人工智能AI革命外文翻译中英文

人工智能AI革命外文翻译中英文
人工智能AI革命外文翻译中英文

人工智能(AI)革命外文翻译中英文

英文

The forthcoming Artificial Intelligence (AI) revolution:

Its impact on society and firms

Spyros Makridakis

Abstract

The impact of the industrial and digital (information) revolutions has, undoubtedly, been substantial on practically all aspects of our society, life, firms and employment. Will the forthcoming AI revolution produce similar, far-reaching effects? By examining analogous inventions of the industrial, digital and AI revolutions, this article claims that the latter is on target and that it would bring extensive changes that will also affect all aspects of our society and life. In addition, its impact on firms and employment will be considerable, resulting in richly interconnected organizations with decision making based on th e analysis and exploitation of “big” data and intensified, global competition among firms. People will be capable of buying goods and obtaining services from anywhere in the world using the Internet, and exploiting the unlimited, additional benefits that will open through the widespread usage of AI inventions. The paper concludes that significant competitive advantages will continue to accrue to those utilizing the Internet widely and willing to take entrepreneurial risks in order to turn innovative products/services into worldwide commercial success stories. The greatest challenge facing societies and firms would be utilizing the benefits of availing AI technologies, providing vast opportunities for both new products/services and immense productivity improvements while avoiding the dangers and disadvantages in terms of increased unemployment and greater wealth inequalities.

Keywords:Artificial Intelligence (AI),Industrial revolution,Digital revolution,AI revolution,Impact of AI revolution,Benefits and dangers of AI technologies The rise of powerful AI will be either the best or the worst thing ever to happen

to humanity. We do not yet know which.

Stephen Hawking

Over the past decade, numerous predictions have been made about the forthcoming Artificial Intelligence (AI) Revolution and its impact on all aspects of our society, firms and life in general. This paper considers such predictions and compares them to those of the industrial and digital ones. A similar paper was written by this author and published in this journal in 1995, envisioning the forthcoming changes being brought by the digital (information) revolution, developing steadily at that time, and predicting its impact for the year 2015 (Makridakis, 1995). The current paper evaluates these 1995 predictions and their impact identifying hits and misses with the purpose of focusing on the new ones being brought by the AI revolution. It must be emphasized that the stakes of correctly predicting the impact of the AI revolution are

far reaching as intelligent machines may become our “final invention” that may end human supremacy (Barrat, 2013). There is little doubt that AI holds enormous potential as computers and robots will probably achieve, or come close to, human intelligence over the next twenty years becoming a serious competitor to all the jobs currently performed by humans and for the first time raising doubt over the end of human supremacy.

This paper is organized into four parts. It first overviews the predictions made in the 1995 paper for the year 2015, identifying successes and failures and concluding that major technological developments (notably the Internet and smartphones) were undervalued while the general trend leading up to them was predicted correctly. Second, it investigates existing and forthcoming technological advances in the field of AI and the ability of computers/machines to acquire real intelligence. Moreover, it summarizes prevailing, major views of how AI may revolutionize practically everything and its impact on the future of humanity. The third section sums up the impact of the AI revolution and describes the four major scenarios being advocated, as well as what could be done to avoid the possible negative consequences of AI technologies. The fourth section discusses how firms will be affected by these technologies that will transform the competitive landscape, how start-up firms are founded and the way success can be achieved. Finally, there is a brief concluding section speculating about the future of AI and its impact on our society, life, firms and employment.

1. The 1995 paper: hits and misses

The 1995 paper (Makridakis, 1995) was written at a time when the digital (at that time it was called information) revolution was progressing at a steady rate. The paper predicted that by 2015 “the information revolution should be in full swing” and that “computers/communications” would be in widespread use, whi ch has actually happened, although its two most important inventions (the Internet and smartphones) and their significant influence were not foreseen as such. Moreover, the paper predicted that “a single computer (but not a smartphone) can, in addition to its traditional tasks, also become a terminal capable of being used interactively for the following:” (p. 804–805)

? Picture phone and teleconference

? Television and videos

? Music

? Shopping

? On line banking and financial services

? Reservations

? Medic al advice

? Access to all types of services

? Video games

? Other games (e.g., gambling, chess etc.)

? News, sports and weather reports

? Access to data banks

The above have all materialized and can indeed be accessed by computer,

although the extent of their utilization was underestimated as smartphones are now being used widely. For instance, the ease of accessing and downloading scientific articles on one's computer in his/her office or home would have seemed like science fiction back in 1995, when finding such articles required spending many hours in the library (often in its basement for older publications) and making photocopies to keep them for later use. Moreover, having access, from one's smartphone or tablet, to news from anywhere in the world, being able to subscribe to digital services, obtain weather forecasts, purchase games, watch movies, make payments using smartphones and a plethora of other, useful applications was greatly underestimated, while the extensive use of the cloud for storing large amounts of data for free was not predicted at all at that time. Even in 1995 when the implications of Moore's law leading to increasing computer speed and storage while reducing costs were well known, nevertheless, it was hard to imagine that in 2016 there would be 60 trillion web pages, 2.5 billion smartphones, more than 2 billion personal computers and 3.5 billion Google searches a day.

The paper correctly predicted “as wireless telecommunications will be possible the above list of capabilities can be accessed from anywhere in the world without the need for regular telephone lines”. What the 1995 paper missed, however, was that in 2015 top smartphones, costing less than €500, would be as powerful as the 1995 supercomputer, allowing access to the Internet and all tasks that were only performed by expensive computers at that time, including an almost unlimited availability of new, powerful apps providing a large array of innovative services that were not imagined twenty years ago. Furthermore, the paper correctly predicted super automation leading to unattended factories stating that “by 2015 there will be little need for people to do repetitive manual or mental tasks”. It also foresaw the decline of large industrial firms, increased global competition and the drop in the percentage of labour force employed in agriculture and manufacturing (more on these predictions in the section The Impact of the AI Revolution on Firms). It missed however the widespread utilization of the Internet (at that time it was a text only service), as well as search engines (notably Google), social networking sites(notably Facebook) and the fundamental changes being brought by the widespread use of Apple's iPhone, Samsung's Galaxy and Google's Android smartphones. It is indeed surprising today to see groups of people in a coffee shop or restaurant using their smartphones instead of speaking to each other and young children as little as three or four years of age playing with phones and tablets. Smartphones and tablets connected to the Internet through Wi-Fi have influenced social interactions to a significant extent, as well as the way we search for information, use maps and GPS for finding locations, and make payments. These technologies were not predicted in the 1995 paper.

2. Towards the AI revolution

The 1995 paper referred to Say, the famous French economist, who wrote in 1828 about the possibility of cars as substitutes for horses:

“Nevertheless no machine will ever be able to perform what even the worst horses can - the service of carrying people and goods through the bustle and throng of a great city.” (p. 800)

Say could never have dreamed of, in his wildest imagination, self-driving cars, pilotless airplanes, Skype calls, super computers, smartphones or intelligent robots. Technologies that seemed like pure science fiction less than 190 years ago are available today and some like self-driving vehicles will in all likelihood be in widespread use within the next twenty years. The challenge is to realistically predict forthcoming AI technologies without falling into the same short-sighted trap of Say and others, including my 1995 paper, unable to realize the momentous, non-linear advancements of new technologies. There are two observations to be made.

