铝合金焊接技术

逆变脉冲熔化极气体保护焊机的工艺特性

1.引言:

众所周知,脉冲电流熔化极气体保护焊是在一定平均电流下,焊接电源的输出电流以一定的频率和幅值变化来控制熔滴有节奏的过渡到熔池;可在平均电流小于临界电流值的条件下获得射流(射滴)过渡,稳定地实现一个脉冲过渡一个(或多个)熔滴的理想状态—熔滴过渡无飞溅。并具有较宽的电流调节范围,适合板厚δ≥1.0mm工件的全位置焊接,尤其对那些热敏感性较强的材料,可有效地控制热输入量,改善接头性能。由于脉冲电弧具有较强的熔池搅拌作用,可以改变熔池冶金性能,有利于消除气孔,未熔合等焊接缺陷。

唐山松下引进开发的YD-350/500AG2型逆变式脉冲电流熔化极气体保护焊机,是根据以上工艺要求精心设计的。该机内置微电脑波形控制装置,实现了脉冲模式(脉冲焊接时的电流控制)和DIP模式(短路过渡时的电流波形控制)相组合的最佳匹配,可适用MIG/MAG/CO2气体保护焊,可焊接不锈钢、铝及铝合金、低合金钢、碳钢、铜和铜合金等金属材料。

2.微电脑焊接波形控制模式

2.1“有”脉冲模式—微电脑专家系统控制电弧电压和平均焊接电流(送丝速度)的变化,自动调整脉冲频率以适应熔滴过渡的变化。脉冲电流、基值电流、脉冲上升时间、脉冲下降时间和脉冲频率五项脉冲工艺参数自动寻找最佳工艺参数值,匹配组合成优化效果。

2.2“无”脉冲模式(波形控制模式)—在不选择脉冲电流焊接时,微电脑从400万种内置的焊接波形中选取最佳焊接条件,控制精度高,电弧稳定性强,最大程度地减少了焊接过程中的飞溅。

2.3 上述两种模式转换开关设在遥控盒上,便于操作。

2.4 当脉冲电流输出的时候如果发生短路(焊丝与母材)现象,在微电脑控制下优先使短路开放,然后再输出脉冲电流的控制方式如图一,使可控射流过渡更加平稳。

3. 三种焊接波形的最佳组合模式—由微电脑控制可建立软性、中性、硬性模式的电弧形态其波形如图二。

3.1软性模式电弧直径较大,其噪音小,飞溅少,电弧稳定性强。适合于宽焊缝及实芯焊丝焊接的不锈钢、低合金钢、碳钢等金属材料。

3.2中性模式电弧直径较小,电弧挺度高,集中性强。适合于半自动焊接角焊缝及薄、中板的对接焊缝;可焊接不锈钢、碳钢及铝等有色金属材料。

3.3 硬性模式电弧直径更小,电弧集中性更强,焊接波形强化控制。焊接铝及铝合金时清除氧化膜作用好,熔深大,适合铝、铜、等材料的焊接,适合于高速自动焊、机器人焊接。

3.4 三种电弧形态对焊缝宽度、熔深和余高的影响见图三(是以中性模式为基准的比率图)。

由图可知:与中性电弧相比较软性电弧的焊缝宽度宽,熔深浅;硬性电弧的焊缝宽度窄,熔深大。4.焊接工艺参数的调整:

AG2系列两款焊机,在输出特性上,基值电流维持电弧的稳定燃烧,并预热母材和焊丝;焊接脉冲电流一般高于熔滴喷射过渡的临界电流值,以达到射流(或射滴)过渡;平均电流值比临界电流值低,热输入量小;焊接电流的调节范围宽,调节平均焊接电流即调节送丝速度,既可用于薄板(δ≥1.0mm)焊接,又可用于厚板的焊接,特别是采用较粗焊丝焊接薄板送丝速度仍很稳定。AG2焊机二次(输出)接线设有无脉冲(MIG/MAG/CO2)、有脉冲两种输出端子,适合于普通低合金钢、铝及铝合金、不锈钢等金属材料的全位置焊接。

4.1操作者在焊接前可将焊丝材质(不锈钢、钢、铝),焊丝直径(Φ0.8、Φ1.0、Φ1.2、Φ1.6),气体种类(CO2、MAG)送丝速度(平均电流值)和输出控制方法(个别调整/一元化调整)等参数预选定,微电脑自动调整脉冲电流、基值电流、脉冲电流的上升和下降速度。

4.2在一元化调整状态下,微调电弧电压,控制熔滴过渡平稳、无飞溅时为较佳工艺参数。

4.3依据焊丝材质和工艺需要选择软性、中性、硬性三种脉冲控制模式,最佳电弧形态和理想的熔滴过渡及熔池成形的状态。

4.4 调整脉冲频率的强、弱状态(无脉冲时是调整控制波形的强、弱状态),使电弧更加集中,

适合操作者优选的条件。

5. 焊接工艺规范的选择

5.1 铝及铝合金的焊接在亚射流过渡(即电弧电压较低)状态下,熔滴在射流过渡时伴随微量的

短路过渡形式,焊丝熔化喷射指向好,焊缝、=-=,熔滴喷射过渡平稳,无飞溅;焊缝成形美观,

焊接效率高,焊缝内外质量好。

5.3 CO2焊接实心、药芯焊丝,选用无脉冲模式;在微电脑波形控制下,焊接飞溅较小,焊缝成

形美观。

6. 小结

唐山松下引进开发的YM-350/500AG2逆变脉冲熔化极气体保护焊机,具有三种电弧形态模

式,电脑自动优化选择最佳工艺参数配合,脉冲电流焊接时熔滴过渡始终处于可控射流(射滴)

状态,实现无飞溅焊接,焊接效率高,焊缝成形好,焊缝及热影响区的组织和性能得到改善,为

焊接优质工程提供了可靠保证。

* 产品名称:全数字控制脉冲MIG/MAG焊机

* 产品型号:YD-400GE2

* 可焊材料:铝、碳钢、不锈钢

* 简要说明:

产品特点

1、全数字技术实现优异的焊接性能(最优化、高精度脉冲波形控制,实现1脉冲滴下的滴溶过渡,在低电流域电弧的稳定性得以提高)

①从薄板到厚板可广范围对应。

②搭载有各种专用的焊接条件。

③可实现铝、不锈钢、碳钢的高品质焊接。

2、引弧性能提高

①采用CDM方式引弧(引弧时对焊丝送给的高精度控制)。

②新FTT控制使焊丝端头形状均一一致,实现稳定引弧。

3、采用带有高精度编码器电机的送丝机使其可以免受周围环境温度及电压变化等外在因素影响,始终保持稳定均衡的送丝。

4、在手边可进行所有设定的控制器(通过全数字实现高精度的条件再现)

①通过1台的条件设定可使几台焊机再现同一条件。

②通过旋转编码器和液晶可以将数字式的细微设定完全在手边进行。

③电流电压调整可用独立刻度盘设定。

④由于是数字显示所以可方便的设定所喜好的条件。

⑤通过LED显示灯警告显示电机送丝负荷变动,焊接条件负荷变动。

⑥由于核心器件内藏于控制器内,从粉尘和油污引起的故障中解放出来。

⑦一元化/个别调整

⑧可切换日语/英语表示。

⑨带有保持设定的焊接条件的“锁定”功能。

⑩初期电流可独立设定。

5、有效减少焊接不良的“品质管理功能”

①具有存储调用32种焊接条件功能,在多品种,少量焊接中发挥威力!

②通过控制器可轻松确认各种焊接数据。

③用电脑通信进行“数据管理”。

6、与松下机器人连接实现更出色的焊接

①设定最合适的焊接特性,通过串行通信对应,可以从机器人侧实现焊接特性的微调整设定。

②使用FORCE送丝辅助装置使焊接能力近一步提高。

额定规格

MIG焊接的清洁作用

在氩气环境下,通过电极正、母材负的极性使电

弧产生,母材阴极点不产生于焊丝正下方的溶池

内,而分散发生于熔池周围。该阴极点选择容易

放出电子的母材表面的金属氧化物而产生。氩气

的阳离子与母材碰撞,破坏氧化物,工件要求新

的氧化物向母材移动,熔池周围的皮膜被破坏,

露出清洁的金属表面。这称为清洁作用。与铝TIG

焊接电极为正的现象相同。

熔池爆炸现象

MIG焊接时,焊接电流达到某一个值时,只是母材

上的分散阴极点不能够提供充足的焊接电流,电弧

集中于焊丝正下方的一点,引起熔池内金属的上扬

现象。该现象称为熔池爆炸现象,在铝焊接时显著。

脉冲MIG焊接

MAG/MIG焊接,针对于焊丝直径,焊接电流超过某个电流值时,熔滴过渡由熔球过渡变为射流过渡。此时的电流称为临界电流。

在临界电流以下的电流领域,成为小颗粒过渡。使焊接电流波形变成脉冲状、脉冲电流的峰值在临界电流以上、平均电流在临界电流以下。这样,利用射流过渡可以焊接比较薄的薄板,从而减少飞溅、美化焊缝外观、实现比TIG 焊接更高效率的焊接。

MIG焊接的优缺点:

适用材质:

Al、SUS、铜合金

松下MIG焊机简介:

