) 2.1 碳素工具钢 (2) 2.2 合金工具钢 (3) 2.3 高速钢 (4) 2.4 硬质合金 (5) 2.5 陶瓷 (7) 2.6 超硬材料 (9) 3 刀具材料的典型应用 (10) 3.1 工件材料与刀具材料 (10) 3.2 加工条件与刀具材料 (11) 4 总结 (11) 5 参考文献 (12)

1刀具材料的发展历史[1] 刀具材料的发展在人类的生活、生产中有着很大的重要性。 18世纪中叶, 在欧洲出现了工业革命以后, 切削刀具一直是用碳素工具钢制造, 其成分与现代的T10、T12相近。1865年,英国罗伯特?墨希特发明了合金工具钢,其牌号有9CrSi、CrWMn等。随着对加工效率要求的提高,新的刀具材料在不断更新。1898年,美国机械工程师泰勒和冶金工程师怀特发明了高速钢。进入20世纪,人们不断寻求新型刀具材料。20世纪20年代中期到30年代初,出现了钨钴类和钨钛类硬质合金。然而硬质合金刀具仍不能满足现代高硬度工件材料的超精密加工的要求,于是更新的刀具材料相继出现。20世纪30年代出现了氧化铝陶瓷,后来又有氦化硅陶瓷到50年代和60年代又制造出人造立方氮化硼和人造聚晶金刚石。 总而言之,20世纪中,刀具材料发展的速度比过去快得多,其种类、类型、数量和性能均有大幅度的发展。 2 常用刀具材料及特点 对于金属切削刀具来说,切削过程中要承受很大的压力,同时会与工件、切屑相互接触的表面产生摩擦力,切削产生的热量使得刀具温度上升,产生一定的热应力。因此刀具材料应能满足这样几个要求:高的硬度和耐磨性、足够的强度和韧性、良好的热物理性能和耐热冲击性能、良好的工艺性以及经济性。目前在机械加工中常用的刀具材料有碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石和立方氮化硼等。[2]不同刀具材料的性能有所不同,因此在应根据具体的切削条件选择合适的刀具材料。下面将分别介绍每种刀具材料。 2.1 碳素工具钢 按照GB/T13304《钢分类》第1部分“钢按化学成分分类”,碳素工具钢属于非合金钢。按照标准第2部分“钢按主要质量等级和主要性能及使用特性分类”,碳素工具钢属于特殊质量非合金钢。碳素工具钢牌号及化学成分见表1

硬质合金刀具材料发展现状与趋势_陶国林

第18卷 第3期2011年6月 金属功能材料M etallic Functional M aterials Vol .18, No .3 June , 2011 硬质合金刀具材料发展现状与趋势 陶国林 1,2 ,蒋显全2,黄 靖 3 (1.重庆工商大学,重庆400067;2.重庆市科学技术研究院 新材料研究中心,重庆400020; 3.重庆机械电子技师学院,重庆400030) 摘 要:回顾了各种硬质合金刀具材料的基本性能和发展现状,并对各种刀具材料技术的研究成果及发展趋势进行了探讨,同时提出了今后的发展方向。关键词:硬质合金;刀具材料;涂层 中图分类号:T G135.5 文献标识码:A 文章编号:1005-8192(2011)03-0079-05 Research Status and Developing Trend of Cemented Carbide Tool TA O G uo -lin 1,2,JIA NG Xian -quan 2,H U A NG Jing 3 (1.Chongqing Technolo gy and Business U niv ersity ,Chongqing 400067,China ;2.Cho ng qing A cademy o f Science and T echno lo gy ,Chongqing 400020,China ;3.Chongqing M echanical Elec trical A rtificer Co llege ,Cho ng qing 400030,China ) Abstract :Co nventio na l pe rfor mances and resea rch status o f many kinds of cemented car bide cutting too l material are rev iewed ,and the resea rch achievement o f cemented ca rbide too ls in recent year s are discussed ;M eanw hile ,develop -ment trend in the future is put fo rw ard . Key words :ceme nted ca rbide ;cutting to ol ma te rial ;coa ting 作者简介:陶国林(1975-),男,四川德阳人,硕士,助理研究员,主要从事碳化钨硬质合金方面的研究。 随着加工业的发展,难加工材料的使用日益增多,对加工效率的要求也不断提高。刀具的发展对 提高生产效率和加工质量具有直接影响。材料成分和结构以及几何形状是决定刀具性能的3要素,其中刀具材料的性能起着关键性作用。目前虽然可供使用的品种很多,新型的刀具材料也不断出现,但硬质合金是最受欢迎的一种刀具材料[1]。 硬质合金是由高硬度、难熔的金属碳化物(WC 、TiC 等)微米级粉末采用Co 、Mo 、Ni 等作粘结剂烧结而成的粉末冶金制品,。其高温碳化物含量超过高速钢,允许的切削温度高达800~1000℃,常温硬度达89~93H RA ;在540℃时为82~87H RA ,与高速钢常温时硬度(83~86H RA )相同;760℃时硬度达77~85H RA ,并具有化学稳定性好、耐热性高等优点。硬质合金刀具切削速度可达 100~300m /min ,远远超过高速钢,寿命是高速钢的几倍到几十倍[2] 。发达国家90%以上的车刀和 55%以上的铣刀都采用硬质合金材料制造,目前使用比重仍在增加[3]。另外,硬质合金也用来制造钻头、铣刀、齿轮刀具、铰刀等复杂刀具,硬质合金以其优良的性能正在更多的场合替代其他的刀具材料,现在已成为主要的刀具材料之一。 目前世界上硬质合金刀具已占刀具主导地位,占比达70%;金刚石、立方氮化硼等超硬刀具占比约为3%左右;而高速钢刀具正以每年1%~2%速度缩减,目前所占比例已降至30%以下。我国目前年产硬质合金1.6万t ,占全球总产量40%左右。但硬质合金制品附加值最高的切削刀片产量只有 3000余t ,只占20%[4,5] 。 从经济效益方面比较,我国刀具年销售额为