First, 190 years is a brief period by historical standards and during this period we went from horses being the major source of transportation to self-driving cars and from the abacus and slide rules to powerful computers in our pockets. Secondly, the length of time between technological inventions and their practical, widespread use is constantly being reduced. For instance, it took more than 200 years from the time Newcomen developed the first workable steam engine in 1707 to when Henry Ford built a reliable and affordable car in 1908. It took more than 90 years between the time electricity was introduced and its extensive use by firms to substantially improve factory productivity. It took twenty years, however, between ENIAC, the first computer, and IBM's 360 system that was mass produced and was affordable by smaller business firms while it took only ten years between 1973 when Dr Martin Cooper made the first mobile call from a handheld device and its public launch by Motorola. The biggest and most rapid progress, however, took place with smartphones which first appeared in 2002 and saw a stellar growth with the release of new versions possessing substantial improvements every one or two years by the likes of Apple, Samsung and several Chinese firms. Smartphones, in addition to their technical features, now incorporate artificial intelligence characteristics that include understanding speech, providing customized advice in spoken language, completing words when writing a text and several other functions requiring embedded AI, provided by a pocket computer smaller in size than a pack of cigarettes.

From smart machines to clever computers and to Artificial Intelligence (AI) programs: A thermostat is a simple mechanical device exhibiting some primitive but extremely valuable type of intelligence by keeping temperatures constant at some desired, pre-set level. Computers are also clever as they can be instructed to make extremely complicated decisions taking into account a large number of factors and selection criteria, but like thermostats such decisions are pre-programmed and based on logic, if-then rules and decision trees that produce the exact same results, as long as the input instructions are alike. The major advantage of computers is their lightning speed that allows them to perform billions of instructions per second. AI, on the other hand, goes a step further by not simply applying pre-programmed decisions, but instead exhibiting some learning capabilities.

The story of the Watson computer beating Jeopardy's two most successful contestants is more complicated, since retrieving the most appropriate answer out of the 200 million pages of information stored in its memory is not a sign of real intelligence as it relied on its lightning speed to retrieve information in seconds. What is more challenging according to Jennings, one of Jeopardy's previous champions, is

“to read clues in a natural language, understand puns and the red herrings, to unpack just the meaning of the clue” (May, 2013). Similarly, it is a sign of intelligence to improve it s performance by “playing 100 games against past winners”. (Best, 2016). Watson went several steps beyond Deep Blue towards AI by being able to understand spoken English and learn from his mistakes (New Yorker, 2016). However, he was still short of AlphaGo that defeated Go Champions in a game that cannot be won simply by using “brute force” as the number of moves in this game is infinite, requiring the program to use learning algorithms that can improve its performance as it plays more and more games

Computers and real learning: According to its proponents, “the main focus of AI research is in teaching computers to think for themselves and improvise solutions to common problems” (Clark, 2015). But many doubt that computers can learn to think for themselves even though they can display signs of intelligence. David Silver, an AI scientist working at DeepMind, explained that “even though AlphaGo has affectively rediscovered the most subtle concepts of Go, its knowledge is implicit. The computer parse out these concepts –they simply emerge from its statistical comparisons of types of winning board positions at GO” (Chouard, 2016). At the same time Cho Hyeyeon, one of the strongest Go players in Korea commented that “AlphaGo seems like it knows everything!” while others believe that “AlphaGo is likely to start a ‘new revolution’ in the way we play Go”as “it is seeking simply to maximize its probability of reaching winning positions, rather than as human players tend to do –maximize territorial gains” (Chouard, 2016). Does it matter, as Silver said, that AlphaGo's knowledge of the game is implicit as long as it can beat the best players? A more serious issue is whether or not AlphaGo's ability to win games with fixed rules can extend to real life settings where not only the rules are not fixed, but they can change with time, or from one situation to another.

From digital computers to AI tools: The Intel Pentium microprocessor, introduced in 1993, incorporated graphics and music capabilities and opened computers up to a large number of affordable applications extending beyond just data processing. Such technologies signalled the beginning of a new era that now includes intelligent personal assistants understanding and answering natural languages, robots able to see and perform an array of intelligent functions, self-driving vehicles and a host of other capabilities which were until then an exclusive human ability. The tech optimists ascertain that in less than 25 years computers went from just manipulating 0 and 1 digits, to utilizing sophisticated neural networkalgorithms that enable vision and the understanding and speaking of natural languages among others. Technology optimists therefore maintain there is little doubt that in the next twenty years, accelerated AI technological progress will lead to a breakthrough, based on deep learning that imitates the way young children learn, rather than the laborious instructions by tailor-made programs aimed for specific applications and based on logic, if-then rules and decision trees (Parloff, 2016).

For instance, DeepMind is based on a neural program utilizing deep learning that teaches itself how to play dozens of Atari games, such as Breakout, as well or better than humans, without specific instructions for doing so, but by playing thousands of

games and improving itself each time. This program, trained in a different way, became the AlphaGo that defeated GO champion Lee Sodol in 2016. Moreover, it will form the core of a new project to learn to play Starcraft, a complicated game based on both long term strategy as well as quick tactical decisions to stay ahead of an opponent, which DeepMind plans to be its next target for advancing deep learning (Kahn, 2016). Deep learning is an area that seems to be at the forefront of research and funding efforts to improve AI, as its successes have sparked a burst of activity in equity funding that reached an all-time high of more than $1 billion with 121 projects for start-ups in the second quarter of 2016, compared to 21 in the equivalent quarter of 2011 (Parloff, 2016).

Google had two deep learning projects underway in 2012. Today it is pursuing more than 1000, according to their spokesperson, in all its major product sectors, including search, Android, Gmail, translation, maps, YouTube, and self-driving cars (The Week, 2016). IBM's Watson system used AI, but not deep learning, when it beat the two Jeopardy champions in 2011. Now though, almost all of Watson's 30 component services have been augmented by deep learning. Venture capitalists, who did not even know what deep learning was five years ago, today are wary of start-ups that do not incorporate it into their programs. We are now living in an age when it has become mandatory for people building sophisticated software applications to avoid click through menus by incorporating natural-language processing tapping deep learning (Parloff, 2016).

How far can deep learning go? There are no limits according to technology optimists for three reasons. First as progress is available to practically everyone to utilize through Open Source software, researchers will concentrate their efforts on new, more powerful algorithms leading to cumulative learning. Secondly, deep learning algorithms will be capable of remembering what they have learned and apply it in similar, but different situations (Kirkpatrick et al., 2017). Lastly and equally important, in the future intelligent computer programs will be capable of writing new programs themselves, initially perhaps not so sophisticated ones, but improving with time as learning will be incorporated to be part of their abilities. Kurzweil (2005) sees nonbiological intelligence to match the range and subtlety of human intelligence within a quarter of a century and what he calls “Singularity” to occur by 2045, b ringing “the dawning of a new civilization that will enable us to transcend our biological limitations and amplify our creativity. In this new world, there will be no clear distinction between human and machine, real reality and virtual reality”.