YD-350GE2-------全数字控制,带脉冲,焊接条件记忆存储,数字通讯YD-350/500AG2----微电脑控制,带脉冲,专家数据库

注:

1) 焊接纯铜(紫铜)时,焊前需预热400-600℃

2)焊接硅青铜、铝青铜时需配装200KR2焊枪

3) YM-600KH2HGV(水冷)焊铝需换装尼龙送丝软管

21世纪航天工业铝合金焊接工艺技术展望

摘要:简要回顾了航天工业铝合金焊接技术的发展,并对国内外铝合金在航天器上的应用情况进行了综述和分析。介绍了铝合金焊接技术的最新发展和应用前景,其中包括变极性等离子焊、局部真空电子束焊、气脉冲焊接技术、搅拌摩擦焊、焊接修复技术以及焊接工艺裕度和焊接结构安全评定技术。

关键词:铝合金;焊接;航天

1 前言

铝合金不但具有高的比强度、比模量、断裂韧度、疲劳强度和耐腐蚀稳定性,同时还具有良好的成形工艺性和良好的焊接性,因此成为在航天工业中应用最广泛的一类有色金属结构材料。

例如,铝合金是运载火箭及各种航天器的主要结构材料。美国的阿波罗飞船的指挥舱、登月舱,航天飞机氢氧推进剂贮箱、乘务员舱等也都采用了铝合金作为结构材料。我国研制的各种大型运载火箭亦广泛选用了铝合金作为主要结构材料。

航天工业铝合金焊接技术的发展和应用与材料的发展有着密切的联系,本文将简要回顾航天工业铝合金焊接技术的发展并介绍几种极有应用前景的铝合金焊接工艺技术。

2 铝合金焊接技术的发展

2.1 LD10CS铝合金焊接回顾

早期的一些导弹和远程运载火箭的推进剂贮箱结构材料主要采用Al Mg系列合金,特别是退火和半冷作硬化状态的LF3、LF6防锈铝的应用最为普遍。这两种铝合金都具有优良的焊接性能〔1〕。

随着航天技术的发展,运载火箭的推进剂贮箱结构材料,从使用非热处理强化的防锈铝,转变到使用可热处理强化的高强度铝合金。LD10CS合金已在多种大型运载火箭和固体导弹上获得成功的应用。由于它的超低温性能较好,因此在三子级的液氢、液氧推进剂贮箱上也获得了应用。

需要指出的是LD10合金的焊接性能较差,焊接时形成热裂纹的倾向较大,对焊接过程中的各种因素也比较敏感,焊接接头的断裂韧度较低,特别是当焊缝部位存在焊接缺陷时,液压强度试验时试验件经常发生低压爆破。

20世纪70年代,在研制LD10合金火箭推进剂贮箱初期,在焊接工艺方面曾遇到了极大的困难。在“三结合”攻关中发明的“两面三层焊”工艺(正面打底、盖面,背面清根封焊)使焊接接头性能达到了设计要求。在LD10焊接生产实践中总结得出:如果焊接接头区的延伸率不小于3%,则焊接接头的塑性可以满足使用要求。在此后的许多年中,一直以“延伸率不小

于3%”作为一个重要的验收指标。

几十年来,焊接工艺主要是氩弧焊(TIG),包括手工氩弧焊和自动氩弧焊。从焊接工艺方面看,为了减少焊接结构的焊接残余应力和变形,通常在焊接工艺选择上都尽量减少焊接热输入量。特别是对于热处理强化铝合金,由于焊接热过程的作用,在焊接热影响区存在软化

区,塑性较好,强度较低。焊接接头强度系数为0.5~0.7。

为什么LD10CS贮箱采用两面三层焊工艺?理论分析和实践结果表明,若不采用此焊接方法,就会造成LD10CS铝合金焊接接头塑性较差,且焊缝背面焊趾处易出现裂纹。两面三层焊时,清根和封底焊可消除此种裂纹。同时由于热输入量较大,热影响区发生不同程度的退火或过时效,使硬度降低,塑性提高,焊接拉伸试样断裂的位置是焊接软化区。这样在结构中,焊接接头在复杂的应力状态下以软化区的塑性和变形补偿了熔合区塑性的不足。但贮箱焊缝补焊后,有时仍发生低压爆破。

由于两面焊的特殊要求,限制了自动焊及焊接新技术(如真空电子束焊、变极性等离子焊等)的应用。这是因为,氩弧焊焊接热输入量比高能束的真空电子束焊要大,同时考虑到焊接接头的结构承载适应能力,难以应用焊接热输入较为集中的焊接新技术,制约了焊接新技术的

应用。

在焊接生产中,铝合金焊缝内常见的缺陷为焊缝气孔。氢是铝及其合金熔焊时产生气孔的主要原因。基体金属中含氢量、焊丝及基体金属表面氧化膜吸附的水分以及弧柱气氛中的水分都是焊缝气孔中氢的重要来源。航天焊接工作者经过不懈的攻关和努力保证了航天焊接产品的交付和发射成功。但是,由于诸多因素和条件的限制,在生产中个别贮箱仍存在气孔超差。

在焊接材料方面,国外使用的是焊接专用板材,基体金属的氢含量小于2×10-7 。而国内

铝合金板材制造技术条件中尚无对氢含量的要求。

2.2 铝合金2219和铝锂合金焊接概述

2219高强铝合金的突出特点是焊接性能好,从-253℃到+200℃均具有良好的力学性能、抗应力腐蚀性能,对焊接热裂纹的敏感性较低,焊接接头塑性及低温韧性较好。在美国已作为

推进剂贮箱的主要结构材料,美国土星Ⅴ号Ⅰ级贮箱等均采用了2219铝合金。前苏联在能源号和暴风雪号航天飞机均大量采用了1201(相当于2219)铝合金。

国内研制的S147铝合金与2219铝合金相类似,生成焊接裂纹的倾向性较低,但生成气孔的敏感性较强,尤其是熔合区、密集的微气孔是影响焊接接头性能的主要缺陷。

随着航天技术的发展,对铝合金的强度和减重提出了更高的要求,铝锂合金在近几十年得到了迅猛的发展。因为每加入1%Li,可使铝合金质量减轻3%,弹性模量提高6%,比弹性模量增加9%,这种合金与在飞机产品上普遍使用的2024和7075合金相比,密度下降7%~11%,弹性模量提高12%~18%。前苏联的1420合金与广泛使用的杜拉铝(硬铝)Д16(2024)合金相比,密度下降12%,弹性模量提高6%~8%,抗腐蚀性好,疲劳裂纹扩展速率低,强度、屈服强度和延伸率相近、焊接性较好〔2〕。

前苏联航空材料研究所(ВИАМ)И.Н.Фридляндер等人于20世纪60年代在发明了Al Mg Li系的1420合金不久,就对该合金的焊接开展了研究。70年代对该合金的焊接研究已经取得了成果,他们认为这种合金氩弧焊时,可采用AM г6、AM г6T和1557焊丝,

焊接接头的强度系数达到0.7以上。焊前、焊后热处理对焊接接头强度有很大的影响,淬火状态下焊接的接头强度比淬火及人工时效状态焊接的强度低78.5 MPa,焊后淬火及人工时效又可以使焊接接头的强度系数达到0.9~1.0。1980年1420合金被用于制造米格-29超音速战斗机的焊接机身、油箱、座舱,这使飞机的重量明显降低了24%。至今,1420合金已成功使用了30多年,广泛用于军用、民用飞机和火箭上〔3〕。

20世纪80年代俄罗斯研制了高强度、高模量的1460(Al Cu Li)合金,这种合金由于加入了Sc元素强化,使晶粒和亚晶结构变化,拉伸强度提高30~50 MPa,焊接性能明显改善。1460合金焊接工艺与1420合金基本相同,可采用1201(Al Cu Mn)合金焊丝焊接,也可在焊丝中添加钪(Sc)元素。在对多种成分比较试验后,推荐应用CB-1207或CB-1217焊丝,这种焊丝的成分是在AL Cu基础上添加Cu、Sc、Zr、Ti等,具体成

分有待于进一步了解。应用此种焊丝可以显著地降低焊缝热裂纹敏感性,氩弧焊焊接接头强度大于250 MPa,焊接接头强度系数大于0.5,焊后热处理焊接接头的强度、硬度增加。〔4~

8〕 这种焊丝可以保证无裂纹和细晶粒结构的接头,合理的选择焊接工艺和焊前准备可得到无气孔的焊接接头。

美国发现者号航天飞机的外贮箱采用了2195(Al Cu Li Mg)高强铝锂合金,取代原来使用了25~40年的2219合金。新设计的贮箱SLWT(Super Light Weight Tank超轻

重量贮箱),比原来的贮箱减重5%,即3 405 kg,其中LH2箱减重1 907 kg、LO2箱减重736 kg,箱间段减重341 kg,其他减重422 kg。每减轻1 kg质量可以增加1 kg有效载荷,这样就增加3 405 kg的有效载荷。美国总共生产120台SLWT,完成全部航天飞行计划〔9~10〕。

