最新物理动能定理的综合应用练习全集

最新物理动能定理的综合应用练习全集
最新物理动能定理的综合应用练习全集

最新物理动能定理的综合应用练习全集

一、高中物理精讲专题测试动能定理的综合应用

1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。比赛用车采用最新材料制成,质量为9kg 。已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大;

(2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大;

(3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。(只在赛道直线段给自行车施加动力)。

【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】

(1)运动员和自行车整体的向心力

F n =2(m)M v R

+

解得

F n =700N

(2)自行车所受支持力为

()cos45N

M m g F +=

?

解得

F N 2N

根据牛顿第三定律可知

F 压=F N 2N

(3)从出发点到进入内侧赛道运用动能定理可得

W F -W f 克+mgh =

212

mv W F =2

FL h =

1

cos 452

d o =1.9m W f 克=521J

2.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:

(1)汽车所能达到的最大速度;

(2)汽车从启动至到达最大速度的过程中运动的位移。 【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】

(1)汽车匀加速结束时的速度

11120m /s v a t ==

由P=Fv 可知,匀加速结束时汽车的牵引力

1

1F P

v =

=1×104N 由牛顿第二定律得

11F f ma -=

解得

f =5000N

汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力

F=f =5000N

由P Fv =可知,汽车的最大速度:

v=

P P

F f ==40m/s (2)汽车匀加速运动的位移

x 1=

1

140m 2

v t = 对汽车,由动能定理得

2

112102

F x Pt fs mv =

--+

解得

s=480m

3.为了备战2022年北京冬奥会,一名滑雪运动员在倾角θ=30°的山坡滑道上进行训练,运动员及装备的总质量m=70 kg.滑道与水平地面平滑连接,如图所示.他从滑道上由静止开始匀加速下滑,经过t=5s到达坡底,滑下的路程 x=50 m.滑雪运动员到达坡底后又在水平面上滑行了一段距离后静止.运动员视为质点,重力加速度g=10m/s2,求:

(1)滑雪运动员沿山坡下滑时的加速度大小a;

(2)滑雪运动员沿山坡下滑过程中受到的阻力大小f;

(3)滑雪运动员在全过程中克服阻力做的功W f.

【答案】(1)4m/s2(2)f = 70N (3)1.75×104J

【解析】

【分析】

(1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度.

(2)对运动员进行受力分析,根据牛顿第二定律求出下滑过程中受到的阻力大小.(3)对全过程,根据动能定理求滑雪运动员克服阻力做的功.

【详解】

(1)根据匀变速直线运动规律得:x=1

at2

2

解得:a=4m/s2

(2)运动员受力如图,根据牛顿第二定律得:mgsinθ-f=ma

解得:f=70N

(3)全程应用动能定理,得:mgxsinθ-W f =0

解得:W f =1.75×104J

【点睛】

解决本题的关键要掌握两种求功的方法,对于恒力可运用功的计算公式求.对于变力可根据动能定理求功.

4.如图所示,光滑曲面与光滑水平导轨MN相切,导轨右端N处于水平传送带理想连

接,传送带长度L =4m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v =4.0m/s 运动.滑块B 、C 之间用细绳相连,其间有一压缩的轻弹簧,B 、C 与细绳、弹簧一起静止在导轨MN 上.一可视为质点的滑块A 从h =0.2m 高处由静止滑下,已知滑块A 、B 、C 质量均为m =2.0kg ,滑块A 与B 碰撞后粘合在一起,碰撞时间极短.因碰撞使连接B 、C 的细绳受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离.滑块C 脱离弹簧后以速度v C =2.0m/s 滑上传送带,并从右端滑出落至地面上的P 点.已知滑块C 与传送带之间的动摩擦因数μ=0.2,重力加速度g 取10m/s 2.