For some people these predictions are startling, with far-reaching implications should they come true. In the next section, four scenarios associated with the AI revolution are presented and their impact on our societies, life work and firms is discussed.

3. The four AI scenarios

Until rather recently, famines, wars and pandemics were common, affecting sizable segments of the population, causing misery and devastation as well as a large number of deaths. The industrial revolution considerably increased the standards of living while the digital one maintained such rise and also shifted employment patterns,

resulting in more interesting and comfortable office jobs. The AI revolution is promising even greater improvements in productivity and further expansion in wealth. Today more and more people, at least in developed countries, die from overeating rather than famine, commit suicide instead of being killed by soldiers, terrorists and criminals combined and die from old age rather than infectious disease (Harari, 2016). Table 1 shows the power of each revolution with the industrial one aiming at routine manual tasks, the digital doing so to routine mental ones and AI aiming at substituting, supplementing and/or amplifying practically all tasks performed by humans. The cri tical question is: “what will the role of humans be at a time when computers and robots could perform as well or better andmuch cheaper, practically all tasks that humans do at present?” There are four scenarios attempting to answer this question.

The Optimists: Kurzweil and other optimists predict a “science fiction”, utopian future with Genetics, Nanotechnology and Robotics (GNR) revolutionizing everything, allowing humans to harness the speed, memory capacities and knowledge sharing ability of computers and our brain being directly connected to the cloud. Genetics would enable changing our genes to avoid disease and slow down, or even reverse ageing, thus extending our life span considerably and perhaps eventually achieving immortality. Nanotechnology, using 3D printers, would enable us to create virtually any physical product from information and inexpensive materials bringing an unlimited creation of wealth. Finally, robots would be doing all the actual work, leaving humans with the choice of spending their time performing activities of their choice and working, when they want, at jobs that interest them.

The Pessimists: In a much quoted article from Wired magazine in 2000, Bill Joy (Joy, 2000) wrote “Our most powerful 21st-century technologies –robotics, genetic engineering, and nanotech –are threatening to make humans an endangered species”. Joy pointed out that as machines become more and more intelligent and as societal problems become more and more complex, people will let machines make all the important decisions for them as these decisions will bring better results than those made by humans. This situation will, eventually, result in machines being in effective control of all important decisions with people dependent on them and afraid to make their own choices. Joy and many other scientists (Cellan-Jones, 2014) and philosophers (Bostrom, 2014) believe that Kurzweil and his supporters vastly underestimate the magnitude of the challenge and the potential dangers which can arise from thinking machines and intelligent robots. They point out that in the utopian world of abundance, where all work will be done by machines and robots, humans may be reduced to second rate status (some saying the equivalent of computer pets) as smarter than them computers and robots will be available in large numbers and people will not be motivated to work, leaving computers/robots to be in charge of making all important decisions. It may not be a bad world, but it will definitely be a different one with people delegated to second rate status.

Harari is the newest arrival to the ranks of pessimists. His recent book (Harari, 2016, p. 397) concludes with the following three statements:

? “Science is converging to an all-encompassing dogma, which says that

organisms are algorithm s, and life is data processing”

? “Intelligence is decoupling from consciousness”

? “Non-conscious but highly intelligent algorithms may soon know us better than we know ourselves”

Consequently, he asks three key questions (which are actually answered by the above three statements) with terrifying implications for the future of humanity: ? “Are organisms really just algorithms, and is life just data processing?”

? “What is more valuable –intelligence or consciousness?”

? “What will happen to society, polit ics and daily life when non-conscious but highly intelligent algorithms know us better than we know ourselves?”

Harari admits that nobody really knows how technology will evolve or what its impact will be. Instead he discusses the implications of each of his three questions: ? If indeed organisms are algorithms then thinking machines utilizing more efficient ones than those by humans will have an advantage. Moreover, if life is just data processing then there is no way to compete with computers that can consult/exploit practically all available information to base their decisions.

? The non-conscious algorithms Google search is based on the consultation of millions of possible entries and often surprise us by their correct recommendations. The implications that similar, more advanced algorithms than those utilized by Google search will be developed (bearing in mind Google search is less than twenty years old) in the future and be able to access all available information from complete data bases are far reachi ng and will “provide us with better information than we could expect to find ourselves”.

? Humans are proud of their consciousness, but does it matter that self-driving vehicles do not have one, but still make better decisions than human drivers, as can be confirmed by their significantly lower number of traffic accidents?

When AI technologies are further advanced and self-driving vehicles are in widespread use, there may come a time that legislation may be passed forbidding or restricting human driving, even though that may still be some time away according to some scientists (Gomes, 2014). Clearly, self-driving vehicles do not exceed speed limits, do not drive under the influence of alcohol or drugs, do not get tired, do not get distracted by talking on the phone or sending SMS or emails and in general make fewer mistakes than human drivers, causing fewer accidents. There are two implications if humans are not allowed to drive. First, there will be a huge labour displacement for the 3.5 million unionized truck drivers in the USA and the 600 thousand ones in the UK (plus the additional number of non-unionized ones) as well as the more than one million taxi and Uber drivers in these two countries. Second, and more importantly, it will take away our freedom of driving, admitting that computers are superior to us. Once such an admission is accepted there will be no limits to letting computers also make a great number of other decisions, like being in charge of nuclear plants, setting public policies or deciding on optimal economic strategies as their biggest advantage is their objectivity and their ability to make fewer mistakes than humans.

One can go as far as suggesting letting computers choose Presidents/Prime

Ministers and elected officials using objective criteria rather than having people voting emotionally and believing the unrealistic promises that candidates make. Although such a suggestion will never be accepted, at least not in the near future, it has its merits since people often choose the wrong candidate and later regret their choice after finding out that pre-election promises were not only broken, but they were even reversed. Critics say if computers do eventually become in charge of making all important decisions there will be little left for people to do as they will be demoted to simply observing the decisions made by computers, the same way as being a passenger in a car driven by a computer, not allowed to take control out of the fear of causing an accident. As mentioned before, this could lead to humans eventually becoming computers’ pets.

The pragmatists: At present the vast majority of views about the future implications of AI are negative, concerned with its potential dystopian consequences (Elon Musk, the CEO of Tesla, says it is like “summoning the demon” and calls the consequences worse than what nuclear weapons can do). There are fewer optimists and only a couple of pragmatists like Sam Altman and Michio Kaku (Peckham, 2016) who believe that AI technologies can be controlled through “OpenAI” and effective regulation. The ranks of pragmatists also includes John Markoff (Markoff, 2016) who pointed out that the AI field can be distinguished by two categories: The first trying to duplicate human intelligence and the second to augment it by expanding human abilities exploiting the power of computers in order to augment human decision making. Pragmatists mention chess playing where the present world champion is neither a human nor a computer but rather humans using laptop computers (Baraniuk, 2015). Their view is that we could learn to exploit the power of computers to augment our own skills and always stay a step ahead of AI, or at least not be at a disadvantage. The pragmatists also believe that in the worst of cases a chip can be placed in all thinking machines/robots to render them inoperative in case of any danger. By concentrating research efforts on intelligence augmentation, they claim we can avoid or minimize the possible danger of AI while providing the means to stay ahead in the race against thinking machines and smart robots.