常用刀具材料分类、特点、应用及发展

金属切削原理 读书报告 《常用刀具材料分类、特点及应用》 姓名 学号 班级 学院 二○一五年五月

摘要 机械制造工业是制造业最重要的组成之一,它担负着向国民经济的各个部门提供机械装备的任务。我国现代化建设的发展速度在很大程度上要取决于机械制造工业的发展水平,因此,从这个意义上说,机械制造工业的发展水平是关系全局的。机械制造中的加工方法很多,其中材料去除加工精度较高、表面质量较好,有很强的加工适应性,是目前机械制造中应用最广泛的加工方法。材料去除加工时,刀具在工作时,要承受很大的压力。同时,由于切削产生的金属塑性变形以及各部的摩擦,使刀具切削刃上产生很高的温度和受到很大的应力,在这样的条件下,刀具将迅速磨损或破损。因此刀具材料性能应满足;高的硬度和耐磨性、足够的强度和韧性、高的耐热性、良好的热物理性能和耐热冲击性能、良好的工艺性能和经济性等要求。常用的刀具材料有高速钢、硬质合金、涂层刀具以及其他刀具材料包括陶瓷、金刚石和立方氮化硼等。其中陶瓷材料和超硬刀具材料对常规刀具材料的竞争越来越激烈,且所占比重快速增长。随着上述刀具材料的发展,使车削加工的切削速度提高了100多倍,而且新刀具材料出现的周期也越来越短。但在较长时间内,各种刀具材料将仍是相互补充,相互竞争。 关键词:刀具材料性能,刀具材料分类,刀具材料特点,刀具材料应用

目录 引言 (3) 第一章绪论 (3) 1.1金属切削技术的发展概况 (3) 1.2金属切削材料的研究意义 (4) 第二章刀具材料性能 (4) 2.1刀具切削环境 (4) 2.2刀具材料性能要求 (4) 2.3刀具材料主要性能 (6) 第三章刀具材料分类 (7) 3.1高速钢 (7) 3.1.1 普通高速钢 (8) 3.1.2高性能高速钢 (8) 3.1.3粉末冶金高速钢 (9) 3.2硬质合金 (9) 3.2.1钨钴类硬质合金 (10) 3.2.2钨钛钴类硬质合金 (10) 3.2.3钨钛钽(铌)钴类硬质合金 (11) 3.2.4硬质合金的选用 (11) 3.3涂层刀具 (12) 3.4其它刀具材料 (13) 3.4.1陶瓷材料 (13) 3.4.2金刚石 (14) 3.4.3立方氮化硼(简称CBN) (15) 第四章刀具材料发展 (15) 参考文献 (16)