(1)求滑块C 从传送带右端滑出时的速度大小; (2)求滑块B 、C 与细绳相连时弹簧的弹性势能E P ;

(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值v m 是多少? 【答案】(1) 4.0m/s (2) 2.0J (3) 8.1m/s 【解析】 【分析】 【详解】

(1)滑块C 滑上传送带到速度达到传送带的速度v =4m/s 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,有

mg ma μ=

C v v at =+

21

2

C x v t at =+

代入数据可得

3m x = 3m x L =<

滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v=4.0m/s

(2)设A 、B 碰撞前A 的速度为v 0,A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,有

2012

A A m gh m v =

01()A A B m v m m v =+ 12()()A B A B C C m m v m m v m v +=++

A 、

B 碰撞后,弹簧伸开的过程系统能量守恒

222

A 1A 2111()()222

P B B C C E m m v m m v m v ++=++

代入数据可解得

2.0J P E =

(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .设A 与B 碰撞后的速

度为1

v ',分离后A 与B 的速度为2v ',滑块C 的速度为'C v ,C 在传送带上做匀减速运动的末速度为v =4m/s ,加速度大小为2m/s 2,有

22()C

v v a L '-=- 解得

42m/s C

v '= 以向右为正方向,A 、B 碰撞过程

1()A m A B m v m m v '=+

弹簧伸开过程

12()()A B C C A B m m v m v m m v '''+=++

22212111

+()()+222

p A B A B C C E m m v m m v m v '''+=+

代入数据解得

7

4228.14

m v =+

≈m/s .

5.如图所示,位于竖直平面内的轨道BCDE ,由一半径为R=2m 的

1

4

光滑圆弧轨道BC 和光滑斜直轨道DE 分别与粗糙水平面相切连接而成.现从B 点正上方H=1.2m 的A 点由静止释

放一质量m=1kg 的物块,物块刚好从B 点进入

1

4

圆弧轨道.已知CD 的距离L=4m ,物块与水平面的动摩擦因数μ=0.25,重力加速度g 取10m/s 2,不计空气阻力.求:

(1)物块第一次滑到C 点时的速度; (2)物块第一次滑上斜直轨道DE 的最大高度; (3)物块最终停在距离D 点多远的位置. 【答案】(1) 8m/s (2) 2.2m (3) 0.8m

【解析】 【分析】

根据动能定理可求物块第一次滑到C 点时的速度;物块由A 到斜直轨道最高点的过程,由动能定理求出物块第一次滑上斜直轨道DE 的最大高度;物块将在轨道BCDE 上做往返运动,直至停下,设物块在水平轨道CD 上通过的总路程为S ,根据动能定理求出. 【详解】

解:(1)根据动能定理可得21()2

mg H R mv += 解得8/v m s =

(2)物块由A 到斜直轨道最高点的过程,由动能定理有:

()0mg H R mgL mgh μ+--=

解得: 2.2h m =

(3)物块将在轨道BCDE 上做往返运动,直至停下,设物块在水平轨道CD 上通过的总路程为S ,则:()0mg H R mgS μ+-= 解得:12.8S m =

因: 30.8S L m =+,故物块最终将停在距离D 点0.8m 处的位置.

6.如图所示,ABC 是一条长L =10m 的绝缘水平轨道,固定在离水平地面高h =1.25m 处,A 、C 为端点,B 为中点,轨道BC 处在方向竖直向上,大小E =5×105N/C 的匀强电场中,一质量m =0.5kg ,电荷量q =+1.0×10-5C 的可视为质点的滑块以初速度v 0=6m/s 在轨道上自A 点开始向右运动,经B 点进入电场,从C 点离开电场,已知滑块与轨道间动摩擦因数

μ=0.2,g 取10m/s 2。求:滑块

(1)到达B 点时的速度大小; (2)从B 点运动到C 点所用的时间; (3)落地点距C 点的水平距离。

【答案】(1)4m/s (2)1.25s (3)2m 【解析】 【详解】

(1)滑块从A 到B 的运动过程只受重力、支持力、摩擦力作用,只有摩擦力做功,故由动能定理可得:

22011

2122

B mg L mv mv μ-?-=

所以滑块到达B 点时的速度大小

204m/s B v

v gL μ-==

(2)滑块从B 运动到C 的过程受合外力

F =μ(mg -qE )=0;

故滑块从B 到C 做匀速运动;设从B 点运动到C 点所用的时间为t ,则有:

152s 1.254

B L

t s v === (3)滑块在C 点的速度v C =4m/s ;滑块从C 点做平抛运动,则平抛运动时间

20.5h

t s g

'=

= 故落地点距C 点的水平距离

x =v C t'=2m ;

7.如图所示,处于原长的轻质弹簧放在固定的光滑水平导轨上,左端固定在竖直的墙上,右端与质量为m B =2kg 的滑块B 接触但不连接,此时滑块B 刚好位于O 点.光滑的水平导轨右端与水平传送带理想连接,传送带长度L=2.5m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v=4.0m/s 匀速传动.现用水平向左的推力将滑块B 缓慢推到M 点(弹簧仍在弹性限度内),当撤去推力后,滑块B 沿轨道向右运动,滑块B 脱离弹簧后以速度v B =2.0m/s 向右运动,滑上传送带后并从传送带右端Q 点滑出落至地面上的P 点.已知滑块B 与传送带之间的动摩擦因数μ=0.10,水平导轨距地面的竖直高度h=1.8m ,重力加速度g 取10m/s 2.