2195-T8合金的贮箱采用4043焊丝,变极性等离子弧焊(VPPA)焊接。VPPA具有高的电弧温度、高的电弧电压和更集中的热量。VPPA焊接2195-T8铝锂合金的关键是焊缝背面保护,铝锂合金含有活泼的Li元素,如焊接时背面保护不好,极易氧化。马歇尔飞行中心研制出长229 mm、宽25.4 mm、高152 mm的不锈钢“保护盒”,“保护盒”在焊接时随焊枪行走,使焊缝区域氧气少于0.5%。另外,研制了直径51 mm、长229 mm的不锈钢管装在工件背面,焊接时随焊枪移动,也可有效保护背面焊缝。如果这两种保护装置同时使用,效果更好。

3 极具前途的几种工艺技术

3.1 变极性等离子弧焊接技术(VPPA)

1978年,美国NASA宇航局马歇尔宇航中心决定变极性等离子弧焊技术部分取代钨极氩弧焊工艺焊接航天飞机外贮箱。航天飞机外贮箱材料为2219铝合金,共焊接了6400 m焊缝,

经100% X射线检测,未发现任何内部缺陷,焊缝质量比TIG多层焊明显提高。

变极性等离子焊接技术用于铝合金焊接,单道焊接铝合金厚度可达25.4 mm。其工艺特点是在焊接过程中,在焊接熔池中心存在一穿透的小孔,而且在实际生产中通常采用立向上焊工艺,既有利于焊缝的正面成形,又有利于熔池中氢的逸出,减少气孔缺陷。因此被称为“零

缺陷焊接”。

“八五”期间,在引进国外某公司的变极性等离子焊接系统的基础上,进行了LF6、LD10铝合金平板(厚3 mm、6 mm、10 mm)焊接工艺试验〔11〕。

“九五”期间,与哈尔滨工业大学联合开展了变极性等离子焊接技术研究,研制了变极性等离子焊接设备样机,并进行了LF6和LD10铝合金板材(厚3 mm、5 mm、12 mm)焊接工艺试验,完成了带有纵缝和环缝的贮箱模拟件焊接,解决了环缝焊接时起弧打孔和收弧填孔及焊缝首尾相接的难题,焊接模拟件通过了液压试验,将变极性等离子焊接技术的工程应用向前推进了一大步。

随着2219铝合金和2195铝锂合金的应用,在未来中厚度的大型贮箱焊接生产中,变极性等离子焊接技术有着广阔的应用前景。

3.2 局部真空电子束焊接技术

由于真空电子束焊接工艺是将被焊工件置于真空环境中进行焊接,因此可以得到优质的焊缝。同时,电子束高的能量密度使焊缝较窄,深宽比大,焊接应力和变形较小,在工业各领域尤其是国防工业中得到了广泛的应用。

但对于一些大型构件如运载火箭贮箱壳体等,如果采用真空电子束焊接工艺,则需要较大的真空室,其容积可达数百立方米,这种电子束焊接设备造价很高。为了解决这一问题,国外开始设计和应用局部真空电子束焊接设备,不是将被焊工件整体放入真空室,而是在焊缝局部建立真空环境,从而完成焊接。

前苏联将局部真空电子束焊接技术应用于不同类型和尺寸火箭燃料贮箱壳体的焊接,在壳体的纵缝、对接环缝及法兰环缝焊接中,有7种类型焊缝(纵缝、对接环缝、法兰环缝)应用局部真空电子束焊接工艺。20世纪90年代初已用于Φ2.5 m直径壳体环缝焊接,能源号火箭贮箱纵缝采用局部真空电子束焊接工艺,壁厚为42 mm,局部密封采用磁流体密封、

橡胶圈密封等技术。

国内在“九五”期间,与中科院电工所合作研制了国内第1台法兰环缝局部真空电子束焊机(专利号:ZL002631776.6)〔12〕。电子枪与上真空室采用动密封结构,工件与上、下真空室间为静密封结构。焊接时电子枪可以实现极坐标运动。电子枪径向移动采用步进电机驱动,光栅尺检测位移;圆周方向转动通过交流伺服电机驱动,光码盘检测器角位移。二次电子焊缝对中系统用于实现焊缝轨迹示教。采用两级微机控制,可编程序控制器(PLC)控制焊接参数可实现柔性焊接,即可焊接100~300 mm直径的法兰环缝。局部真空室的真空度达到

5×10-3Pa,高于国外同类产品水平。

在未来的2219铝合金和2195铝锂合金航天器厚壁结构中,特别对于焊接残余应力和变形要求较高的法兰环缝焊接生产中,局部真空电子束焊接技术应用对焊接质量的提高有着极为重要的意义。

3.3 气脉冲TIG和MIG焊接技术

在航天工业中,铝合金焊接中应用较广的TIG和MIG工艺,保护气体采用氩气和氦气,其中以氩气应用较多。

就TIG焊而言,有交流氩弧焊和直流正接氦弧焊两种工艺。氦(He)和氩(Ar)相比,其最小电离能高,在其它条件和参数相同时,电弧电压较高。因此,氦弧焊电弧温度高,焊接热输入量大,也具有更高的能量密度,与氩弧焊相比熔深较大,焊接缺陷特别是焊接气孔较少。

据资料介绍,由于直流正接氦弧焊没有交流氩弧焊阴极雾化去除氧化膜的作用,氧化膜的破坏程度取决于电弧长度的大小,故直流正接氦弧焊采用短弧焊去除氧化膜。这样使得焊接时填丝变得较为困难,加上设备等因素的制约,直流正接氦弧焊一直未大面积推广应用。

为了利用氦气电弧热高的优点并避免纯氦带来的缺点,国外采用气脉冲Ar+He TIG和MIG 焊接技术焊接铝合金,可大大减少焊接气孔。

借鉴国外的经验,近几年开始进行气脉冲TIG焊接技术研究,初步试验表明,采用气脉冲(Ar+He)TIG焊接工艺焊接S147铝合金抑制焊接气孔方面有明显的效果。不开坡口可一次焊透7 mm平板,且表面光泽与氩弧焊相同,避免直流正接氦弧焊焊缝表面发暗。焊接工艺性、可操作性也与氩弧焊无异,弧长也无特别限制。这对于未来型号将应用对气孔较敏感

的S147铝合金和2195铝锂合金有极大的应用价值。

3.4 搅拌摩擦焊技术

宇航工业飞行器结构大量使用铝合金,由于某些材料熔焊焊接性不良不得不采用铆接结构。英国焊接研究所(TWI)1991年发明的搅拌摩擦焊为此类材料连接提供了一个新思路〔13〕。由于此方法属于固相焊,特别适合应用于熔化焊接性差的有色金属。相对于熔化焊接方法,不会产生与熔化有关的焊接缺陷,如热裂纹和气孔。但由于方法的限制,其应用仅限于简单结构的工件。

搅拌摩擦焊的原理是,利用摩擦发生的热,在高速旋转的搅拌头特形指棒周围的金属迅速被加热,并形成了很薄的热塑性金属层。随着搅拌头的移动形成了搅拌摩擦焊的焊缝。目前,

已成功地进行了搅拌摩擦焊研究的铝合金包括:2000系列(Al Cu)、5000系列(Al

Mg)、6000系列(Al Mg Si)、7000系列(Al Zn)、8000系列(Al Li)。美

国波普公司的空间防御实验室在1998年将此技术用于火箭某些部件焊接。目前,ESAB公司正在制造可供商业应用的搅拌摩擦焊机,计划于2002年安装在TWI,用来焊接尺寸为8 m×5 m的工件,预计可焊接的工件厚度为1.5~18 mm。国内某些院校和研究所也开始了这方面的研究工作,有理由相信,国内最具备搅拌摩擦焊技术应用前景的将是航天工业。

3.5 焊接修补技术

铝合金结构件的焊接修补是航天器在生产和使用中不可避免地会遇到的问题。在焊接生产中,由于材料、结构、设备、工艺及环境条件等方面的偶然因素,在焊后会发现焊缝中存在超出标准的焊接缺陷,这就需要补焊。传统的手工TIG焊方法虽然操作简便、易行,但由于局部焊接热输入量较大,可能产生晶粒长大,局部韧性降低,同时在补焊部位引起较大的残余应力,往往成为“低压爆破”的裂源。另一方面,未来可重复使用运载器,在重复使用后,

可能在某些构件局部出现裂纹等缺陷,需要进行焊接修补,此时在运载器外部覆有绝热材料,对温升有极严格的要求,必须采取热输量集中而且较小的焊接工艺。

1995年英国剑桥焊接研究所发明摩擦塞焊技术〔14〕,洛马公司和国家宇航局马歇尔飞行中心进行了补焊工艺研究,2000年已用于外贮箱焊接修补。这是一种新的焊接修补技术,在焊缝缺陷位置,钻一楔形孔,将一个与孔的形状相类似的楔形旋转塞插入孔内,高速旋转时完整的楔形塞与孔表面摩擦生热而实现焊接。焊接参数包括塞的直径、旋转速度、施加的压力和塞的位移。它不同于熔焊修补,在缺陷去掉之前,要反复打磨和填充,焊接修补比通常的TIG熔焊修补强度高20%,改善了补焊部位的力学性能,而且不易产生焊接缺陷。采用这种修补工艺还可大大减少修补时间,降低成本。

此外,也有人提出激光补焊的设想。铝合金激光焊的难点在于铝合金对CO2激光束(波长为10.6 μm)极高的表面初始反射率(超过90%以上),对YAG激光束(波长为1.06μm)