硬质合金刀具材料的研究现状与发展思路

硬质合金刀具材料的研究现状与发展思路 作者:佚名来源:不详发布时间:2008-11-21 23:35:38 发布人:admin 减小字体增大字体 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500~600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢 至今仍是一种常用刀具材料。高速钢是一种加入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%~1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40~60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93~95HRC,为提高韧性,常添加少量Co、Ni等金属。②氮化硅基陶瓷。常用的氮化硅基陶瓷为Si3N4+TiC+Co复合陶瓷,其韧性高于氧化铝基陶瓷,硬度则与之相当。③氮化硅—氧化铝复合陶瓷。又称为赛阿龙(Sialon)陶瓷,其化学成分为77%Si3N4+13%Al2O3,硬度可达1800HV,抗弯强度可达1.20GPa,最适合切削高温合金和铸铁。 3) 金属陶瓷 金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、M o等构成。金属陶瓷的硬度和红硬性高于硬质合金,低于陶瓷材料;其横向断裂强度大于

浅谈数控刀具材料及选用

浅谈数控刀具材料及选用 先进的加工设备与高性能的数控刀具相配合,才能充分发挥其应有的效能,取得良好的经济效益。随着刀具材料迅速发展,各种新型刀具材料,其物理、力学性能和切削加工性能都有了很大的提高,应用范围也不断扩大。 3.3.1 刀具材料应具备基本性能 刀具材料的选择对刀具寿命、加工效率、加工质量和加工成本等的影响很大。刀具切削时要承受高压、高温、摩擦、冲击和振动等作用。因此,刀具材料应具备如下一些基本性能: (1) 硬度和耐磨性。刀具材料的硬度必须高于工件材料的硬度,一般要求在60HRC 以上。刀具材料的硬度越高,耐磨性就越好。 (2) 强度和韧性。刀具材料应具备较高的强度和韧性,以便承受切削力、冲击和振动, 防止刀具脆性断裂和崩刃。 (3) 耐热性。刀具材料的耐热性要好,能承受高的切削温度,具备良好的抗氧化能力。 (4) 工艺性能和经济性。刀具材料应具备好的锻造性能、热处理性能、焊接性能;磨削加工性能等,而且要追求高的性能价格比。 3.3.2 刀具材料的种类、性能、特点、应用 1.金刚石刀具材料的种类、性能和特点及刀具应用 金刚石是碳的同素异构体,它是自然界已经发现的最硬的一种材料。金刚石刀具具有高硬度、高耐磨性和高导热性能,在有色金属和非金属材料加工中得到广泛的应用。尤其在铝和硅铝合金高速切削加工中,金刚石刀具是难以替代的主要切削刀具品种。可实现高效率、高稳定性、长寿命加工的金刚石刀具是现代数控加工中不可缺少的重要工具。 ⑴ 金刚石刀具的种类 ①天然金刚石刀具:天然金刚石作为切削刀具已有上百年的历史了,天然单晶 金刚石刀具经过精细研磨,刃口能磨得极其锋利,刃口半径可达0.002卩m能实 现超薄切削,可以加工出极高的工件精度和极低的表面粗糙度,是公认的、理想的和不能代替的超精密加工刀具。 ②PCD金刚石刀具:天然金刚石价格昂贵,金刚石广泛应用于切削加工的还是聚晶金刚石(PCD),自20世纪70年代初,采用高温高压合成技术制备的聚晶金刚石(Polycrystauine diamond ,简称PCD刀片研制成功以后,在很多场合下天然金刚石刀具已经被人造聚晶金刚石所代替。PCD原料来源丰富,其价格只有天然金刚石的几十分之一至十几分之一。 PCD刀具无法磨出极其锋利的刃口,加工的工件表面质量也不如天然金刚石,现在工业中还不能方便地制造带有断屑槽的PCD刀片。因此,PCD只能用于有色金