求:(1)水平向左的推力对滑块B 所做的功W ; (2)滑块B 从传送带右端滑出时的速度大小; (3)滑块B 落至P 点距传送带右端的水平距离. 【答案】(1)4J (2)3m/s (3)1.8m 【解析】

试题分析:(1)设滑块B 脱离弹簧时推力对B 所做的功为W ,根据动能定理,有:

214J 2

B B W m v =

=(2分) (2)滑块B 滑上传送带后做匀加速运动,设滑块B 从滑上传送带到速度达到传送带的速度v 所用的时间为t ,加速度大小为a ,在时间t 内滑块B 的位移为x , 根据牛顿第二定律和运动学公式得:mg ma μ=(1分)

B v v at =+(1分)

21

2

B x v t at =+(1分)

解得:6m x L =>(1分)

即滑块B 在传送带上一直做匀加速运动,设滑出时的速度为v '

由22

2B v v aL '-=

解得:3m/s v '=(1分) (3)由平抛运动的规律,则有:

2

12

h gt =

(1分) x v t ='(1分)

解得: 1.8m x =(1分)

考点:本题考查了平抛运动、动能定理和匀变速运动规律的应用.

8.城市中为了解决交通问题,修建了许多立交桥,如图所示,桥面为半径R =130m 的圆弧形的立交桥AB ,横跨在水平路面上,桥高h =10m 。可以认为桥的两端A 、B 与水平路面的连接处是平滑的。一辆小汽车的质量m =1000kg ,始终以额定功率P =20KW 从A 端由静止开始行驶,经t =15s 到达桥顶,不计车受到的摩擦阻力(g 取10m /s 2)。求 (1)小汽车冲上桥顶时的速度是多大; (2)小汽车在桥顶处对桥面的压力的大小。

【答案】(1)20m/s ;(2)6923N ; 【解析】 【详解】

(1)小汽车从A 点运动到桥顶,设其在桥顶速度为v ,对其由动能定理得:

21

2

pt mgh mv -=

443221015101

1002

1v ??-???=

解得:

v =20m/s ;

(2)在最高点由牛顿第二定律有

2

v mg N m R

-=

432020

1010130

N ?-?

= 解得

N =6923N

根据牛顿第三定律知小汽车在桥顶时对桥的压力N ′=N =6923N ;

9.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值.

(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s .分别应用动量定理和动能定理求出平均力F 1和F 2的值.

(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x .分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的.

(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2m

t k

π=,求此过程中物块所受合力对时间t 的平均值.

【答案】(1)F 1=1.0N ,F 2=0.8N ;(2)当02v v x v t +==时,F 1=F 2;(3)2kA F π

=. 【解析】 【详解】

解:(1)物块在加速运动过程中,应用动量定理有:1t F t mv =g

解得:1 1.0 2.0

N 1.0N 2.0

t mv F t ?=

== 物块在加速运动过程中,应用动能定理有:221

2

t F x mv =

g

解得:22

2 1.0 2.0N 0.8N 22 2.5

t mv F x ?===?

(2)物块在运动过程中,应用动量定理有:10Ft mv mv =- 解得:01()

m v v F t

-=

物块在运动过程中,应用动能定理有:22201122

F x mv mv =

- 解得:22

02()

2m v v F x

-=

当12F F =时,由上两式得:02

v v x v t +=

= (3)由图2可求得物块由0x =运动至x A =过程中,外力所做的功为:

211

22

W kA A kA =-=-g

设物块的初速度为0v ',由动能定理得:20

1

02

W mv '=-

解得:0

k

v A m

'= 设在t 时间内物块所受平均力的大小为F ,由动量定理得:0

0Ft mv -=-' 由题已知条件:2m t k

π

= 解得:2kA

F π

=

10.两个对称的与水平面成60°角的粗糙斜轨与一个半径R =2m ,张角为120°的光滑圆弧轨道平滑相连.一个小物块从h =3m 高处开始,从静止开始沿斜面向下运动.物体与斜轨接触面间的动摩擦因数为μ=0.2,g 取10m/s 2. (1)请你分析一下物块将怎样运动? (2)计算物块在斜轨上通过的总路程.