反射率接近80%。而且,铝合金激光束还易产生气孔。这些问题都有待于进行深入的研究工作。

3.6 焊接工艺和焊接结构安全评定技术

由于航天产品的特殊性,对产品质量和可靠性极为重视。随着焊接技术的发展,对航天产品焊接质量和可靠性不断提出新的要求。在实际生产中,焊接工艺的优劣不仅要看其是否能够完成所针对结构的焊接,而且要看其是否具有相对稳定的使焊接质量达到产品验收标准的能力。“焊接性”概念回答了是否能实现焊接的问题;90年代,航天焊接工作者提出的“焊接工艺裕度”概念回答了一种焊接工艺是否能达到焊接质量标准的问题〔15〕。换言之,“焊接工艺裕度”概念是焊接工艺评定的基础。例如:可根据焊接工艺裕度的评价方法对其保证焊接质量的能力进行评定,分为“合格工艺”、“限用工艺”以及“禁用工艺”等。当然,对某一特定工艺进行评定,仍需进行必要的实验工作,首先要找准影响焊接质量的关键因素,而后方可对这些因素进行综合评定。

由于目前技术水平和生产条件的限制,仅依靠焊后对焊缝的无损检测尚不能完全评定焊接接头的全部性能。在实际生产中,目前对铝合金焊缝也只检测气孔、夹杂、裂纹、未焊透等几类缺陷,而且难以做到100%检测,尤其对于角焊缝,尚难进行有效的检测。即使对于铝合金焊接时常见的气孔缺陷,X射线的分辨率目前也只能检测到0.2 mm以上气孔,而对于对接头塑性影响较大的微气孔尚不能做到充分判定。总之,焊接工艺仍是决定焊接质量的直接因素,对焊接工艺在生产中保证质量能力进行科学的评定是非常必要的。

针对焊接结构的可靠性评定,是近20年焊接结构安全评定技术不断发展。这里仅介绍“合于使用”原则的概念〔16〕。“合于使用”原则是针对“完美无缺”原则而言的。在焊接结构发展初期,要求结构在制造和使用过程中均不能有任何缺陷存在,即结构应完美无缺,否则就要返修或报废;后来曾任英国焊接研究所所长的Edgar Fuchs通过大量实验证明:在铝合金焊接接头中,即使存在某种程度的气孔,对接头强度的影响可能微乎其微,而并非必要的返修补焊却会造成局部残余应力的增大和微观组织结构的不利变化,导致使用性能的降低。基于

这一研究,英国焊接研究所首先提出了“合于使用”的概念。在断裂力学出现和广泛应用后,这一概念成为焊接结构长期研究的中心课题之一,现已逐渐发展成为原则,并且有了明确的定义。在一些国家已建立了应用于焊接结构设计、制造和验收的“合于使用”原则的标准。

在“合于使用”评定标准中,均需输入载荷、类裂纹缺陷和断裂韧度3个参量,并可粗略地将安全评定方法分为断裂力学方法和结构试验方法。

4 结束语

铝合金是航天产品的主要结构材料之一。随着材料技术的发展,铝合金家族不断壮大。在美国和俄罗斯,2219,1201,1420铝合金都已获得了广泛的应用,2195铝合金也已开始应用。在国内,S147和2195等在未来航天型号中的应用前景不容忽视。载人航天和可重复使用航天器对焊接结构的可靠性提出了更高的要求。随着这一进程的出现,新焊接技术在航天工艺焊接生产中的应用必将获得突飞猛进的发展,焊接自动化和高的质量及可靠性保证能力将是21世纪对焊接技术的基本要求。尤其是铝合金中厚板和厚板焊接技术在近几年将成为航天焊接工作者研究和推广的热点之一。

铝合金焊接技术要点及注意事项

铝及铝合金焊接特点及焊接工艺 铝合金由于重量轻、强度高、耐腐蚀性能好、无磁性、成形性好及低温性能好等特点而被广泛地应用于各种焊接结构产品中,采用铝合金代替钢板材料焊接,结构重量可减轻50 %以上。因此,铝及铝合金除广泛的应用于航空、航天和电工等领域外,同时还越来越多的应用于石油化学工业。但是铝及铝合金在焊接过程中,易出现氧化、气孔、热裂纹、烧穿和塌陷等问题。此类材质是被公认为焊接难度较大的被焊接材料,特别是小径薄壁管的焊接更难掌握。因此,解决铝及铝合金的这些焊接缺陷是施工过程中必须解决的问题。 1铝及铝合金的焊接特点 铝材及铝合金焊接时由固态转变为液态时,没有明显的颜色变化,因此在焊接过程中给操作者带来不少困难。因此,要求焊工掌握好焊接时的加热温度,尽量采用平焊,在引(熄)弧板上引(熄)弧等。特别注意以下几点: 1.1强的氧化能力 铝与氧的亲和力很强,在空气中极易与氧结合生成致密而结实的AL2O3薄膜,厚度约为0.1μm,熔点高达2050℃,远远超过铝及铝合金的熔点,而且密度很大,约为铝的1.4倍。在焊接过程中,氧化铝薄膜会阻碍金属之间的良好结合,并易造成夹渣。氧化膜还会吸附水分,焊接时会促使焊缝生成气孔。这些缺陷,都会降低焊接接头的性能。为了保证焊接质量,焊前必须严格清理焊件表面的氧化物,并防止在焊接过程中再氧化,对熔化金属和处于高温下的金属进行有效的保护,这是铝及铝合金焊接的一个重要特点。具体的保护措施是: a焊前用机械或化学方法清除工件坡口及周围部分和焊丝表面的氧化物; b焊接过程中要采用合格的保护气体进行保护; c在气焊时,采用熔剂,在焊接过程中不断用焊丝挑破熔池表面的氧化膜。 1.2铝的热导率和比热大,导热快 尽管铝及铝合金的熔点远比钢低,但是铝及铝合金的导热系数、比热容都很大,比钢大一倍多,在焊接过程中大量的热能被迅速传导到基体金属内部,为了获得高质量的焊接接头,必须采用能量集中、功率大的热源,有时需采用预热等工艺措施,才能实现熔焊过程。 1.3线膨胀系数大 铝及铝合金的线膨胀系数约为钢的2倍,凝固时体积收缩率达6.5%-6.6%,因此易产生焊接变形。防止变形的有效措施是除了选择合理的工艺参数和焊接顺序外,采用适宜的焊接工装也是非常重要的,焊接薄板时尤其如此。另外,某些铝及铝合金焊接时,在焊缝金属中形成结晶裂纹的倾向性和在热影响区形成液化裂纹的倾向性均较大,往往由于过大的内应力而在脆性温度区间内产生热裂纹。这是铝合金,尤其是高强铝合金焊接时最常见的严重缺陷之一。在实际焊接现场中防止这类裂纹的措施主要是改进接头设计,选择合理的焊接工艺参数和焊接顺序,采用适应母材特点的焊接填充材料等。 1.4容易形成气孔 焊接接头中的气孔是铝及铝合金焊接时极易产生的缺陷,尤其是纯铝和防锈铝的焊接。氢是铝及铝合金焊接时产生气孔的主要原因,这已为实践所证明。氢的来源,主要是弧柱气氛中的水分、焊接材料及母材所吸附的水分,其中焊丝及母材表面氧化膜的吸附水分,以焊缝气孔的产生,常常占有突出的地位。 铝及铝合金的液体熔池很容易吸收气体,在高温下溶入的大量气体,在由液态凝固时,溶解度急剧下降,在焊后冷却凝固过程中来不及析出,而聚集在焊缝中形成气孔。为了防止气孔的产生,以获得良好的焊接接头,对氢的来源要加以严格控制,焊前必须严格限制所使用焊接材料(包括焊丝、焊条、熔剂、保护气体)的含水量,使用前要进行干燥处理。清理后的母材及焊丝最好在2-3小时内焊接完毕,最多不超过24小时。TIG焊时,选用大的焊

铝合金焊接技术

铝合金焊接技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. MIG、TIG能够得到良好的焊接接头,但是,这两种方法却有熔透能力差、焊接变形大、生 产效率低等缺点。近年来,很多科技工作者开始探讨铝合金焊接的新方法,如激光焊、双光 束激光焊、激光-电弧复合焊以及搅拌焊摩擦等,下面主要介绍这四种焊接方法的主要特点。 1、铝合金的激光焊 随着大功率、高性能激光加工设备的不断开发,铝合金激光焊接技术发展很快,与传统的 TIG、MIG焊相比,激光焊接铝合金具有以下优点; (1)能量密度高,热输入量小,焊接变形小,能得到熔化区和热影响区窄而熔深大的焊缝; (2)冷却速度快,能得到组织微细的焊缝,故焊接接头性能良好; (3)焊接速度快、功能多、适应性强、可靠性高,且不需要真空装置,所以在焊接精度、 效率、自动化等方面具有无可比拟的优势。 激光有很高的能量密度,焊接铝合金可以有效防止传统焊接工艺产生的缺陷,强度系数提高 很大。但激光器功率一般都比较小,对铝合金厚板的焊接困难,同时铝合金表面对激光束的 吸收率很低,要达到深熔焊时存在阀值问题,所以工艺上有一定难度。 2、铝合金的激光-电弧复合焊 虽然激光焊接铝合金有许多优势,但仍存在较大的局限性,如设备成本高、接头间隙允许度 小、工件准备工序严等。为了更有效地焊接铝合金,人们发展了激光-电弧复合焊工艺。激 光-电弧复合主要是激光与TIG电弧、MIG电弧及等离子体复合。铝合金激光-电弧复合焊