常用刀具材料硬度的比较

第三章 一、选择题 1.31210111下面是关于常用刀具材料硬度的比较,那个选项的论述是正确的(A)A金刚石>CBN>硬质合金>高速钢B金刚石>CBN>高速钢>硬质合金 C金刚石>硬质合金>高速钢>CBN D金刚石>高速钢>硬质合金>CBN 2. 31210122下面属于性质脆、工艺性差的刀具材料是(C) A碳素工具钢 B 合金工具钢 C 金刚石D 硬质合金钢 3. 31210113 目前使用最为广泛的刀具材料是(B) A陶瓷B高速钢和硬质合金 C 碳素工具钢 D CBN 4.31210114 W18Cr4V是:(C) A碳素钢 B 硬质合金钢 C 普通高速钢D 高性能高速钢 5.31210125 W18Cr4V比W6Mo5Cr4V2 好的性能是:(D) A硬度 B 韧性 C 切削性能D可磨性 6.31210116 WC—Co类属于哪一类硬质合金:(A) A YG类 B YT类 C YW类 D YM类 7.31210127 应用于切削一般钢料的硬质合金刀具是(B) A YG类 B YT类 C YW类 D YM类 8.31210128 在加工高温合金(如镍基合金)等难加工材料时,刀具材料可首选:(A) A CBN B 硬质合金 C 金刚石 D 陶瓷 9.31210129 在粗车铸铁时,选用:(B) A YG3 B YG8 C YT5 D YT30 10.3121012A碳素钢、合金钢的连续精加工,应选用:(D) A YG3 B YG8 C YT15 D YT30 11. 3121012B 在连续粗加工、不连续精加工碳素钢时,应选用:(B) A YT5 B YT15 C YT30 D YW2 12.31310121 在数控机床和自动线上,一般采用:(C) A整体式刀具 B 装配式刀具 C 复合式刀具D焊接装配式刀具 13. 32210111 增大前角,下面正确的是:(D) A增大粗糙度 B 增大切削效率 C 切削刃与刀头的强度增大 D 减小切削的变形 14.32210122 对于不同的刀具材料,合理前角(γopt)也不同,硬质合金刀具的γopt (B) 要____ 高速钢刀具的γ opt A大于 B 小于 C 等于 D 都有可能 15 32210113 增大前角可以(B) A减小切削力,导热面积增大B减小切削力,导热面积减小 C增大切削力,导热面积增大D增大切削力,导热面积减小1632210114 下面有关刀具前面的卷屑槽宽度的说法,正确的是:(D) A愈小愈好 B 愈大愈好 C 无所谓 D 根据工件材料和切削用量决定 17 32310111 增大后角(A) A减小摩擦 B 增大摩擦 C 切削刃钝园半径越大 D 刀头强度增强1832310121 加工下面哪种材料时,应该采用较小的后角(C) A工件材料塑性较大B工件材料容易产生加工硬化 C 脆性材料 D 硬而脆的材料

切削工具的分类及选型(正式版)

文件编号:TP-AR-L4162 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 切削工具的分类及选型 (正式版)

切削工具的分类及选型(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 刀具是机械制造中用于切削加工的工具,又称切 削工具。广义的切削工具既包括刀具,还包括磨具。 绝大多数的刀具是机用的,但也有手用的。由于 机械制造中使用的刀具基本上都用于切削金属材料, 所以“刀具”一词一般就理解为金属切削刀具。切削 木材用的刀具则称为木工刀具。 刀具按工件加工表面的形式可分为五类。加工各 种外表面的刀具,包括车刀、刨刀、铣刀、外表面拉 刀和锉刀等;孔加工刀具,包括钻头、扩孔钻、镗 刀、铰刀和内表面拉刀等;螺纹加工工具,包括丝 锥、板牙、自动开合螺纹切头、螺纹车刀和螺纹铣刀

等;齿轮加工刀具,包括滚刀、插齿刀、剃齿刀、锥齿轮加工刀具等;切断刀具,包括镶齿圆锯片、带锯、弓锯、切断车刀和锯片铣刀等等。此外,还有组合刀具。 按切削运动方式和相应的刀刃形状,刀具又可分为三类。通用刀具,如车刀、刨刀、铣刀(不包括成形的车刀、成形刨刀和成形铣刀)、镗刀、钻头、扩孔钻、铰刀和锯等;成形刀具,这类刀具的刀刃具有与被加工工件断面相同或接近相同的形状,如成形车刀、成形刨刀、成形铣刀、拉刀、圆锥铰刀和各种螺纹加工刀具等;展成刀具是用展成法加工齿轮的齿面或类似的工件,如滚刀、插齿刀、剃齿刀、锥齿轮刨刀和锥齿轮铣刀盘等。 各种刀具的结构都由装夹部分和工作部分组成。整体结构刀具的装夹部分和工作部分都做在刀体上;

硬质合金刀具材料的研究现状与发展思路【深度解读】

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500——600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢至今仍是一种常用刀具材料。高速钢是一种加入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%——1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40——60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷

陶瓷刀具的发展与应用

陶瓷刀具的发展与应用 李超 1110012128 (南通大学机械工程学院江苏南通) 摘要: 综述了氧化铝系和氮化硅系两类陶瓷刀具的发展现状, 阐述了这两类陶瓷刀具的力学性能与切削性能, 讨论了它们的特点、加工范围以及适合的切削加工用量, 提出了刀具选择及使用要点。 关键词: 陶瓷刀具,氮化硅 , 氧化铝 Development and Application of Ceramic Cutting Tools Abstract:The current development situation of Al2O3 and Si3N4 matrix ceramic cutting tools is summarized. The mechanical property and cutting performance of the two kinds of cutting tools are represented. The characteristics, cutting ranges and suitable machining values of Al2O3 and Si3N4 matrix ceramic cutting tools are discussed emphatically. Some gists of selecting and using ceramic cutting tools are also presented. Keywords: ceramic cutting tools,Si3N4 , Al2O3 0 前言 随着数控加工设备与高性能加工刀具技术的发展, 目前切削加工已进入了一个 以高速、高效和高精度为标志的高速加工发展新阶段, 高速切削已成为当前切削技术的重要发展趋向。然而, 由于切削速度的提高相应地产生了更多的切削热和更大的切削力, 这些都会使刀具的切削性能大大降低。因此, 影响高速切削刀具材料切削性能好坏的关键在于其高温时的力学性能、热物理性能、抗粘结性能、化学稳定性和抗热震性能以及抗涂层破裂性能等。基于这一要求, 近几十年来, 世界各工业发达国家相继开发了一批适于高速切削的新型刀具材料。其中, 陶瓷材料由于其优异的物理力学性能和切削性能在高速切削领域占据了举足轻重的 地位。 1 陶瓷刀具材料的基本特点 陶瓷刀具与硬质合金刀具相比, 其硬度高、耐磨性好, 切削寿命可比硬质合

机械加工常用金属材料及特性

机械加工常用金属材料及 特性 This model paper was revised by the Standardization Office on December 10, 2020

简介:1. 45——优质碳素结构钢,是最常用中碳调质钢。主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例 1. 45——优质碳素结构钢,是最常用中碳调质钢。 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2. Q235A(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3. 40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回

刀具材料应具备的性能及分类 (2)

刀具材料决定刀具切削性能的根本因素,对于加工效率、加工质量、加工成本以及刀具耐用度影响很大。使用碳工具钢作为刀具材料时,切削速度只有10m/min左右;20世纪初出现了高速钢刀具材料,切削速度提高到每分钟几十米;30年代出现了硬质合金,切削速度提高到每分钟一百多米至几百米;当前陶瓷刀具和超硬材料刀具的出现,使切削速度提高到每分钟一千米以上;被加工材料的发展也大大地推动了刀具材料的发展。 一刀具材料应具备的性能 性能优良的刀具材料,是保证刀具高效工作的基本条件。刀具切削部分在强烈摩擦、高压、高温下工作,应具备如下的基本要求。 1.高硬度和高耐磨性 刀具材料的硬度必须高于被加工材料的硬度才能切下金属,是刀具材料必备的基本要求,现有刀具材料硬度都在60HRC以上。刀具材料越硬,其耐磨性越好,但由于切削条件较复杂,材料的耐磨性还决定于它的化学成分和金相组织的稳定性。 2.足够的强度与冲击韧性 强度是指抵抗切削力的作用而不致于刀刃崩碎与刀杆折断所应具备的性能。一般用抗弯强度来表示。 冲击韧性是指刀具材料在间断切削或有冲击的工作条件下保证不崩刃的能力,一般地,硬度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。

3.高耐热性 耐热性又称红硬性,是衡量刀具材料性能的主要指标。它综合反映了刀具材料在高温下保持硬度、耐磨性、强度、抗氧化、抗粘结和抗扩散的能力。 4.良好的工艺性和经济性 为了便于制造,刀具材料应有良好的工艺性,如锻造、热处理及磨削加工性能。当然在制造和选用时应综合考虑经济性。当前超硬材料及涂层刀具材料费用都较贵,但其使用寿命很,在成批大量生产中,分摊到每个零件中的费用反而有所降低。因此在选用时一定要综合考虑。 二常用刀具材料 常用刀具材料有工具钢、高速钢、硬质合金、陶瓷和超硬刀具材料,目前用得最多的为高速钢和硬质合金。 高速钢 高速钢是一种加了较多的钨、铬、钒、相等合金元素的高合金工具钢,有良好的综合性能。其强度和韧性是现有刀具材料中最高的。高速钢的制造工艺简单,容易刃磨成锋利的切削刃;锻造、热处理变形小,目前在复杂的刀具,如麻花钻、丝锥、拉刀、齿轮刀具和成形刀具制造中,仍占有主要地位。 高速钢可分为普通高速钢和高性能高速钢。 普通高速钢,如W18Cr4V广泛用于制造各种复杂刀具。其切削速度一般不太高,切削普通钢料时为40-60m/min。