【答案】(1)物块最后在圆弧左右两端点间来回往返运动,且在端点的速度为0;(2)20m 【解析】 【详解】

解:(1)物块最后在圆弧左右两端点间来回往返运动,且在端点的速度为0;

(2)物块由释放到最后振动过程到圆弧的左端点或右端点过程,根据动能定理:

()160600mg h R cos mgcos s μ??--?-???=?

代入数据解得物块在斜轨上通过的总路程:20s m =

11.甲图是我国自主研制的200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器.离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙原子P 喷注入腔室C 后,被电子枪G 射出的电子碰撞而电离,成为带正电的氙离子.氙离子从腔室C 中飘移过栅电极A 的速度大小可忽略不计,在栅电极A 、B 之间的电场中加速,并从栅电极B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极A 、B 之间的电压为U ,氙离子的质量为m 、电荷量为q .

(1)将该离子推进器固定在地面上进行试验.求氙离子经A 、B 之间的电场加速后,通过栅电极B 时的速度v 的大小;

(2)配有该离子推进器的飞船的总质量为M ,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv ,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B .推进器工作时飞船的总质量可视为不变.求推进器在此次工作过程中喷射的氙离子数目N .

(3)可以用离子推进器工作过程中产生的推力与A 、B 之间的电场对氙离子做功的功率的比值S 来反映推进器工作情况.通过计算说明采取哪些措施可以增大S ,并对增大S 的实际意义说出你的看法. 【答案】(1)(2)

(3)增大S 可以通过减小q 、

U 或增大m 的方法.

提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】

试题分析:(1)根据动能定理有

解得:

(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv

解得:

(3)设单位时间内通过栅电极A 的氙离子数为n ,在时间t 内,离子推进器发射出的氙离子个数为N nt =,设氙离子受到的平均力为F ',对时间t 内的射出的氙离子运用动量定理,F t Nmv ntmv ='=,F '= nmv

根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小F=F '= nmv 电场对氙离子做功的功率P= nqU 则

根据上式可知:增大S 可以通过减小q 、U 或增大m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. (说明:其他说法合理均可得分) 考点:动量守恒定律;动能定理;牛顿定律.

12.如图所示,AB 为水平轨道,A 、B 间距离s=2m ,BC 是半径为R=0.40m 的竖直半圆形光滑轨道,B 为两轨道的连接点,C 为轨道的最高点.一小物块以v o =6m/s 的初速度从A 点出发,经过B 点滑上半圆形光滑轨道,恰能经过轨道的最高点,之后落回到水平轨道AB 上的D 点处.g 取10m/s 2,求:

(1)落点D 到B 点间的距离; (2)小物块经过B 点时的速度大小; (3)小物块与水平轨道AB 间的动摩擦因数. 【答案】(1)0.8m.(2)(3)0.4

【解析】

试题分析:(1)物块恰能经过轨道最高点,有2C

v mg m R

=① 之后做平抛运动,有2

122

R gt =

②BD C x v t =③ 联立①②③解得0.8BD x =m

(2) 物块从B 点到C 点过程中机械能守恒,得22

11222

B

C mv mv mgR =+④ 联立①④解得25B v =

(3)物块从A 点到B 点做匀减速直线运动

由动能定理得22

1122

B o mgs mv mv μ-=

-⑤ 将B v 代入⑤解得0.4μ=

考点:圆周运动及平抛运动的规律;动能定理及牛顿第二定律的应用.