铝合金焊接工艺

铝合金焊接工艺 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

铝合金焊接工艺 铝合金具有较高的比强度、断裂韧度、疲劳强度和耐腐蚀稳定性,并且工艺成形性和焊接性能良好,MIG焊是铝合金焊接的主要方法之一。由于铝合金表面华丽的色泽等诸多优点而被广泛应用于航空、航天及其它运载工具的结构材料;如运载火箭的液体燃料箱,超音速飞机和汽车的结构件以及轻型战车的装甲等。本文主要研究了MIG焊接6063铝合金的工艺方法。 焊接材料 焊接所采用的母材为6063铝合金,焊接壁厚在3mm以上时,开V形坡口,夹角为60°~70°,空隙不得大于1mm,以多层焊完结;焊丝所用的材料为5356铝合金焊丝;壁厚在3mm以下时,不开坡口,不留空隙,不加填充丝;焊接薄铝件, 最好是用低温铝焊条WE53。 焊前准备 坡口加工 铝材可采用机械或等离子弧等方法切割下料。 坡口加工采用机械加工法。加工坡口表面高应平整、无毛刺和飞边。 坡口形式和尺寸根据接头型式,母材厚度、焊接位位置、焊接方法、有无垫板及使用条件。 焊接工艺参数的选择 应在焊接工艺规程规定的范围内正确选用焊接工艺参数

表1手工钨术氩弧焊接工艺参数 焊前清洗 首先,用丙酮等有机溶液除去油污,两侧坡口的清理范围不小于50mm,坡口及其附近(包括垫板)的表面应用机械法清理至露出金属光泽。焊丝去除油污后,应采用化学法除去氧化膜,可用5%~10%的NaOH溶液在70℃下浸泡30~60s,清水冲洗后,再用10%的HNO3常温下浸2min,清水冲洗干净后干燥处理。清理后的焊件、焊丝在4h内应尽快完成施焊。 焊接工艺要求 定位焊缝应符合下列规定: 1)焊件组对可在坡口处点焊定位,也可以坡口内点固。焊接定位焊缝时,选用的焊丝应与母材相匹配。 2)定位焊缝就有适当的长度,间距和高度,以保证其有足够的强度面不致在焊接过程中开裂。 3)定位焊缝如发现缺陷应及时处理。对作为正式焊缝一部分的根部定位焊缝,还应将其表面的黑料,氧化膜清除,并将两端修整成缓坡型。

铝合金焊接技术

钛合金焊接技术 日期:08-12-10 09:00:09 作者:鲜雪强川航机务部 由于钛合金低重量、强度高、耐腐蚀性优异,又具有与先进复合材料在热学、电化学方面的相容性,一直是航空、宇航工业上应用的重要结构材料。焊接作为钛合金加工中的重要手段,在提高材料利用率、减轻结构重量、降低成本等方面有独特的优势,因此有必要研究飞机结构修理中的钛合金焊接技术。关键词:焊接、疲劳性能、残余应力、疲劳寿命 一、钛合金焊接的重要性 疲劳断裂是材料在交变载荷(或应力)作用下发生的破损断裂。国内外研究表明,飞机结构疲劳破坏是飞机主要破坏形式。早期设计的飞机只考虑静强度问题,直到上个世纪五十年代,随着航空事业的不断发展,飞机性能不断提高,飞机的使用要求不断严格,飞机在使用过程中疲劳破坏与安全可靠性之间的矛盾逐渐暴露出来。 焊接是一种运用(多种情况下为局部)加热或加压手段、添加或不添加填充材料将构件不可拆卸的连接在一起,或在基材表面堆敷覆盖层的加工工艺。焊接技术广泛的应用于国民经济的各个部门,如机械工程、桥梁工程、压力容器船舶工程、航空航天等领域。焊接结构在现代工业中应用越来越广泛,无论是在航天领域还是在一般的工程领域,无论是小部件还是大型结构,都在不断扩大焊接结构的比重。例如,飞机中央翼焊接下壁板是关键承力构件,承受机翼传来的弯矩、扭矩、剪力和油箱压力的作用;在国外第四代战斗机中钛合金含量已达到40%左右。而对于钛合金焊接结构疲劳特性与寿命评估技术的研究则是为实现钛合金结构在先进飞机上的合理使用,所必不可少的前提条件之一。 二、焊接区域材料性能的确定 焊接接头由焊缝、热影响区、母材组成,是一种非均质材料,各向异性。热影响区是焊缝到母材的过渡区域,其材料性能也介于焊缝和母材之间。

几种铝合金焊接先进工艺

铝合金焊接的几种先进工艺:搅拌摩擦焊、激光焊、激光- 电弧复合焊、电子束焊。针对于焊接性不好和曾认为不可焊接的合金提出了有效的解决方法,几种工 艺均具有优越性,并可对厚板铝合金进行焊接。 关键词: 铝合金搅拌摩擦焊激光焊激光- 电弧复合焊电子束焊 1 铝合金焊接的特点 铝合金由于重量轻、比强度高、耐腐蚀性能好、无磁性、成形性好及低温性能好等特点而被广泛地应用于各种焊接结构产品中,采用铝合金代替钢板材料焊接,结构重量可减轻50 %以上。 铝合金焊接有几大难点: ①铝合金焊接接头软化严重,强度系数低,这也是阻碍铝合金应用的最大障碍; ②铝合金表面易产生难熔的氧化膜(Al2O3 其熔点为2060 ℃) ,这就需要采用 大功率密度的焊接工艺; ③铝合金焊接容易产生气孔; ④铝合金焊接易产生热裂纹; ⑤线膨胀系数大,易产生焊接变形; ⑥铝合金热导率大(约为钢的4 倍) ,相同焊接速度下,热输入要比焊接钢材大 2~4 倍。 因此,铝合金的焊接要求采用能量密度大、焊接热输入小、焊接速度高的高效 焊接方法。 2 铝合金的先进焊接工艺 针对铝合金焊接的难点,近些年来提出了几种新工艺,在交通、航天、航空等行业得到了一定应用,几种新工艺可以很好地解决铝合金焊接的难点,焊后接头性能良好,并可以对以前焊接性不好或不可焊的铝合金进行焊接。 2. 1 铝合金的搅拌摩擦焊接 搅拌摩擦焊FSW( Friction Stir Welding) 是由英国焊接研究所TWI ( The Welding Institute) 1991 年提出的新的固态塑性连接工艺[1~2 ] 。图1为搅拌 摩擦焊接示意图[3 ] 。其工作原理是用一种特殊形式的搅拌头插入工件待焊部位,通过搅拌头高速旋转与工件间的搅拌摩擦,摩擦产生热使该部位金属处于热塑性 状态,并在搅拌头的压力作用下从其前端向后部塑性流动,从而使焊件压焊在一起。图2 为搅拌摩擦焊接过程[4 ] 。由于搅拌摩擦焊过程中不存在金属的熔化,是一种固态连接过程,故焊接时不存在熔焊的各种缺陷,可以焊接用熔焊方法难以焊接的有色金属材料,如铝及高强铝合金、铜合金、钛合金以及异种材料、复合材料 焊接等。目前搅拌摩擦焊在铝合金的焊接方面研究应用较多。已经成功地进行了搅拌摩擦焊接的铝合金包括2000 系列(Al- Cu) 、5000 系列(Al - Mg) 、6000 系列(Al - Mg - Si) 、7000 系列(Al - Zn) 、8000 系列(Al - Li) 等。国外已经.进入工业化生产阶段,在挪威已经应用此技术焊接快艇上长为20 m 的结构件,美国洛克希德·马丁航空航天公司用该项技术焊接了铝合金储存液氧的低温容器火箭结 构件。 铝合金搅拌摩擦焊焊缝是经过塑性变形和动态再结晶而形成,焊缝区晶粒细化,无熔焊的树枝晶,组织细密,热影响区较熔化焊时窄,无合金元素烧损、裂纹和气孔等缺陷,综合性能良好。与传统熔焊方法相比,它无飞溅、烟尘,不需要添加焊丝和保护气体,接头性能良好。由于是固相焊接工艺,加热温度低,焊接热影响区显微组织变化小,如亚稳定相基本保持不变,这对于热处理强化铝合金及沉淀强化铝合金非常有利。焊后的残余应力和变形非常小,对于薄板铝合金焊后基本不变形。与