超硬刀具材料的发展与应用_于启勋

第九届中国国际机床展览会上看到更多具有自主知识产权的、具有国际水平的国产量具量仪展品,为把我国从“制造大国”建成“制造强国”,让我们全行业共同努力。“路漫漫其修远兮,吾将上下而求索”,仅以此与中国量具量仪行业同仁共勉! 参考文献 1 羡一民.第六届中国国际机床展览会(CIMT99)量仪展品 概述.工具技术,2000(2) 2 谢华锟.第七届中国国际机床展览会(CIMT2001)量仪展品技术评述.工具技术,2001(7) 3 谢华锟.第八届中国国际机床展览会(CIMT2003)量仪展品述评.工具技术,2003(7) 4 谢华锟.CIMT2003量具展品点评.WMEM,2003(12) 5 相关公司样本、CIMT展览会会刊 第一作者:谢华锟,研究员级高级工程师,成都工具研究所,610051成都市 超硬刀具材料的发展与应用 于启勋 北京理工大学 摘 要:对立方氮化硼和金刚石等超硬刀具材料的发展过程、种类、性能、制造方法和应用范围作了全面介绍,同时介绍了近来发明的新型超硬刀具材料———氮化碳(C x N y),并通过切削试验对几种超硬刀具材料的切削性能进行了比较分析。 关键词:超硬刀具材料, 立方氮化硼, 金刚石, 氮化碳, 切削加工 Development and Application of Ultrahard Cutting Tool Material Yu Qixun A bstract:The development process,kinds,properties,manufacture method and application area of cubic boron nitride,dia-mond and other ultrahard materials are overall introduced.Meanwhile a new kind of ultrahard tool material—C x N y invented in re-cent years is introd uced.The cutting properties of several ultrahard tool materials are compared and analyzed through cutting tests. Keywords:ultrahard cutting tool material, cubic boron nitride, diamond, carbon nitride, cutting machining 1 引言 常用刀具材料有高速钢、硬质合金和陶瓷,它们的主要硬质成分是碳化物、氮化物和氧化物。例如,高速钢是加入了合金成分(如W、Mo等)的碳化铁;硬质合金的主要成分是WC、TiC、TiCN等;陶瓷则是Al2O3和Si3N4。这些化合物的硬度最高达到3000HV,若加上粘接物质,其总体硬度则在2000HV 以下。对于某些难加工材料的加工,具有上述硬度的刀具材料已不能胜任。于是超硬刀具材料便应运而生,在20世纪的后50年中得到了很大的发展。超硬材料的化学成分及其形成硬度的规律与其他刀具材料不同:立方氮化硼是非金属硼化物,晶体结构为面心立方;而金刚石则由碳元素转化而成,其晶体结构与立方氮化硼相似,它们的硬度大大高于传统刀具材料。近年来又出现了一种新型超硬刀具材料———氮化碳,其硬度亦与立方氮化硼相近。 本文将阐述上述三类超硬刀具材料的发展过程、种类、性能、制造方法和应用范围。 2 超硬刀具材料的发展过程 几千年前,人类就已经发现和使用天然金刚石;而人造金刚石的制造和应用则是20世纪后半世纪的事。氮化硼是人造材料,其发展过程与人造金刚石大体同步。 人造金刚石以往多在高温、高压(热压法)条件下形成,称为PCD,后来又出现了其他制造方法。PCD人造金刚石的研究始于1940年,1954年美国正式宣告人造金刚石研制成功,并于1957年开始工业生产。瑞典也于1962年开始人造金刚石的工业生产。到1969年,全世界人造金刚石产量为4000万克拉(当时天然金刚石年产量为4400万克拉)。1963年中国研制成功PCD,到1996年中国人造金刚石产量已达2.4亿克拉,出口量达6~8.5千万克拉。21世纪初,中国人造金刚石最高年产量已达10亿克拉以上,居全世界首位。近年来亦有外国公司年产人造金刚石达1亿克拉以上。 1957年,美国GE公司压出立方氮化硼(CBN)单晶粉;70年代初制成聚晶PCB N刀具。1972年,前

相关文档
最新文档