最优化方法课程设计.doc

最优化方法课程设计.doc
最优化方法课程设计.doc

最优化方法

课程设计报告

2016年 6月 14 日

摘要

最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各个部门及各个领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中,MATLAB软件已经成为最优化领域应用最广的软件之一。有了MATLAB这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。

关键词:优化、线性规划,黄金分割法、最速下降法、MATLAB、算法

Abstract

Optimization theory and methods and more attention, have penetrated into the production, management, business, military, decision-making and other fields, and optimization models and methods widely used in industry, agriculture, transportation, commerce, defense, construction, students, government various departments and agencies and other fields. With the rapid development of computer technology, optimization theory and methods for the rapid progress of the optimization problem to solve practical software is also developing rapidly. Which, MATLAB software has become the most optimization software is one of the most widely used. With this powerful computing platform MATLAB, either using MATLAB optimization toolbox (OptimizationToolbox) in the function, but also can achieve the appropriate algorithm to optimize into the calculation.

Key words: Optimization、Golden section method、steepest descent method、MATLAB、algorithm

第一章单纯形算法的基本思想与原理

1.1单纯形算法的基本思路

单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。

求解步骤:

(1)确定初始基可行解

①从线性规划标准形的系数矩阵中能直接找出m个线性独立的单位向量;

②对约束条件全为“<=”连接的LP,化为标准形,左端添加松弛变量后即形成一个单位子矩阵;

③约束条件中含有“<=”或“=”连接的方程,在插入剩余变量后找不到单位矩阵,则必须采用“人造基”法,也称“人工变量”法。

(2)最优性检验及解的判别准则

①最优性判定准则

②多重最优解判定准则

③无界最优解判定准则

(3)换基迭代

①确定换入变量

②确定换出变量

③枢运算(旋转运算)

1.2 算法流程图

1.3 用matlab编写源程序

Function[x,f]=zuiyouhua(A,b,c)

Size(A)=[m,n]; i=n+1:n+m; N=1:n;

B=eye(m,m); xb=b’;

xn=zeros(m,1); f1=0;

w=zeros(1,m); z=-c; flag=1; while(1)

[a,k]=max(z); If a<=0 flag=0; break else

y=inv(B)*A(:,k) if y<=0 flag=0;

fprintf(‘不存在最优解’) break

end

t=find(y>0);

[a,rl]=min(bl(t)/y(t)) r=t(rl); i(:,k)=k

B(:,k)=A(:,k); cb=C(:,i); xb=inv(B)*b; b0=xb;

x=zeros(1,n+m) x(:,i)=xb ’ f=cb*xb

z=cb*inv(B)*A-C; end end

1.4单纯形算法应用举例 线性规划问题:

12345678min ()0.10.30.90 1.10.20.8 1.4f x x x x x x x x x =+++++++

123423567134678123456782100

232100..3234100,,,,,,,0

x x x x x x x x x s t x x x x x x x x x x x x x x +++≥??++++≥??+++++≥??≥? 在matlab 的命令窗口输入:

A=[2,1,1,1,0,0,0,0;0,2,1,0,3,2,1,0;1,0,1,3,0,2,3,4]; b=[100,100,100]’;

c=[0.1,0.3,0.9,0,1.1,0.2,0.8,1.4]; [x,f]=zuiyouhua(A,b,c) Matlab 输出内容:

x=10 50 0 30 0 0 0 0 f=-16

第二章 黄金分割法的基本思想与原理

2.1 黄金分割法的基本思路

黄金分割法适用于[b,a]区间上的任何单股函数求极小值问题,对函数除要求“单

峰”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2,将区间分成三段,应用函数的单峰性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。

2.2 算法流程图

2.3 用matlab

编写源程序

a=input('请输入初始区间下端点:\na='); b=input('请输入初始区间上端点:\nb='); e=input('请输入计算精度:\ne=');

t=b-a; while t>e

a1=a+0.382*(b-a); a2=a+0.618*(b-a); f1=question2(a1); f2=question2(a2); if f1

a=a1; end t=b-a; end

X1=(b+a)/2;

F1=question2(X1);

fprintf('最优解为:\nX1=%8.6f,\nF1=%8.6f',X1,F1);

2.4 黄金分割法应用举例

自定义函数: function y=koko(x) y=x*(x+2); 运行结果:

请输入初始区间下端点: a=-3

请输入初始区间上端点: b=5

请输入计算精度: e=0.3

最优解为: X1=-0.973876, F1=-0.999318

第三章 最速下降法的基本思想与原理

3.1 最速下降法的基本思路

最速下降法的基本思想是:从当前点k

x 出发,取函数()f x 在点k

x 处下降最快的方向

作为我们的搜索方向k

p .由()f x 的Taylor 展式知

()()()(k k k k T k k f x f x tp t f x p o tp -+=-?+‖‖)

略去t 的高阶无穷小项不计,可见取k

p =()k

f x -?时,函数值下降得最多。于是,我们可以构造出最速下降法的迭代步骤。

解无约束问题的的最速下降法计算步骤

第1步 选取初始点0

x ,给定终止误差0ε>,令:0k =;

第2步 计算()k f x ?,若(k f x ε?≤‖)‖,停止迭代.输出k

x .否则进行第三步; 第3步 取()k k p f x =-?; 第4步 进行一维搜索,求k t ,使得

()min ()k k k k k t f x t p f x tp ≥+=+

令1k k k k x x t p +=+,:1k k =+,转第2步。

由以上计算步骤可知,最速下降法迭代终止时,求得的是目标函数驻点的一个近似点。

3.2 算法流程图

3.3 用matlab编写源程序function [R,n]=steel(x0,y0,eps)

syms x;

syms y;

f=(x-2)^2+(y-4)^2;

v=[x,y];

j=jacobian(f,v);

T=[subs(j(1),x,x0),subs(j(2),y,y0)]; temp=sqrt((T(1))^2+(T(2))^2);

x1=x0;y1=y0;

n=0;

syms kk;

while (temp>eps)

d=-T;

f1=x1+kk*d(1);

f2=y1+kk*d(2);

fT=[subs(j(1),x,f1),subs(j(2),y,f2)];

fun=sqrt((fT(1))^2+(fT(2))^2);

Mini=Gold(fun,0,1,0.00001);

x0=x1+Mini*d(1);y0=y1+Mini*d(2);

T=[subs(j(1),x,x0),subs(j(2),y,y0)];

temp=sqrt((T(1))^2+(T(2))^2);

x1=x0;y1=y0;

n=n+1;

end

R=[x0,y0]%调用黄金分割法:function Mini=Gold(f,a0,b0,eps)

syms x;format long;

syms kk;

u=a0+0.382*(b0-a0);

v=a0+0.618*(b0-a0);

k=0;

a=a0;b=b0;

array(k+1,1)=a;array(k+1,2)=b;

while((b-a)/(b0-a0)>=eps)

Fu=subs(f,kk,u);

Fv=subs(f,kk,v);

if(Fu<=Fv)

b=v;

v=u;

u=a+0.382*(b-a);

k=k+1;

else %if(Fu>Fv)

a=u;

u=v;

v=a+0.618*(b-a);

k=k+1;

end

array(k+1,1)=a;array(k+1,2)=b;

end

Mini=(a+b)/2;

3.4 最速下降法应用举例

函数f=(x-2)^2+(y-4)^2;

在命令窗口输入[R,n]=steel(0,1,0.00001)

运行结果如下:

R =

1.999999999982811 3.999999999974216

R =

1.999999999982811 3.999999999974216

n =

2

第四章惩罚函数法的基本思想与原理

4.1 惩罚函数法的基本思路

罚函数法求解带约束的非线形规划问题的基本思想是:利用问题的目标函数和约束函数构造出带参数的所谓增广目标函数,把约束非线形规划问题转化为一系列无约束非线形规划问题来求解。增广目标函数由两个部分构成,一部分是原问题的目标函数,另一部分是由约束函数构造出的“惩罚”项,“惩罚”项的作用是对“违规”的点进行“惩罚”。罚函数法主要有两种形式。一种称为外部罚函数法,或称外点法,这种方法的迭代点一般在可行域的外部移动,随着迭代次数的增加,“惩罚”的力度也越来越大,从而迫使迭代点向可行域靠近;另一种成为内部罚函数法,或称内点法,它从满足约束条件的可行域的内点开始迭代,并对企图穿越可行域边界的点予以“惩罚”,当迭代点越接近边界,“惩罚”就越大,从而保证迭代点的可行性。