(word完整版)高中物理动能定理经典计算题和答案

动能和动能定理经典试题 例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。 例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) 例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J 例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220- 例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力 作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的 拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大 拉力的过程中,绳的拉力对球做的功为________. 例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持 v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件2-7-3 θ F O P Q l h H 2-7-2

高中物理动能定理典型练习题含答案.doc

动能定理典型练习题 典型例题讲解 1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D 2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力 的多少倍? 【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速 度为v ,根据动能定理有 02 12 -= mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 22 1 0mv Fh mgh -=- ② 由①②两式解得 h h H mg F += 另解:研究物体运动的全过程,根据动能定理有 000)(=-=-+Fh h H mg 解得h h H mg F += 3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2) 【解析】设物体克服摩擦力 图5-3-5 H h 图5-3-4

图5-3-6 图5-3-7 所做的功为W ,对物体由A 运动到B 用动能定理得 22 1mv W mgh = - J mv mgh W 32612 1 51012122=??-??=-= 即物体克服阻力所做的功为32J. 课后创新演练 1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A ) A .0 B .8J C .16J D .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C ) A .1:3 B .3:1 C .1:9 D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) A .4L B .L )12(- C .2L D .2 L 4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2 B .f s =2 1mv 2 C .f s =21mv 02-21(M +m )v 2 D .f (L +s )=21mv 02-2 1mv 2 5.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2 B .mv 02

高考物理动能与动能定理试题(有答案和解析)含解析

高考物理动能与动能定理试题(有答案和解析)含解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高一物理动能、动能定理练习题

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D、物体所受的合外力越大,其动能就越大 2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A、0 B、8J C、16J D、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A、质量大的物体滑行距离小 B、它们滑行的距离一样大 C、质量大的物体滑行时间短 D、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( ) A、一定大于600m B、一定小于600m C、一定等于600m D、可能等于1200m 5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( ) A、物体与水平面间的动摩擦因数为0.30 B、物体与水平面间的动摩擦因数为0.25 C、物体滑行的总时间是2.0s D、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A、返回斜面底端的动能为E B、返回斜面底端时的动能为3E/2 C、返回斜面底端的速度大小为2υ D、返回斜面底端的速度大小为2υ 7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功() A. 1 20 2 mv B. mgh C. 1 20 2 mv mgh + D. mgh fh + 8、如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. () 1-μmgR 9、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为 E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则: A、E2=E1 B、E2=2E1 C、E2>2E1 D、E1<E2<2E1 10.质量为m,速度为V的子弹射入木块,能进入S米。若要射进3S深,子弹的初速度应为原来的(设子弹在木块中的阻力不变)( ) h/2 h 图5-17

高中物理动能定理的综合应用试题经典及解析

高中物理动能定理的综合应用试题经典及解析 一、高中物理精讲专题测试动能定理的综合应用 1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求: (1)汽车所能达到的最大速度; (2)汽车从启动至到达最大速度的过程中运动的位移。 【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】 (1)汽车匀加速结束时的速度 11120m /s v a t == 由P=Fv 可知,匀加速结束时汽车的牵引力 1 1F P v = =1×104N 由牛顿第二定律得 11F f ma -= 解得 f =5000N 汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力 F=f =5000N 由P Fv =可知,汽车的最大速度: v=P P F f ==40m/s (2)汽车匀加速运动的位移 x 1= 1 140m 2 v t = 对汽车,由动能定理得 21121 02 F x Pt fs mv =--+ 解得 s =480m 2.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B

点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求: (1)物块与传送带间的动摩擦因数; (2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】(1) 3 5 (2) -3.75 J 【解析】 解:(1)由图象可知,物块在前0.5 s 的加速度为:21 11 a =8?m/s v t = 后0.5 s 的加速度为:222 22 2?/v v a m s t -= = 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得: 1mgsin mgcos ma θμθ+= 物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得: 2mgsin mgcos ma θμθ-= 联立解得:3μ= (2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:11 12 v t x = 则摩擦力对物块做功:11· W mgcos x μθ= 在后0.5 s ,物块对地位移为:12 122 v v x t += 则摩擦力对物块做功22· W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J 3.如图的竖直平面内,一小物块(视为质点)从H =10m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的光滑竖直圆环内侧,弯曲轨道AB 在B 点与圆环轨道平滑相接。之后物块沿CB 圆弧滑下,在B 点(无动量损失)进入右侧的粗糙水平面上压缩弹簧。已知物块的质量m =2kg ,与水平面间的动摩擦因数为0.2,弹簧自然状态下最左端D 点与B 点距离L =15m ,求:(g =10m/s 2)

高中物理动能与动能定理练习题及答案

高中物理动能与动能定理练习题及答案一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道

后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得: ?2mgR=m v12-m v02 且需要满足m≥mg,解得R≤0.72m, 综合以上考虑,R需要满足的条件为:0.3m≤R≤0.42m或0≤R≤0.12m。 【点睛】 解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。开始时让连着A 的细线与水平杆的夹角α。现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求: (1)当细线与水平杆的夹角为β(90αβ<