The doubters: The doubters do not believe that AI is possible and that it will ever become a threat to humanity. Dreyfus (1972), its major proponent, argues that human intelligence and expertise cannot be replicated and captured in formal rules. He believes that AI is a fad promoted by the computer industry. He points out to the many predictions that did not materialize such as those made by Herbert A. Simon in 1958 that “a computer would be the world's chess champion within ten years” and those made in 1965 that “machines will be capable within twenty years, of doing any work a man can do” (Crevier, 1993). Dreyfus claims that Simon's optimism was totally unwarranted as they were based on false assumptions that human intelligence is based on an information processing viewpoint as our mind is nothing like a computer. Although, the doubters’ criticisms may have been valid in the last century, they cannot stand for the new developments in AI. Deep Blue became the world's chess champion in 1997 (missing Simon's forecast by twenty one years) while we are not far today from machines being capable of doing all the work that humans can do (missing

Crevier's prediction by about a decade). There are also self-driving vehicles, nurse-robots taking care of the elderly, and Google Search which may know better than us what we are looking for. These technologies are hard to explain by those that doubt AI technologies will materialize and affect us profoundly.

A more sophisticated attack comes from doubters who state that it is wrong to believe that once computers have been provided with sufficiently advanced algorithms, they will be able to improve and then replicate the way our mind works. According to them (Jankel, 2015) computers will not be able to achieve the highest of human ability that of being creative as doing so requires breaking the rules and being anti-algorithmic. In other words creative breakthroughs cannot be predicted so any algorithm developed by AI to do so will fail, leaving a big vacuum to the sole province of the human mind that will always be more valuable than all algorithmic AI technologies put together. It is like the paintings by the masters which are by far superior to those of the millions of average painters put together. This would mean that all tasks requiring creativity, including innovative breakthroughs, strategic thinking, entrepreneurship, risk taking and similar ones could never, or at least not in the foreseeable future, be done algorithmically, providing humans with a clear superiority versus intelligent machines.

中文

即将到来的人工智能(AI)革命:

对社会和企业的影响

摘要

毫无疑问,工业革命和数字(信息)革命对我们的社会,生活,企业和就业的各个方面都产生了重大影响。即将到来的人工智能革命会产生类似的深远影响吗?通过研究工业革命,数字革命和AI革命的类似发明,本文认为后者将带来广泛的变化,这也将影响我们社会和生活的各个方面。此外,它对公司和就业的影响将是巨大的,从而导致组织之间相互联系紧密,决策基于对大数据的分析和利用以及公司之间激烈的全球竞争。人们将能够使用Internet在世界上的任何地方购买商品并获得服务,并能够利用人工智能AI发明的广泛使用所带来的无限的额外好处。本文的结论是,广泛利用Internet并愿意承担创业风险以便将创新产品/服务转变为全球商业成功案例的人将继续获得巨大的竞争优势。社会和企业面临的最大挑战将是利用人工智能技术的好处,为新产品/服务提供巨大的机会,并极大地提高生产力,同时避免因失业增加和财富不平等加剧而带来的危险和不利条件。

关键词:人工智能(AI),工业革命,数字革命,人工智能AI革命,AI革命的影响,AI技术的利弊

强大的人工智能AI的兴起将是人类有史以来最好或最坏的事情。我们目前,还不知道是好事还是坏事。

——史蒂芬·霍金

在过去的十年中,人们对即将到来的人工智能(AI)革命及其对我们的社会,企业和整体生活的影响做出了许多预测。本文考虑了这种预测,并将其与工业革

命和数字信息革命的预测相比较。我之前撰写了类似的文章,并于1995年发表在该杂志上,预见了数字(信息)革命将带来的变化,信息革命在当时稳步发展,我预测了其在2015年的影响(Makridakis,1995)。本文评估了这些1995年的预测及其对识别流行和失败的影响,目的是关注AI革命带来的新预测。必须强调的是,正确预测人工智能AI革命的影响意义重大,因为智能机器可能成为我们的“最终发明”,从而可能终结人类的霸权地位(Barrat,2013年)。毫无疑问,人工智能具有巨大的潜力,因为计算机和机器人将在未来二十年内实现或接近于人类智能,成为人类目前所从事的所有工作的重要竞争者,并首次引起人们对人工智能的怀疑。人类至高无上的终结。

本文分为四个部分。它首先概述了1995年的研究文章中对2015年所做的预测,确定了成功和失败的原因,并得出结论,当时低估AI技术的发展(尤其是互联网和智能手机),但是也正确预测了它们的总体发展趋势。其次,还研究了AI领域中现有和即将出现的技术进步以及计算机/机器获得真实智能的能力。此外,它总结了关于AI如何实际上可以改变一切以及对人类未来的影响的主流观点。第三部分总结了AI革命的影响,描述了所倡导的四个主要场景,以及如何避免AI技术可能带来的负面影响。第四部分讨论了企业将如何受到这些将改变竞争格局的技术的影响,初创企业的创建方式以及取得成功的方式。最后,有一个简短的总结部分,探讨AI的未来及其对我们的社会,生活,公司和就业的影响。

1. 1995年的研究文章:得与失

1995年的文章(Makridakis,1995年)是在数字化革命(当时被称为信息革命)以稳定的速度发展的时候撰写的。该文章预测,到2015年“信息革命应全面展开”,“计算机/通信”将被广泛使用,尽管这是最重要的两项发明(互联网和智能手机)及其重大影响,但实际上已经发生了没有这样的预见。此外,该文章还预测说:“除了传统的任务外,一台计算机(而不是智能手机)也可以成为能够交互用于以下目的的终端:”

?可视电话和电话会议

?电视和视频

?音乐

?购物

?在线银行和金融服务

?预订

?医疗建议

?获得所有类型的服务

?视频游戏

?其他游戏(例如国际象棋等)

?新闻,体育和天气预报

?访问数据库

尽管智能手机已被广泛使用,但上述应用的程度已被低估了,并且确实可以通过计算机访问。例如,在1995年,当人们在自己办公室或家里的计算机上轻松访问和下载科学文章时,就好像是科幻小说,当时发现此类文章需要在图书馆里花费很多时间(通常在旧出版物的地下室中)并进行影印,以备日后使用。此外,从一个人的智能手机或平板电脑访问世界各地的新闻,能够订阅数字服务,获取天气预报,购买游戏,观看电影,使用智能手机进行付款以及许多其他有用