铝合金焊接技术的问题和对策

铝合金焊接技术的问题和对策 一、铝合金焊接技术铝合金具有高比强度、高疲劳强度以及良好的断裂韧性和较低的裂纹扩展率,同时还具有优良的成形工艺性和良好的抗腐蚀性,在航空、航天、汽车、机械制造、船舶及化学工业中已被大量应用。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域。 不过,铝合金本身的特性使得其相关的焊接技术面临着一些亟待解决的问题:表面难熔的氧化膜、接头软化、易产生气孔、容易热变形以及热导率过大等。传统的铝合金焊接一般采用TIG焊或MIG焊工艺,虽然这两种焊接方式能量密度较大,焊接铝合金时能获得良好的接头,但仍然存在熔透能力差、焊接变形大、生产效率低等缺点,于是人们开始寻求新的焊接方法,20世纪中后期激光技术逐渐开始应用于工业。欧洲空中客车公司生产的A340飞机机身,就采用激光焊接技术取代原有的铆接工艺,使机身的重量减轻18 %左右,制造成本降低了近25 %。德国奥迪公司A2和A8全铝结构轿车也获益于铝合金激光焊接技术的开发和应用。这些成功的事例大大促使对激光焊接铝合金的研究,激光技术已经成为了未来铝合金焊接技术的主要发展方向。激光焊接具有功率密度高、焊接热输入低、焊接热影响区小和焊接变形小等优点,使其在铝合金焊接领域受到格外的重视。 二、铝合金激光焊接的问题和对策铝合金表面的高反射性和高导热性 这一特点可以用铝合金的微观结构来解释。由于铝合金中存在密度很大的自由电子,自由电子受到激光(强烈的电磁波)强迫震动而产生次级电磁波,造成强烈的反射波和较弱的透射波,因而铝合金表面对激光具有较高的反射率和很小的吸收率。同时,自由电子的布朗运动受激而变得更为剧烈,所以铝合金也具有很高的导热性。 针对铝合金对激光的高反射性,国内外已作了大量研究,试验结果表明,进行适当的表面预处理如喷砂处理、砂纸打磨、表面化学浸蚀、表面镀、石墨涂层、空气炉中氧化等均可以降低光束反射,有效地增大铝合金对光束能量的吸收。另外,从焊接结构设计方面考虑,在铝合金表面人工制孔或采用光收集器形式接头,开V形坡口或采用拼焊(拼接间隙相当

铝及铝合金焊接工艺的现状和发展趋势参考文本

铝及铝合金焊接工艺的现状和发展趋势参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

铝及铝合金焊接工艺的现状和发展趋势 参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 对铝及铝合金焊接特点进行分析,比较了TIG、MIG、 PAW不同焊接方法焊接铝及其合金时的优缺点。通过搅拌 摩擦焊及变极性焊接两种焊接工艺的介绍,结合本企业产 品,对两种焊接方法的应用进行了展望。随着科学技术的 发展,低密度、高强度金属材料越来越多地得到应用,铝 合金以其低温特性、质量轻、强度高的优点,已经被广泛 应用在航空航天、机车和民用工业中,成为一种重要的加 工材料。在铝合金的加工过程中,铝合金的焊接是其中一 个重要的加工环节。铝合金导热快在空气中容易被氧化, 其表面形成一层致密、难熔、体积质量大的氧化膜,阻碍 基体金属的熔合。所以对于铝合金焊接必须可靠清理其表

面致密氧化膜,才能保证正常的焊接。 目前铝合金的焊接方法有交流TIG、直流氩弧TIG、熔化极气体保护焊MIG、穿孔变极性等离子焊接、真空电子束和激光以及搅拌摩擦焊等,但应用较多的仍然是交流TIG 和MIG两种方法,其余的不是工艺或设备不成熟,就是设备价格昂贵、应用场合受限制等因素而没有得到广泛应用。在此通过对铝及其合金焊接特点及常用焊接方法的分析,对目前比较先进的铝合金焊接技术一搅拌摩擦焊和变极性焊接进行简要介绍。 铝及其合金的焊接特点 1.1.采用热量集中的焊接特点 从物理性能上看,铝及其合金具有导热性强而热量大,线膨胀系数大,熔点低和高温强度小等特点。焊接时,首先必须采用能量集中的热源,以保证熔合良好;其次,要采用垫板和夹具,以保证装配质量和防止焊接变

铝材焊接前后处理技术

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/d26073118.html,) 铝材焊接前后处理技术 焊接方法:几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对各种焊接方法的适应性不同,各种焊接方法有其各自的应用场合。气焊和焊条电弧焊方法,设备简单、操作方便。气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。焊条电弧焊可用于铝合金铸件的补焊。惰性气体保护焊(TIG或MIG)方法是应用最广泛的铝及铝合金焊接方法。铝及铝合金薄板可采用钨极交流氩弧焊或钨极脉冲氩弧焊。铝及铝合金厚板可采用钨极氦弧焊、氩氦混合钨极气体保护焊、熔化极气体保护焊、脉冲熔化极气体保护焊。熔化极气体保护焊、脉冲熔化极气体保护焊应用越来越广泛(氩气或氩/氦混合气)。 一、焊前准备 1、焊前清理:铝及铝合金焊接时,焊前应严格清除工件焊口及焊丝表面的氧化膜和油污; ①化学清洗:化学清洗效率高,质量稳定,适用于清理焊丝及尺寸不大、成批生产的工件。可用浸洗法和擦洗法两种。可用丙酮、汽油、煤油等有机溶剂表面去油,用40℃~70℃的5%~10%NaOH溶液碱洗3min~7min(纯铝时间稍长但不超过20min),流动清水冲洗,接着用室温至60℃的30%HNO3溶液酸洗1min~3min,流动清水冲洗,风干或低温干燥。 ②机械清理:在工件尺寸较大、生产周期较长、多层焊或化学清洗后又沾污时,常采用机械清理。先用丙酮、汽油等有机溶剂擦试表面以除油,随后直接用直径为0.15mm~0.2mm的铜丝刷或不锈钢丝刷子刷,刷到露出金属光泽为止。一般不宜用砂轮或普通砂纸打磨,以免砂粒留在金属表面,焊接时进入熔池产生夹渣等缺陷。另外也可用刮刀、锉刀等清理待焊表面。

铝及铝合金焊接工艺适应性研究

铝及铝合金焊接工艺适应性研究 发表时间:2018-01-23T11:27:39.883Z 来源:《建筑学研究前沿》2017年第24期作者:康荣军李增胜[导读] 铝合金由于重量轻,比强度高,耐腐性性能好,无磁性,成型好等诸多的特点被广泛的应用在各种焊接结果产品中。 山东德建建筑科技股份有限公司山东省德州市 253000 摘要:铝合金是工业中应用比较广泛的一类有色金属结构材料,在航空,航天,汽车,机械制造,船舶和化学领域都有广泛的应用。随着科技的进步和工业经济飞速的发展,对于铝合金焊接构件的需求日益增多,使得铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术成为了当今热门的研究方向。 关键词:铝铝合金焊接工艺研究 铝合金由于重量轻,比强度高,耐腐性性能好,无磁性,成型好等诸多的特点被广泛的应用在各种焊接结果产品中。因此如何提高铝合金焊接的生存率和焊接质量,减少焊接缺陷存在的高效焊接方法成为了实际生产的迫切要求。1铝合金的分类 铝合金可以分为变形铝合金(双分为非热处理强化铝合金、热处理强化铝合金两类)铸造铝合金。变形铝合金是指经不同的压力加工方法制成的板、带、管、型、条等半成品材料‘铸造铝合金以合金铸锭供应。’ 2铝及铝合金的焊接特点(1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。(2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。(3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi 條(硅含量4.5%~6%)焊丝会有更好的抗裂性。(4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。 (5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。 (6)合金元素易蒸发、烧损,使焊缝性能下降。(7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。(8)铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。3铝合金的焊接难点铝合金焊接有几大难点:(1)铝合金焊接接头软化严重,强度系数低,这成为了阻碍铝合金应用的最大的障碍;(2)铝合金焊接容易产生气孔;(3)铝合金焊接易产生热裂纹;(4)铝合金表面容易产生难熔的氧化膜,这就需要采用大功率密度的焊接工艺。(5)铝合金膨胀系数大,易产生焊接变形;(6)铝合金热导率大(约为钢的4被),相同焊接速度小,热输入要比焊接钢材大2~4倍。4铝合金的焊接工艺方法几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对各种焊接方法的适应性不同,各种焊接方法有其各自的应用场合。气焊和焊条电弧焊方法,设备简单、操作方便。气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。焊条电弧焊可用于铝合金铸件的补焊。惰性气体保护焊(TIG 或MIG)方法是应用最广泛的铝及铝合金焊接方法。铝及铝合金薄板可采用钨极交流氩弧焊或钨极脉冲氩弧焊。铝及铝合金厚板可采用钨极氦弧焊、氩氦混合钨极气体保护焊、熔化极气体保护焊、脉冲熔化极气体保护焊。熔化极气体保护焊、脉冲熔化极气体保护焊应用越来越广泛(氩气或氩/氦混合气)4.1铝合金的钨极氩弧焊(TIG)铝合金的钨极氩弧焊也可以称为钨极惰性气体保护电弧焊,是利用钨极与工件之间形成电弧产生的大量热量溶化待焊处,外加填充焊丝获得牢固的焊接接头。氩弧焊焊铝是利用其“阴极雾化”的特点,自行去除氧化膜。钨极及缝区域嘴中喷出的惰性气体屏蔽保护,防止焊缝区和周围空气的反应。 4.2铝合金的熔化氩弧焊(MIG)铝合金的熔化极氩弧焊也称为熔化极惰性气体保护电弧焊,电弧是在惰性气体保护中的焊件和铝及铝合金焊丝之间形成,焊丝作为电极及填充金属。由于焊丝作为电极,可以采用高密度电流,因而母材熔深大,填充金属熔敷速度快,焊接生产率高。 4.3铝合金的激光焊