2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离 【答案】(1)160N (2)2 【解析】 【详解】 (1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB = 1 2 mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得: 2B v N mg m R -= 联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N 由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即: 2D v mg m R = 可得:v D =2m/s 设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t , 2R = 12 gt 2 解得:x =0.8m 则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x = = 3.在光滑绝缘的水平面上,存在平行于水平面向右的匀强电场,电场强度为E ,水平面上放置两个静止、且均可看作质点的小球A 和B ,两小球质量均为m ,A 球带电荷量为 Q +,B 球不带电,A 、B 连线与电场线平行,开始时两球相距L ,在电场力作用下,A 球与 B 球发生对心弹性碰撞.设碰撞过程中,A 、B 两球间无电量转移.

高中物理动能定理的综合应用练习题及答案

高中物理动能定理的综合应用练习题及答案 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求: (1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。 【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】 (1)物块A 从出发至N 点过程,机械能守恒,有 22011 222 mv mg R mv =?+ 得 20445m /s v v gR =-= (2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有 2 N v mg F m R += 得物块A 受到的弹力为 2 N 150N v F m mg R =-= 由牛顿第三定律可得,物块对轨道的作用力为 N N 150N F F '== 作用力方向竖直向上 (3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有 2 0102 mgx mv μ-=- 得

12.5m x = 2.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

高中物理动能与动能定理试题(有答案和解析).docx

高中物理动能与动能定理试题( 有答案和解析 ) 一、高中物理精讲专题测试动能与动能定理 1.某小型设备工厂采用如图所示的传送带传送工件。传送带由电动机带动,以v 2m/s的速度顺时针匀速转动,倾角37。工人将工件轻放至传送带最低点A,由传送带传送至 最高点 B 后再由另一工人运走,工件与传送带间的动摩擦因数为7 ,所运送的每个工8 件完全相同且质量 m 2kg 。传送带长度为L6m ,不计空气阻力。(工件可视为质点, sin37 0.6 , cos370.8,g10m / s2)求: (1)若工人某次只把一个工件轻放至 A 点,则传送带将其由最低点 A 传至 B 点电动机需额外 多输出多少电能? (2)若工人每隔 1 秒将一个工件轻放至 A 点,在传送带长时间连续工作的过程中,电动机额 外做功的平均功率是多少? 【答案】 (1)104J; (2)104W 【解析】 【详解】 (1)对工件 mg cos mgsin ma 2 v2ax v at1 t1 2s 得 x 2m x带vt12x x相x带x 2m 由能量守恒定律 E电Q E p E k 即 E电mg cos x相 mgL sin 1 mv2 2 代入数据得

E电104J (2)由题意判断,每 1s 放一个工件,传送带上共两个工件匀加速,每个工件先匀加速后匀速 运动,与带共速后工件可与传送带相对静止一起匀速运动。匀速运动的相邻的两个工件间 距为 x v t2m L x n x 得 n 2 所以,传送带上总有两个工件匀加速,两个工件匀速 则传送带所受摩擦力为 f 2 m g cos2mg sin 电动机因传送工件额外做功功率为 P fv104W 2.如图所示,在娱乐节目中,一质量为m=60 kg 的选手以 v0= 7 m/s 的水平速度抓住竖直 绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ= 37°时,选手放开抓手,松手后的上 升过程中选手水平速度保持不变,运动到水平传送带左端 A 时速度刚好水平,并在传送带 上滑行,传送带以 v=2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L= 6 m,传送带两端点 A、B 间的距离 s= 7 m,选手与传送带间的动摩擦因数为μ= 0.2,若把选手看 成质点,且不考虑空气阻力和绳的质量.(g= 10 m/s 2, sin 37 = 0°.6, cos 37 =°0.8)求: (1)选手放开抓手时的速度大小; (2)选手在传送带上从 A 运动到 B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】 (1)5 m/s(2)3 s(3)360 J 【解析】 试题分析:( 1)设选手放开抓手时的速度为v1,则- mg(L- Lcos θ)=mv12- mv02, v1= 5m/s (2)设选手放开抓手时的水平速度为v2, v2= v1cos θ① 选手在传送带上减速过程中a=-μg② v= v2+ at1③④ 匀速运动的时间 t2, s- x1= vt2⑤ 选手在传送带上的运动时间t = t1+ t2⑥ 联立①②③④⑤⑥得: t= 3s