人工智能专业外文翻译-机器人

译文资料: 机器人 首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么随着人类的发展,人们在不断探讨自然过程中,在认识和改造自然过程中,需要能够解放人的一种奴隶。那么这种奴隶就是代替人们去能够从事复杂和繁重的体力劳动,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 机器人有三个发展阶段,那么也就是说,我们习惯于把机器人分成三类,一种是第一代机器人,那么也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。抓一个鸡蛋,它能通过一个触觉,知道它的力的大小和滑动的情况。第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。 下面我简单介绍一下我国机器人发展的基本概况。由于我们国家存在很多其

关于现代工业机械手外文文献翻译@中英文翻译@外文翻译

附录 About Modenr Industrial Manipulayor Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. Modern industrial robots are true marvels of engineering. A robot the size of a person can easily carry a load over one hundred pounds and move it very quickly with a repeatability of 0.006inches. Furthermore these robots can do that 24hours a day for years on end with no failures whatsoever. Though they are reprogrammable, in many applications they are programmed once and then repeat that exact same task for years. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With he rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly; with the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized

人工智能的研究方向和应用领域

人工智能的研究方向和应用领域 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。广义的人工智能包括人工智能、人工情感与人工意志三个方面。 一、研究方向 1.问题求解 人工智能的第一个大成就是发展了能够求解难题的下棋(如国际象棋)程序。在下棋程序中应用的某些技术,如向前看几步,并把困难的问题分成一些比较容易的子问题,发展成为搜索和问题归约这样的人工智能基本技术。今天的计算机程序能够下锦标赛水平的各种方盘棋、十五子棋和国际象棋。另一种问题求解程序把各种数学公式符号汇编在一起,其性能达到很高的水平,并正在为许多科学家和工程师所应用。有些程序甚至还能够用经验来改善其性能。 2.逻辑推理与定理证明 逻辑推理是人工智能研究中最持久的子领域之一。其中特别重要的是要找到一些方法,只把注意力集中在一个大型数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。对数学中臆测的定理寻找一个证明或反证,确实称得上是一项智能任务。为此不仅需要有根据假设进行演绎的能力,而且需要某些直觉技巧。 1976年7月,美国的阿佩尔(K.Appel)等人合作解决了长达124年之久的难题--四色定理。他们用三台大型计算机,花去1200小时CPU时间,并对中间结果进行人为反复修改500多处。四色定理的成功证明曾轰动计算机界。 3.自然语言理解 NLP(Natural Language Processing)自然语言处理也是人工智能的早期研究领域之一,已经编写出能够从内部数据库回答用英语提出的问题的程序,这些程序通过阅读文本材料和建立内部数据库,能够把句子从一种语言翻译为另一种语言,执行用英语给出的指令和获取知识等。有些程序甚至能够在一定程度上翻译从话筒输入的口头指令(而不是从键盘打入计算机的指令)。目前语言处理研究的主要课题是:在翻译句子时,以主题和对话情况为基础,注意大量的一般常识--世界知识和期望作用的重要性。

浅谈人工智能

中国西部科技
2009年10月(下旬)第08卷第30期 总第191期
浅谈人工智能
李轶博
(吉林石化信息网络公司软信公司,吉林 132021) 摘 要: 人工智能作为计算机学科的一个分支,有其自身的特点,现已在社会生活各个领域都有应用,并将有更为广阔 的发展前景。 关键词: 人工智能;AI;模拟
关于人工智能的定义众说不一,美国斯坦福大学人工 智能研究中心尼尔逊教授下过这样的一个定义:“人工智 能是关于知识的学科——怎样表示知识以及怎么样获得知 识并使用知识的科学。”而麻省理工学院的温斯顿教授认 为:人工智能就是如何使用计算机去做过去只有人才能做的 工作。”人们普遍认为人工智能,它是研究、开发用于模 拟、延伸和扩展人的智能的理念、方法技术以及应用系统 的一门新的技术科学。它是从计算机应用系统的角度出 发,研究如何制造出人造的智能机器或智能系统,来模拟 人类智能活动能力,以延伸人们智能的科学。 人工智能就其本质而言,是对人的思维的信息过程的 模拟,人工智能不是人的智能,更不会超过人的智能,对 于人的思维模拟可是结构模拟,仿照人脑的结构机制,暂 时撇开人脑的内部结构,而从其功能过程进行模拟。 人工智能可以分为强人工智能和弱人工智能。强人工 智能观点认为有可能制造出真正能推理和解决问题的智能 机器,并且,这样的奇迹将被认为是有知觉的,有自我意 识的。弱人工智能观点认为不可能制造出能真正的地推理 和解决问题的智能机器,这些机器只不过看起来像是智能 的,但并不真正拥有智能,也不会有自主意识。 1 人工智能研究的历史与现状 人工智能的研究经历了以下几个阶段: 第一阶段:20世纪50年代人工智能的兴起和冷落。人工
此计划最终失败,但它的开展形成了一股研究人工智能的 热潮。 第四阶段:20世 纪 80年代末,精神网络飞速发展。 1987年,美国召开第一次精神网络国际会议,宣告了这一 新学科的诞生。此后,各国在精神网络方面的投资逐渐增 大,精神网络迅速发展起来。 第五阶段:20世纪90年代,人工智能出现新的研究高 潮。由于网络技术特别是国际互联网的技术发展,人工智 能开始由单个智能主体研究转向基于网络环境下的分布式 人工智能研究。不仅研究基于同一目标的分布式问题求 解,而且研究多个智能主体的多目标问题求解,将人工智 能面向实用。 人工智能研究范畴有自然语言处理、知识表现、智能 搜索、推理、知识获得、组合调度问题,感知问题,模式 识别,逻辑程序设计,软计算,不精确和不确定的管理, 人工生命,精神网络,复杂系统等。 2 人工智能是与具体领域相结合 目前,人工智能是与具体领域相结合进行研究的,有 如下领域:①专家系统。依靠人类已有的知识建立起来的 知识系统,目前专家系统是人工智能研究中开展最早、最 活跃、成就最多的领域。②机器学习。主要在三个方面进 行:首先是研究人类学习的机理、人脑思维的过程。其次 是机器学习的方法。最后是建立针对具体任务的学习系 统。③模式识别。研究如何使机器具有感知能力,主要研 究听觉模式和视觉模式的识别。④理解自然语言,计算机 如能“听懂”人的语言,便可以直接用口语操作计算机, 这将给人们带来极大的便利。⑤机器人学。机器人是一种 模拟人的行为的机械,对它的研究历经三代发展过程:第 一代机器人只能按程序完成工作。第二代机器人配备了像 样的感觉传感器,能取得作业环境、操作对象等简单的信 息,并由机器人体内的计算机进行分析处理,控制机器人 的动作。第三代机器人具有类似人的智能,它装备了高灵 敏度传感器,因而具有超过人的视觉、听觉、嗅觉、触觉 的能力,能对感知的信息进行分析,控制自己的行为,处 理环境发生的变化,完成各种复杂的任务。而且有自我学 习、归纳、总结、提高已掌握知识的能力。⑥智能决策支 (下转第41页)
智能概念首次提出后,出现了一批显著的成果,如机器定理 证明、跳棋程序、LISP表处理语言等。但由于揭发推理能力 有限,以及其翻译失败等,使人工智能走入低谷。这一阶段 的特点是:重视问题求解的方法,忽视知识重要性。 第二阶段:20世纪60年代末到70年代,专家系统出现使 人工智能研究出现新高潮,DENDAL化 学 质 谱 分 析 系 统 、 MTCIN疾 病 诊 断 和 治 疗 系 统 、 PROSPECTIOR探 矿 系 统 , Hearsay-II语言理解系统等专家系统的研究和开发,将人工 智能引向了实用化。1969年成立了国际人工智能联合会。 第三阶段:20世纪 80年代,随着第五代计算机的研 制,人工智能得到了很大发展。日本1982年开始了“第五 代计算机研制计划”,即“知识信息处理计算机系统 LIPS”,其目的是使逻辑推理达到数值运算那么快。虽然
收稿日期: 2009-09-06 修回日期:2009-10-16
作者简介: 李轶博(1982-),男,吉林籍,本科,助理工程师,主要研究方向为信息技术应用和管理。
58