铝合金激光焊接技术

铝合金激光焊接技术 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

一、铝合金激光焊接的发展 铝合金密度低,但强度比较高,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。 不过,铝合金本身的特性使得其相关的焊接技术面临着一些亟待解决的问题:表面难溶的氧化膜、接头软化、易产生气孔、容易热变形以及热导率过大等。以往的生产实践中,铝合金的焊接常用钨极氩弧焊和熔化极氩弧焊。虽然这两种焊接方式能量密度较大,焊接铝合金时能获得良好的接头,但仍然存在熔透能力差、焊接变形大、生产效率低等缺点。用这些传统的、应用于黑色金属的焊接方法焊接铝合金,并不能达到工业上高效、无缺陷、性能佳的要求,于是人们开始寻求新的焊接方法,20世纪中后期激光技术逐渐开始应用于工业。欧洲空中客车公司生产的A340飞机机身,就采用激光焊接技术取代原有的铆接工艺,使机身的重量减轻18 %左右,制造成本降低了近25 %。德国奥迪公司A2和A8全铝结构轿车也获益于铝合金激光焊接技术的开发和应用。这些成功的事例大大促使对激光焊接铝合金的研究,激光技术已经成为了未来铝合金焊接技术的主要发展方向,因为具有其独特的优点: (1) 能量密度高,热输入量小,焊接变形小,能得到窄的熔化区和热影响区以及熔深大的焊缝。 (2) 冷却速度快,焊缝组织微细,故焊接接头性能良好。 (3)焊接能量可精确控制,可靠性高,针对不同的要求有较高的适应性。

铝及铝合金的焊接方法

铝及铝合金的焊接方法 1.铝及铝合金的焊接特点 (1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。 (2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。 (3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi條(硅含量4.5%~6%)焊丝会有更好的抗裂性。 (4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。 (5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。 (6)合金元素易蒸发、烧损,使焊缝性能下降。 (7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。 (8)铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。 2.焊接方法 几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对各种焊接方法的适应性

铝合金焊接技巧

铝合金焊接技巧 首页支部大事记团支部五小成果团支部推优活动八荣八耻先进事例学习专业技能天地留言板 铝合金焊接技巧 liuhui(2006-10-18日13:32) 这里仅介绍最基本的铝合金知识和MIG焊技巧(所有材料牌号参照AWS 标准). 1.铝合金分类及对应焊材: 1.2.纯铝(1xxx系列),可焊性很好,对应焊材:ER1100和ER4043 1.3.铝铜合金(2xxx系列),可焊性较差,对应焊材:ER4043, ER4015,ER2319 1.4.铝锰合金(3xxx系列),可焊性很好,对应焊材:ER4043, ER5356 1.5.铝硅合金(4xxx系列),一般用于制造焊丝(4043,4047) 1.6.铝镁合金(5xxx系列),高强度,可焊性很好,对应焊丝: ER5356,ER5183等 1.7.铝镁硅合金(6xxx系列),应用最广,可焊性好,对应焊丝: ER5xxx,ER4xxx 1.8.铝锌合金(7xxx系列),高强度,用于飞机制造业,可焊性很差易裂,对应焊丝:ER5356 (仅限7005和7039母材)

1.9.其它铝合金(8xxx系列),可焊性很差 2.铝合金MIG焊对焊接设备的要求: 2.1.直流CV焊接电源或脉冲电源 2.2.送丝机构及推拉式焊枪 2.3.铝焊接用导电嘴(孔径比碳钢用稍大) 2.4.连接电缆 2.5.100%Ar及流量计(也有Ar+He混合气) 3.焊前准备工作(非常重要) 3.1.清理工件待焊处油污(丙酮擦拭). 3.2.用不锈钢丝刷或专用砂轮去除待焊处氧化膜(至少20毫米范围). 3.3.如用水冷焊枪,确保无漏水. 3.4.确保焊丝处于干净无损坏状态. 3.5.确保送丝轮,送丝软管处于良好状态. 4.焊接参数(仅供参考) 4.1.根据不同的材料和板厚选用不同型号的焊丝和直径 4.2.常用焊接规范: 4.2.1.0.8毫米焊丝(板厚小于3毫米):WFS:12-15m/min, I=70-130A, U=17-21V,焊速=600-1125mm/min 4.2.1.0.9毫米焊丝(板厚小于5毫米):WFS:10-12m/min, I=145-175A, U=20-22V,焊速=600-1125mm/min 4.2.3. 1.0毫米焊丝(板厚大于5毫米):WFS:8-12m/min,

铝合金材料焊接工艺方法

铝合金材料焊接工艺方法

铝合金材料焊接工艺方法 摘要:合金具有高比强度、高疲劳强度以及良好的断裂韧性和较低的裂纹扩展率,同时还具有优良的成形工艺性和良好的抗腐蚀性,在航空、航天、汽车、机械制造、船舶及化学工业中已被大量应用。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域 关键词:铝合金焊接工艺 1、铝合金材料常用焊接方法 铝合金的焊接方法很多,各种方法有其不同的应用场合。除了传统的熔焊、电阻焊、气焊方法外,其他一些焊接方法(如等离子弧焊、电子束焊、真空扩散焊等)也可以容易地将铝合金焊接在一起。气焊和焊条电弧焊方法,设备简单、操作方便。气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。焊条电弧焊可用于铝合金铸件的补焊。惰性气体保护焊(TIG或MIG)方法是应用最广泛的铝及铝合金焊接方法。铝及铝合金薄板可采用钨极交流氩弧焊或钨极脉冲氩弧焊。铝及铝合金厚板可采用钨极氦弧焊、氩氦混合钨极气体保护焊、熔化极气体保护焊、脉冲熔化极气体保护焊。熔化极气体保护焊、脉冲熔化极气体保护焊应用越来越广泛(氩气或氩/氦混合气)

2、焊接质量控制 2.1焊前预备 (1)焊件清洗 铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。在铝合金焊接时,焊前应严格清除工件焊口及焊丝表面的氧化膜和油污。常采用化学清洗和机械清理两种方法 化学清洗 化学清洁是运用碱或酸清??工件外表,该法既可去掉氧化膜,还可除油污,化学清洗效率高,质量稳定,适用于清理焊丝及尺寸不大、成批生产的工件。可用浸洗法和擦洗法两种。浸洗法详细技术进程如下:体积分数为6%~10%的氢氧化钠溶液,在70℃摆布浸泡0.5min→水洗→体积分数为15%的硝酸在常温下浸泡1min进行中和处理→水洗→温水洗→枯燥。洗好后的铝合金外表为无光泽的银白色机械清理 在工件尺寸较大、生产周期较长、多层焊或化学清洗后又沾污时,常采用机械清理。机械整理可选用风动或电动铣刀,还可选用刮刀、锉刀等东西,关于较薄的氧化膜也可用0.25mm的铜丝刷打磨铲除氧化膜。一般不宜用砂轮或普通砂

铝合金激光焊接技术

一、铝合金激光焊接的发展 铝合金密度低,但强度比较高,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。 不过,铝合金本身的特性使得其相关的焊接技术面临着一些亟待解决的问题:表面难溶的氧化膜、接头软化、易产生气孔、容易热变形以及热导率过大等。以往的生产实践中,铝合金的焊接常用钨极氩弧焊和熔化极氩弧焊。虽然这两种焊接方式能量密度较大,焊接铝合金时能获得良好的接头,但仍然存在熔透能力差、焊接变形大、生产效率低等缺点。用这些传统的、应用于黑色金属的焊接方法焊接铝合金,并不能达到工业上高效、无缺陷、性能佳的要求,于是人们开始寻求新的焊接方法,20世纪中后期激光技术逐渐开始应用于工业。欧洲空中客车公 司生产的A340飞机机身,就采用激光焊接技术取代原有的铆接工艺,使机身的重量减轻18 %左右,制造成本降低了近25 %。德国奥迪公司A2和A8全铝结构轿车也获益于铝合金激光焊接技术的开发和应用。这些成功的事例大大促使对激光焊接铝合金的研究,激光技术已经成为了未来铝合金焊接技术的主要发展方向,因为激光焊接具有其独特的优点: (1) 能量密度高,热输入量小,焊接变形小,能得到窄的熔化区和热影响区以及熔深大的焊缝。 (2) 冷却速度快,焊缝组织微细,故焊接接头性能良好。 (3)焊接能量可精确控制,可靠性高,针对不同的要求有较高的适应性。 (4)可进行微型焊接或实现远距离传输,不需要真空装置,利于大批量自动 化生产。 二、激光焊接铝合金的难点及解决措施 1.铝合金表面的高反射性和高导热性 这一特点可以用铝合金的微观结构来解释。由于铝合金中存在密度很大的自由电子,自由电子受到激光(强烈的电磁波)强迫震动而产生次级电磁波,造成强烈的反射波和较弱的透射波,因而铝合金表面对激光具有较高的反射率和很小