4.2 算法流程图

4.3 用matlab编写源程序

global lamada % 主程序main2.m,惩罚数方法x0 = [1 1];

lamada = 2;

c = 10;

e = 1e-5;

k = 1;

while lamada*q4_fun2p(x0) >= e

x0 = fminsearch('q4_fun2min',x0);

lamada = c*lamada;

k = k+1;

end

disp('最优解'),disp(x0)

K

function r = q4_fun2p(x)

% 罚项函数

r = ((x(1)-1)^3-x(2)*x(2))^2;

function r = q4_fun2min(x)

% 辅助函数

global lamada

r = x(1)^2+x(2)^2+lamada*q4_fun2p(x);

4.4 惩罚函数法应用举例

求解非线性规划问题:

min (x1^2+x2^2)

S.t. (x1-1)^3-x2^2=0

运行结果如下:

最优解

1.000128150991651 -0.000001450717792

k =

33

第五章总结

通过这次课程设计,我又重新学习了一遍最优化方法,加深了对单纯形法、0.618法,最速下降法以及罚函数的认识与理解。通过用MATLAB来编写程序,也重新学习并掌握了函数的编程格式。在此次课程设计中我也学到了很多,真正做到了理论和实践相结合,锻炼了自己处理实际问题的能力,也认识到了自己的不足。

参考文献

[1]赵瑞安,吴方.非线性最优化理论和方法.北京:高等教育出版社,1900

[2]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,1997

北航最优化方法大作业参考

北航最优化方法大作业参考

1 流量工程问题 1.1 问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5…,5)1 )T, ×13 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1× )。 13 图 1 网络拓扑和流量需求

1.2 7节点算例求解 1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T) 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.2 算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 X2>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.3 算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T 对应的最优值c T x3=40

最优化计算方法课后习题答案----高等教育出版社。施光燕

习题二包括题目:P36页5(1)(4) 5(4)

习题三 包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下

5,6题 14题解如下 14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。 解:已知 (1) (4,6)T x =-,由题意得 121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----?? ?= ?+++-----?? ∴ (1)1344()56g f x -?? =?= ??? 21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------? ??= ? +--------+--?? ∴ (1)2(1)1656()()564G x f x --?? =?= ?-?? (1)1 1/8007/400()7/4001/200G x --?? = ?--?? ∴ (1)(1)11141/100()574/100d G x g -?? =-= ?-?? 15(1)解如下 15. 用DFP 方法求下列问题的极小点 (1)22 121212min 353x x x x x x ++++ 解:取 (0) (1,1)T x =,0H I =时,DFP 法的第一步与最速下降法相同 2112352()156x x f x x x ++???= ?++??, (0)(1,1)T x =,(0) 10()12f x ???= ??? (1)0.07800.2936x -??= ?-??, (1) 1.3760() 1.1516f x ???= ?-?? 以下作第二次迭代 (1)(0) 1 1.07801.2936x x δ-??=-= ?-??, (1)(0) 18.6240()()13.1516f x f x γ-??=?-?= ?-?? 0110 111011101 T T T T H H H H H γγδδδγγγ=+-

电力工程基础课程设计

1引言 工厂供电,就是指工厂所需电能的供应和分配,亦称工厂配电。 众所周知,电能是现代工业生产的主要能源和动力。电能既易于由其它形式的能量转换而来,又易于转换为其它形式的能量以供应用;电能的输送的分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。 在工厂里,电能虽然是工业生产的主要能源和动力,但是它在产品成本中所占的比重一般很小(除电化工业外)。电能在工业生产中的重要性,并不在于它在产品成本中或投资总额中所占的比重多少,而在于工业生产实现电气化以后可以大大增加产量,提高产品质量,提高劳动生产率,降低生产成本,减轻工人的劳动强度,改善工人的劳动条件,有利于实现生产过程自动化。从另一方面来说,如果工厂的电能供应突然中断,则对工业生产可能造成严重的后果。 因此,做好工厂供电工作对于发展工业生产,实现工业现代化,具有十分重要的意义。由于能源节约是工厂供电工作的一个重要方面,而能源节约对于国家经济建设具有十分重要的战略意义,因此做好工厂供电工作,对于节约能源、支援国家经济建设,也具有重大的作用。 工厂供电工作要很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,就必须达到以下基本要求: (1)安全在电能的供应、分配和使用中,不应发生人身事故和设备事故。(2)可靠应满足电能用户对供电可靠性的要求。 (3)优质应满足电能用户对电压和频率等质量的要求 (4)经济供电系统的投资要少,运行费用要低,并尽可能地节约电能和减少有色金属的消耗量。 此外,在供电工作中,应合理地处理局部和全局、当前和长远等关系,既要照顾局部的当前的利益,又要有全局观点,能顾全大局,适应发展。 2负荷计算和无功功率计算及补偿 2.1 负荷计算和无功功率计算