文献综述_人工智能

人工智能的形成及其发展现状分析 冯海东 (长江大学管理学院荆州434023) 摘要:人工智能的历史并不久远,故将从人工智能的出现、形成、发展现 状及前景几个方面对其进行分析,总结其发展过程中所出现的问题,以及发展现状中的不足之处,分析其今后的发展方向。 关键词:人工智能,发展过程,现状分析,前景。 一.引言 人工智能最早是在1936年被英国的科学家图灵提出,并不为多数人所认知。 当时,他编写了一个下象棋的程序,这就是最早期的人工智能的应用。也有著名的“图灵测试”,这也是最初判断是否是人工智能的方案,因此,图灵被尊称为“人工智能之父”。人工智能从产生到发展经历了一个起伏跌宕的过程,直到目前为止,人工智能的应用技术也不是很成熟,而且存在相当的缺陷。 通过搜集的资料,将详细的介绍人工智能这个领域的具体情况,剖析其面临的挑战和未来的前景。 二.人工智能的发展历程 1. 1956年前的孕育期 (1) 从公元前伟大的哲学家亚里斯多德(Aristotle)到16世纪英国哲学家培根(F. Bacon),他们提出的形式逻辑的三段论、归纳法以及“知识就是力量”的警句,都对人类思维过程的研究产生了重要影响。 (2)17世纪德国数学家莱布尼兹(G..Leibniz)提出了万能符号和推理计算思想,为数理逻辑的产生和发展奠定了基础,播下了现代机器思维设计思想的种子。而19世纪的英国逻辑学家布尔(G. Boole)创立的布尔代数,实现了用符号语言描述人类思维活动的基本推理法则。 (3) 20世纪30年代迅速发展的数学逻辑和关于计算的新思想,使人们在计算机出现之前,就建立了计算与智能关系的概念。被誉为人工智能之父的英国天才的数学家图灵(A. Tur-ing)在1936年提出了一种理想计算机的数学模型,即图灵机之后,1946年就由美国数学家莫克利(J. Mauchly)和埃柯特(J. Echert)研制出了世界上第一台数字计算机,它为人工智能的研究奠定了不可缺少的物质基础。1950年图灵又发表了“计算机与智能”的论文,提出了著名的“图灵测试”,形象地指出什么是人工智能以及机器具有智能的标准,对人工智能的发展产生了极其深远的影响。 (4) 1934年美国神经生理学家麦克洛奇(W. McCulloch) 和匹兹(W. Pitts )建立了第一个神经网络模型,为以后的人工神经网络研究奠定了基础。 2. 1956年至1969年的诞生发育期 (1)1956年夏季,麻省理工学院(MIT)的麦卡锡(J.McCarthy)、明斯基(M. Minshy)、塞尔夫里奇(O. Selfridge)与索罗门夫(R. Solomonff)、 IBM的洛

论文《人工智能》---文献检索结课作业

人工智能 【摘要】:人工智能是一门极富挑战性的科学,但也是一门边沿学科。它属于自然科学和社会科学的交叉。涉及的学科主要有哲学、认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论、仿生学等。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等1。 【关键词】:人工智能;应用领域;发展方向;人工检索。 1.人工智能描述 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学2。人工智能是计 算机科学的一个分支,它企图了解智 能的实质,并生产出一种新的能以人 类智能相似的方式作出反应的智能 机器,该领域的研究包括机器人、语 言识别、图像识别、自然语言处理和 专家系统等。“人工智能”一词最初 是在1956 年Dartmouth学会上提出 的。从那以后,研究者们发展了众多 理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复 1.蔡自兴,徐光祐.人工智能及其应用.北京:清华大学出版社,2010 2元慧·议当人工智能的应用领域与发展状态〖J〗.2008

探索大数据和人工智能最全试题

探索大数据和人工智能最全试题 1、2012年7月,为挖掘大数据的价值,阿里巴巴集团在管理层设立()一职,负责全面推进“数据分享平台”战略,并推出大型的数据分享平台。 A首席数据官 B.首席科学家 C.首席执行官 D.首席架构师 2、整个MapReduce的过程大致分为Map、Shuffle、Combine、()? A. Reduce B.Hash C. Clean D. Loading 3、在Spak的软件栈中,用于交互式查询的是 A. SparkSQL B.Mllib C.GraphX D. Spark Streaming 4、在数据量一定的情况下, MapReduce是一个线性可扩展模型,请问服务器数量与处( )理时间是什么关系? A数量越多处理时间越长 B.数量越多处理时间越短 C.数量越小处理时间越短 D.没什么关系

5、下列选项中,不是kafka适合的应用场景是? A.日志收集 B.消息系统 C.业务系统 D.流式处理 6、大数据的多样性使得数据被分为三种数据结构,那么以下不是三种数据结构之一的是 A.结构化数据 B.非结构化数据 C.半结构化数据 D.全结构化数据 7、下列选项中,不是人工智能的算法中的学习方法的是? A.重复学习 B.深度学习 C.迁移学习 D.对抗学习 8、自然语言处理难点目前有四大类,下列选项中不是其中之一的是 A.机器性能 B.语言歧义性 C.知识依赖 D.语境 9、传统的机器学习方法包括监督学习、无监督学习和半监督学习,其中监督学习是学习给定标签的数据集。请问标签为离散的类型,称为分类,标签为连续的类型,称为什么?