铝合金焊接方法总结

铝合金的焊接技术 铝及其合金因具有良好的耐蚀性、导电性、导热性以及高的比强度而广泛应用于工业领域,铝合金的产量仅次于钢铁的。近年来,随着铝合金在汽车制造、造船、国防和航空、容器制造、体育器材业等制造领域的广泛应用,铝合金焊接技术也在突飞猛进地发展。 一、铝合金的焊接性 纯铝的熔点是660℃.焊接用的铝合金熔点大约在560℃。铝合金焊接有以下难点: (1)铝合金焊接接头软化严重,对于有热处理强化性能的铝合金,焊接接头经历了较大的热循环.热影响区强度退化较为明显.其抗拉强度大约只有母材的60%~70%,这是热处理强化铝合金焊接接头一个比较典型的焊接缺陷。 (2)合金表面易产生熔点很高的氧化膜Al2O3,其熔点为2060℃,焊接时难熔的氧化膜会妨碍填充金属和母材的熔合,导致氧化物的夹渣; (3)铝及铝合金焊接凝固时,熔池里的气体因来不及逸出而较易形成气孔; (4)熔化状态的铝及铝合金在结晶凝固后,体积大约要缩减6%。由此所产生的收缩应力可能会导致工件变形和焊接裂纹产生; (5)线膨胀系数大,易产生焊接变形; (6)铝及铝合金焊接过程中,熔池金属没有颜色的变化,容易造成焊穿或塌陷; (7)铝合金热导率大(约为钢的4倍),相同焊接速度下,热输入要比焊接钢材大的2倍~4倍。 二、铝合金的传统焊接技术 铝合金的焊接要求采用能量密度大、焊接热输入小、焊接速度高的焊接方法。目前,生产中常用TIG焊、MIG焊来焊接铝合金材料。 1、钨极惰性气体保护电弧焊(TIG) TIG始于本世纪30年代,是最早的气体保护电弧焊方法,它是为了适应活泼金属(铝、锰、钛等)的焊接而产生的。TIG是以高熔点的钨和焊件分别作为两个电极,在两电极之间用惰性气体(氩、氦或氩氮混合气体)隔绝空气作为保护的一种电弧焊方法。 其优点是:焊接过程稳定,焊后无需清渣,焊接接头保护效果好,易于实现全方位和自动焊接。其缺点是:焊前清理要求高.主要是清除焊接接头表面的污物及氧化膜;钨极承载电流能力较低,焊接熔深有限,生产效率低,适宜薄板焊接;惰性气体较贵,生产成本高。 2、熔化极惰性气体保护电弧焊(MIG)。 为了克服TIG焊的熔深有限缺点,人们开始采用MIG焊。MIG是以连续送进的焊丝和焊件分别作为两个极性不同的电极。在电极间高温电弧热作用和惰性气体的保护下,将焊丝熔化、过渡并填充焊缝的一种电弧焊方法。 其优点是:焊接过程以焊丝作为电极。采用高密度电流,焊接熔深大,熔敷速度快,生产效率高,可焊大厚度板材。 三、铝合金先进焊接技术 MIG、TIG能够得到良好的焊接接头,但是,这两种方法却有熔透能力差、焊接变形大、生产效率低等缺点。近年来,很多科技工作者开始探讨铝合金焊接的新方法,如激光焊、双光束激光焊、激光-电弧复合焊以及搅拌焊摩擦等,下面主要介绍这四种焊接方法的主要特点。1、铝合金的激光焊 随着大功率、高性能激光加工设备的不断开发,铝合金激光焊接技术发展很快,与传统的TIG、MIG焊相比,激光焊接铝合金具有以下优点;

铝合金焊接方法大全【干货】

铝合金的激光焊接工艺难点及解决对策 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、铝合金焊接技术 铝合金具有高比强度、高疲劳强度以及良好的断裂韧性和较低的裂纹扩展率,同时还具有优良的成形工艺性和良好的抗腐蚀性,在航空、航天、汽车、机械制造、船舶及化学工业中已被大量应用。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域。 不过,铝合金本身的特性使得其相关的焊接技术面临着一些亟待解决的问题:表面难熔的氧化膜、接头软化、易产生气孔、容易热变形以及热导率过大等。传统的铝合金焊接一般采用TIG焊或MIG焊工艺,虽然这两种焊接方式能量密度较大,焊接铝合金时能获得良好的接头,但仍然存在熔透能力差、焊接变形大、生产效率低等缺点,于是人们开始寻求新的焊接方法,20世纪中后期激光技术逐渐开始应用于工业。欧洲空中客车公司生产的A340飞机机身,就采用激光焊接技术取代原有的铆接工艺,使机身的重量减轻18 %左右,制造成本降低了近25 %。德国奥迪公司A2和A8全铝结构轿车也获益于铝合金激光焊接技术的开发和应用。这些成功的事例大大促使对激光焊接铝合金的研究,激光技术已经成为了未来铝合金焊接技术的主要发展方向。激光焊接具有功率密度高、焊接热输入低、焊接热影响区小和焊接变形小等优点,使其在铝合金焊接领域受到格外的重视。

二、铝合金激光焊接的问题和对策 铝合金表面的高反射性和高导热性 这一特点可以用铝合金的微观结构来解释。由于铝合金中存在密度很大的自由电子,自由电子受到激光(强烈的电磁波)强迫震动而产生次级电磁波,造成强烈的反射波和较弱的透射波,因而铝合金表面对激光具有较高的反射率和很小的吸收率。同时,自由电子的布朗运动受激而变得更为剧烈,所以铝合金也具有很高的导热性。 针对铝合金对激光的高反射性,国内外已作了大量研究,试验结果表明,进行适当的表面预处理如喷砂处理、砂纸打磨、表面化学浸蚀、表面镀、石墨涂层、空气炉中氧化等均可以降低光束反射,有效地增大铝合金对光束能量的吸收。另外,从焊接结构设计方面考虑,在铝合金表面人工制孔或采用光收集器形式接头,开V形坡口或采用拼焊(拼接间隙相当于人工制孔) 方法,都可以增加铝合金对激光的吸收,获得较大的熔深。另外,还可以利用合理设计焊接缝隙来增加铝合金表面对激光能量的吸收。 影响铝合金激光焊接的重要因素 在铝合金激光焊接过程中,小孔的出现可以大大提高材料对激光的吸收率,焊接可以获得更多的能量,而铝元素以及铝合金中的Mg、Zn、Li沸点低、易蒸发且蒸汽压大,虽然

铝及铝合金的焊接工艺

铝及铝合金的焊接工艺 一、容器用铝材的焊接 铝材具有优异的物理特性和力学性能,其密度低、强度高、热导率高、电导率高,耐蚀能力强。铝材广泛用于容器、机械、电力、化工、航空、航天等焊接结构的产品上。 (一)铝材的分类及牌号表示方法 1. 铝材的分类 (1)按有无合金成分,铝材分为纯铝及铝合金。铝合金按合金系列又分为Al-Mn 合金、Al-Cu合金、Al-Si合金和Al-Mg合金等。 (2)按压力加工能力,可分为变形铝和非变形铝(例如:铸铝)。 (3)按能否热处理强化,铝合金又分为非热处理强化铝和热处理强化铝。铝没有同素异构体,纯铝、铝锰合金、铝镁合金等不可能通过热处理相变来提高强度。但是,铝铜和铝镁硅等合金可通过固溶时效析出强化相提高强度,称为可热处理强化铝。不能通过固溶时效析出强化相提高强度的称为不可热处理强化铝。 2. 牌号表示方法和状态代号 (1)四位数字体系牌号命名方法 1997年1月1号,我国开始实施GB/T16474?996《变形铝和铝合金牌号表示方法》标准。新的牌号表示方法采用变形铝和铝合金国际牌号注册组织推荐的国际四位数字体系牌号命名方法,例如工业纯铝有1070、1060等,Al-Mn合金有3003等,Al-Mg合金有5052、5086等。 (2)四位字符体系牌号命名方法 1997年1月1号前,我国采用前苏联的牌号表示方法。一些老牌号的铝及铝合金化学成分与国际四位数字体系牌号不完全吻合,不能采用国际四位数字体系牌号代替,为保留国内现有的非国际四位数字体系牌号,不得不采用四位字符体系牌号命名方法,以便逐步与国际接轨。例如:老牌号LF21的化学成分与国际四位数字体系牌号3003不完全吻合,于是,四位字符体系表示的牌号为3A21。 四位数字体系和四位字符体系牌号第一个数字表示铝及铝合金的类别,其含义如下: 1)1XXX系列枣工业纯铝; 2)2XXX系列枣Al-Cu、Al-Cu-Mn合金,; 3)3XXX系列枣Al-Mn合金; 4)4XXX系列枣Al-Si合金; 5)5XXX系列枣Al-Mg合金; 6)6XXX系列枣Al-Mg-Si合金; 7)7XXX系列枣Al-Mg-Si-Cu合金; 8)8XXX系列枣其它。 (3)铝铸件牌号我国容器用铝铸件牌号采用ZAl+主要合金元素符号+合金元素含量数百分率表示。例如;ZAlSi7Mg1A、ZAlCu4、ZAlMg5Si等。 (4)状态代号相同牌号的铝及铝合金,状态不同时,力学性能不相同。按照GB/T16475《变形铝和铝合金状态代号》标准,新状态代号规定如下: O枣退火状态

相关文档
最新文档