高中物理动能与动能定理试题经典

高中物理动能与动能定理试题经典 一、高中物理精讲专题测试动能与动能定理 1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求: (1)物块第一次通过C 点时的速度大小v C . (2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置. 【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】 由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】 (1)BC 长度tan 530.4m l R ==o ,由动能定理可得 21 ()sin 372 B mg L l mv -=o 代入数据的 32m/s B v = 物块在BC 部分所受的摩擦力大小为 cos370.60N f mg μ==o 所受合力为 sin 370F mg f =-=o 故 32m/s C B v v == (2)设物块第一次通过D 点的速度为D v ,由动能定理得 2211 (1cos37)22 D C mgR mv mv -= -o

最新高中物理动能与动能定理试题经典

最新高中物理动能与动能定理试题经典 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

高中物理动能定理的综合应用题20套(带答案)及解析

高中物理动能定理的综合应用题20套(带答案)及解析 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

高中物理动能与动能定理专题训练答案及解析

高中物理动能与动能定理专题训练答案及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。已知物块与桌面间的动摩擦因数 μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶ (1)物块通过P 点的速度大小; (2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离; 【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】 (1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则 22y v gh = o sin 60y v v = 整理可得,物块通过P 点的速度 8m/s v = (2)从P 到M 点的过程中,机械能守恒 22 11=(1cos60)+22 o M mv mgR mv + 在最高点时根据牛顿第二定律 2 M N mv F mg R += 整理得 4.8N N F = 根据牛顿第三定律可知,物块对轨道的压力大小为4.8N

(3)从D 到P 物块做平抛运动,因此 o cos 604m/s D v v == 从C 到D 的过程中,根据能量守恒定律 2 12 p D E mgx mv μ=+ C 、 D 两点间的距离 2m x = 2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。开始时让连着A 的细线与水平杆的夹角α。现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求: (1)当细线与水平杆的夹角为β(90αβ<

高中物理动能与动能定理试题(有答案和解析)

高中物理动能与动能定理试题(有答案和解析) 一、高中物理精讲专题测试动能与动能定理 1.某小型设备工厂采用如图所示的传送带传送工件。传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=?。工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为7 8 μ= ,所运送的每个工件完全相同且质量2kg m =。传送带长度为6m =L ,不计空气阻力。(工件可视为质点, sin370.6?=,cos370.8?=,210m /s g =)求: (1)若工人某次只把一个工件轻放至A 点,则传送带将其由最低点A 传至B 点电动机需额外多输出多少电能? (2)若工人每隔1秒将一个工件轻放至A 点,在传送带长时间连续工作的过程中,电动机额外做功的平均功率是多少? 【答案】(1)104J ;(2)104W 【解析】 【详解】 (1)对工件 cos sin mg mg ma μθθ-= 22v ax = 1v at = 12s t = 得 2m x = 12x vt x ==带 2m x x x =-=相带 由能量守恒定律 p k E Q E E =+?+?电 即 21 cos sin 2 E mg x mgL mv μθθ=?++电相 代入数据得

104J E =电 (2)由题意判断,每1s 放一个工件,传送带上共两个工件匀加速,每个工件先匀加速后匀速运动,与带共速后工件可与传送带相对静止一起匀速运动。匀速运动的相邻的两个工件间距为 2m x v t ?=?= L x n x -=? 得 2n = 所以,传送带上总有两个工件匀加速,两个工件匀速 则传送带所受摩擦力为 2cos 2sin f mg mg μθθ=+ 电动机因传送工件额外做功功率为 104W P fv == 2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求: (1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】 试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s (2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④ 匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s

高中物理动能与动能定理模拟试题

高中物理动能与动能定理模拟试题 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析 一、高中物理精讲专题测试动能与动能定理 1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2. (1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥ 【解析】 【分析】 【详解】 (1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律 由B 到最高点2211 222 B mv mgR mv =+ 由A 到B : 解得A 点的速度为 (2)若小滑块刚好停在C 处,则: 解得A 点的速度为 若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有2 12 h gt = c s v t = 解得

所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥ 2.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有 2 1'202 B mgh mgh mg L mv μ--?=-,得h ′=1.2m

相关文档
最新文档