A.给定标签 B.离散 C.分类 D.回归 10、中国移动自主研发、发布的首个人工智能平台叫做() A.九天 B. OneNET C.移娃 D.大云 11、HDFS中Namenodef的Metadata的作用是? A.描述数据的存储位置等属性 B.存储数据 C.调度数据 D. 12、电信行业的客户关系管理中,客服中心优化可以实现严重问题及时预警,请问是用的什么技术实现的? A大数据技术 B.互联网技术 C.游戏技术 D.影像技术 13、随着闭源软件在数据分析领域的地盘不断缩小,老牌IT厂商正在改变商业模式,向着什么靠拢? A.闭源

人工智能专家系统_外文翻译原文

附件 毕业生毕业论文(设计)翻译原文 论文题目远程农作物病虫害诊断专家系统的设计与实现系别_____ ______ _ 年级______ _ _ _ _ _ 专业_____ ___ ___ 学生姓名______ _____ 学号 ___ __ _ 指导教师______ ___ _ __ _ 职称______ __ ___ 系主任 _________________ _ _ ___ 2012年 04月22 日

EXPERT SYSTEMS AND ARTIFICIAL INTELLIGENCE Expert Systems are computer programs that are derived from a branch of computer science research called Artificial Intelligence (AI). AI's scientific goal is to understand intelligence by building computer programs that exhibit intelligent behavior. It is concerned with the concepts and methods of symbolic inference, or reasoning, by a computer, and how the knowledge used to make those inferences will be represented inside the machine. Of course, the term intelligence covers many cognitive skills, including the ability to solve problems, learn, and understand language; AI addresses all of those. But most progress to date in AI has been made in the area of problem solving -- concepts and methods for building programs that reason about problems rather than calculate a solution. AI programs that achieve expert-level competence in solving problems in task areas by bringing to bear a body of knowledge about specific tasks are called knowledge-based or expert systems. Often, the term expert systems is reserved for programs whose knowledge base contains the knowledge used by human experts, in contrast to knowledge gathered from textbooks or non-experts. More often than not, the two terms, expert systems (ES) and knowledge-based systems (KBS), are used synonymously. Taken together, they represent the most widespread type of AI application. The area of human intellectual endeavor to be captured in an expert system is called the task domain. Task refers to some goal-oriented, problem-solving activity. Domain refers to the area within which the task is being performed. Typical tasks are diagnosis, planning, scheduling, configuration and design. An example of a task domain is aircraft crew scheduling, discussed in Chapter 2. Building an expert system is known as knowledge engineering and its practitioners are called knowledge engineers. The knowledge engineer must make sure that the computer has all the knowledge needed to solve a problem. The knowledge engineer must choose one or more forms in which to represent the required knowledge as symbol patterns in the memory of the computer -- that is, he (or she) must choose a knowledge representation. He must also ensure that the computer can use the knowledge efficiently by selecting from a handful of reasoning methods. The practice of knowledge engineering is described later. We first describe the components of expert systems. The Building Blocks of Expert Systems Every expert system consists of two principal parts: the knowledge base; and the reasoning, or inference, engine.

智能机器人外文翻译

Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware. In this article, the mechanical configuration combines the character of direction coordinate and the arthrosis coordinate which can improve the stability and operation flexibility of the system. The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement. In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion. Worm gear can give vary transmission

人工智能数据库系统优化的捷径

人工智能数据库系统优化的捷径 摘要:SQL语句的优化是将性能低下的SQL语句转换成目的相同的性能优异的SQL语句。文中主要介绍了利用人工智能自动SQL优化技术来优化数据库系统,并且简要介绍了几种常见的数据库系统优化方法。人工智能自动SQL优化就是使用人工智能技术,自动对SQL语句进行重写,从而找到性能最好的等效SQL语句。 一数据库性能的优化 一个数据库系统的生命周期可以分成:设计、开发和成品三个阶段。在设计阶段进行数据库性能优化的成本最低,收益最大。在成品阶段进行数据库性能优化的成本最高,收益最小。 数据库的优化通常可以通过对网络、硬件、操作系统、数据库参数和应用程序的优化来进行。最常见的优化手段就是对硬件的升级。根据统计,对网络、硬件、操作系统、数据库参数进行优化所获得的性能提升,全部加起来只占数据库系统性能提升的40%左右,其余的60%系统性能提升来自对应用程序的优化。许多优化专家认为,对应用程序的优化可以得到80%的系统性能的提升。 二应用程序的优化 应用程序的优化通常可分为两个方面:源代码和SQL语句。由于

涉及到对程序逻辑的改变,源代码的优化在时间成本和风险上代价很高,而对数据库系统性能的提升收效有限。 三为什么要优化SQL语句 SQL语句是对数据库进行操作的惟一途径,对数据库系统的性能起着决定性的作用。 SQL语句消耗了70%至90%的数据库资源。 SQL语句独立于程序设计逻辑,对SQL语句进行优化不会影响程序逻辑。 SQL语句有不同的写法,在性能上的差异非常大。 SQL语句易学,但难精通。 优化SQL语句的传统方法是通过手工重写来对SQL语句进行优化。DBA或资深程序员通过对SQL语句执行计划的分析,依靠经验,尝试重写SQL语句,然后对结果和性能进行比较,以试图找到性能较佳的SQL语句。这种传统上的作法无法找出SQL语句的所有可能写法,且依赖于人的经验,非常耗费时间。 四SQL优化技术的发展历程 第一代SQL优化工具是执行计划分析工具。这类工具针对输入的SQL语句,从数据库提取执行计划,并解释执行计划中关键字的含义。 第二代SQL优化工具只能提供增加索引的建议,它通过对输入的SQL语句的执行计划的分析,来产生是否要增加索引的建议。 第三代SQL优化工具不仅分析输入SQL语句的执行计划,还对输入的SQL语句本身进行语法分析,经过分析产生写法上的改进建议。

浅谈人工智能的现状与未来

浅谈人工智能的现状与未来 摘要:作为二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能),同时也被认为是二十一世纪三大尖端技术之一(基因工程、纳米科学、人工智能)。人工智能在很多科学领域都获得了广泛应用,并取得了丰硕的成果,本文将对人工智能的发展历程,现状以及发展趋势作一个初步的解读,人工智能应用于工程是是目前工程技术研究的热点之一,本文也将就人工智能中的专家系统、模拟逻辑、神经网络控制在机电一体化中的应用进行了探讨。 关键词:人工智能;机电一体化;专家系统;模糊控制;神经网络控制;AI发展前景; 什么是人工智能 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 人工智能与机电一体化系统的统一 近几十年来,人工智能得到了长足的发展,譬如,IBM 公司制造的深蓝计算机运用人工智能于1997年5月,战胜了国际象棋冠军卡斯帕洛夫。人工智能用于机电一体化是机电一体化发展的方向之一。这种智能主要通过控制技术加以设计和实现,即由机电一体化系统中的控制系统来具体实现。 专家系统、模糊逻辑、神经网络控制、学习控制和分层递阶是目前人工智能研究主要的几个领域,它们各自发展,又相互渗透,走向结合。其中,前三个领域是目前机电一体系统实现智能化的较成熟的领域。 一,自从第一个专家系统于1968年问世以来,经过30多年的发展,专家系统已经成为人工智能应用最活跃的领域。已经从最初的应用于医疗、科技等领域,向财政、金融、保险、商业和法律方向扩展,下面就与机电一体化有关的应用予以探讨。 (1)在装配制造业的应用:产品的生产,总是用零件来构造的,将不同的零件一起装配成一种新产品,叫做配里任务。专家系统应用于装配制造方面可以取得 可观的经济效益。比如, DEC公司的专家系统XCON,是应用于计算机配置的 第一个专家系统,现在每年为DEC公司盈利1。5亿美元 (2)在设备故障诊断中的应用:专家系统用于设备故障诊断,特别是针对大型的结构、复杂的故障诊断,可以尽快找到故障,大大缩短检修时间,有很多成功 的例子,比如美国西屋电气公司研制的GEN一AID专家系统,已经成功地应 用于诊断汽轮发动机的故障。IBM公司也曾经为其IBMATPC机配备了一个专家 系统,用来精确定位系统故障。 (3)在控制方面的应用:专家系统可以在机电一体化设备控制方面发挥作用,在伺服控制、数控机床、加工中心以及其它控制领域,已取得了进展。在这方面成 功的例子如AT&T公司为控制机械手,研制出在单个芯片上实现的专家系统。 最早的芯片包括16条规则的ROM,控制器以及处理数据与规则的推理机。采 用2。5um线宽的CMOS工作,最初只使用了芯片面积的四分之一,改用1。 5um线宽后可容纳256条规则,建立规则时采用模糊逻辑,执行速度可达到 80000LISP,比常规专家系统快1000倍。尽管大型专家系统的造价是很昂贵的,

人工智能研究方法的文献综述

人工智能研究方法的文献综述 1、前言 本文综述了人工智能的主要研究方法,并对各方法进行分析和总结,并阐述了目前人工智能研究方法日趋多样化的研究现状。 2、主题 研究方法,对一个问题的研究方法从根本上说分为两种:其一,对要解决的问题扩展到他所隶属的领域,对该领域做一广泛了解,研究该领域从而实现对该领域的研究,讲究广度,从对该领域的广泛研究收缩到问题本身;其二,把研究的问题特殊化,提炼出要研究问题的典型子问题或实例,从一个更具体的问题出发,做深刻的分析,研究透彻该问题,再一般化扩展到要解决的问题,讲究研究深度,从更具体的问题入手研究扩展到问题本身。 人工智能的研究方法主要可以分为三类:一、结构模拟,神经计算,就是根据人脑的生理结构和工作机理,实现计算机的智能,即人工智能。结构模拟法也就是基于人脑的生理模型,采用数值计算的方法,从微观上来模拟人脑,实现机器智能。采用结构模拟,运用神经网络和神经计算的方法研究人工智能者,被称为生理学派、连接主义。二、功能模拟,符号推演,就是在当前数字计算机上,对人脑从功能上进行模拟,实现人工智能。功能模拟法就是以人脑的心理模型,将问题或知识表示成某种逻辑网络,采用符号推演的方法,实现搜索、推理、学习等功能,从宏观上来模拟人脑的思维,实现机器智能。以功能模拟和符号推演研究人工智能者,被称为心理学派、逻辑学派、符号主义。三、行为模拟,控制进化,就是模拟人在控制过程中的智能活动和行为特性。以行为模拟方法研究人工智能者,被称为行为主义、进化主义、控制论学派。 人工智能的研究方法,已从“一枝独秀”的符号主义发展到多学派的“百花争艳”,除了上面提到的三种方法,又提出了“群体模拟,仿生计算”“博采广鉴,自然计算”“原理分析,数学建模”等方法。人工智能的目标是理解包括人在内的自然智能系统及行为,而这样的系统在实在世界中是以分层进化的方式形成了一个谱系,而智能作为系统的整体属性,其表现形式又具有多样性,人工智能的谱系及其多样性的行为注定了研究的具体目标和对象的多样性。人工智能与前沿技术的结合,使人工智能的研究日趋多样化。 3、总结 人工智能的研究方法会随着技术的进步而不断丰富,很多新名词还会被提出,但研究的目的基本不变,日趋多样化的研究方法追根溯源也就是研究问题的两种方法的演变。对人工智能中尚未解决的众多问题,运用基本的研究问题的方法,结合先进的技术,不断实现智能化。人工智能与前沿技术密切联系,人工智能的研究方法必然日趋多样化。 4、参考文献 (1)人工智能技术导论廉师友西安电子科技大学出版社2007.8 (2)人工智能研究方法及途径熊才权2005年第三期 (3)人工智能学派及其在理论、方法上的观点蔡自兴1995.5 (4)人工智能研究的主要学派及特点黄伟聂东陈英俊2001第三期 (5)人工智能研究对思维学的方法论启示尹鑫苏国辉2002.10第四期

英文翻译人工智能

【PT】[J]. 【AU:】shambour,Qusai Xu, Yisi Lin, Qing Zhang, Guangquan 【AB】The web provides excellent opportunities to businesses in various aspects of development such as finding a business partner online. However, with the rapid growth of web information, business users struggle with information overload and increasingly find it difficult to locate the right information at the right time. Meanwhile, small and medium businesses (SMBs), in particular, are seeking one-to-one e-services from government in current highly competitive markets. How can business users be provided with information and services specific to their needs, rather than an undifferentiated mass of information? An effective solution proposed in this study is the development of personalized e-services. Recommender systems is an effective approach for the implementation of Personalized E-Service which has gained wide exposure in e-commerce in recent years. Accordingly, this paper first presents a hybrid fuzzy semantic recommendation (HFSR) approach which combines item-based fuzzy semantic similarity and item-based fuzzy collaborative filtering (CF) similarity techniques. This paper then presents the implementation of the proposed approach into an intelligent recommendation system prototype called Smart BizSeeker, which can recommend relevant business partners to individual business users,particularly for SMBs. Experimental results show that the HFSR approach can help overcome the semantic limitations of classical CF-based recommendation approaches, namely sparsity and new cold start item problems. 【题目】:基于Web的个性化推荐系统使用的业务合作伙伴---模糊语义技术 【刊登杂志】: 计算智能 【摘要】网站为企业在各方面的发展提供了极好的机会,例如找到一个在线的业务合作 伙伴。然而,随着网络信息的快速增长,商业用户正在和信息过载做斗争,并且在正确的时间找到正确的信息的难度在不断增加。同时,特别是中小型企业(中小企业),在当前竞争激烈的市场中从政府寻求的是一对一的电子服务。怎么为企业用户提供他们需要的的信息和服务,而不是一种未分化的海量信息?本文中就为个性化服务发展提出了一个有效的解决方法。推荐系统是实施个性化的全方位服务的一种有效的方法,近年来在电子商务中得到了广泛的提及。相应的,本文首先提出了一种混合模糊语义推荐(HFSR)的方法,这种方法结合了基于项目的模糊语义相似度和基于项目的模糊协同过滤(CF)相似的技术。本文就介绍了在一个智能推荐系统原型中该方法的实现,这个实现方法称为智能bizseeker,它可推荐相关个人商务用户的业务合作伙伴,特别是对中小企业。实验结果表明,HFSR方法可以帮助克服基于推荐的经典CF语义的限制方法,即稀疏性和冷开始新项目问题。

相关文档
最新文档