最优化方法大作业答案

1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x 列成表格:

1 2 1 610011460105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 1 2 1 2102310401162010021212 11-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 2 12 32 30 210231040116201002121211- ------ 再从底行中选元素-3,和第二列正元素2,迭代一次得 4 2 3 3 410120280114042001112--- 再迭代一次得 10 2 30 2 10 6 221023 1010213000421021013-- 选取最优解:

《最优化方法》复习题(含答案)

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题 1、设n n A R ?∈是对称矩阵,,n b R c R ∈∈,求1()2 T T f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵. 解 2(),()f x Ax b f x A ?=+?=. 2、设()()t f x td ?=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ?''. 解 2()(),()()T T t f x td d t d f x td d ??'''=?+=?+. 3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令 ()()()()() T T T T dd f x f x H I d f x f x f x ??=--???, 其中I 为单位矩阵,证明方向()p H f x =-?也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ?<,从而 ()()()T T f x p f x H f x ?=-?? ()()()()()()()() T T T T T dd f x f x f x I f x d f x f x f x ??=-?--???? ()()()0T T f x f x f x d =-??+?<, 所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ?是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ?≥?∈L L 的一切凸组合都属于S . 证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令1 1k i i i x x λ+==∑, 其中,0,1,2,,1i i x S i k λ∈≥=+L ,且1 1 1k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈, 结论成立),记11 1k i i i k y x λλ=+=-∑ ,有111(1)k k k x y x λλ+++=-+,

最优化方法大作业

发动机空燃比控制器 引言:我主要从事自动化相关研究。这里介绍我曾经接触过的发动机空燃比控制器设计中的优化问题。 发动机空燃比控制器设计中的最优化问题 AFR =a f m m && (1) 空燃比由方程(1)定义,在发动机运行过程中如果控制AFR 稳定在14.7可以获 得最好的动力性能和排放性能。如果假设进入气缸的空气流量a m &可以由相关单元检测得到,则可以通过控制进入气缸的燃油流量f m &来实现空燃比的精确控制。由于实际发动机的燃油喷嘴并不是直接对气缸喷燃油,而是通过进气歧管喷燃油,这么做会在进 气歧管壁上液化形成油膜,因此不仅是喷嘴喷出的未液化部分燃油会进入气缸,油膜 蒸发部分燃油也会进入气缸,如方程(2)。这样如何更好的喷射燃油成为了一个问题。 1110101122211ττττ?? ?? -?? ??????????=+????????-????????????-???? ? ??? ?? ????????? ?f f f v X x x u x x X x y =x && (2) 其中12、,==ff fv x m x m &&=f y m &,=fi u m &这里面,表示油膜蒸发量ff m &、fv m &表示为液化部分燃油、fi m &表示喷嘴喷射的燃油,在τf 、τv 、X 都已知的情况下,由现代控制理论知识,根据系统的增广状态空间模型方程(3) 0000001 1 011011114.70ττττ????-?? ??????????=-+-??????????????? ??????????????? ?? ??=?????? f f v v a X X u +q q m y q x x x &&& (3) 其中()0 14.7?t a q = y -m &。由极点配置方法,只要设计控制器方程(4),就可以 使得y 无差的跟踪阶跃输入,那么y 也能较好的跟踪AFR *a m /&。 12-- u =K q K x (4) 这里面的12、K K 确定,可由主导极点概念降维成两个参数12C ,C ,虽然都是最终稳态无差,但是目标是使得瞬态过程中y 和阶跃输入y r 的差异尽可能的小。所以原问

最优化方法练习题答案修改建议版本--删减版

练习题一 1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。 2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。 答:针对一般优化模型()()min () .. 0,1,2, 0,1, ,i j f x s t g x i m h x j p ≥===,讨论解的可行域D ,若存在一点*X D ∈,对于X D ?∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)() ,, ,K X X X ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有 (1)()k k x x ε+-<,(1)() () k k k x x x ε+-<,()()(1)()k k f x f x ε+-<, ()()() (1)()()k k k f x f x f x ε+-<,()()k f x ε?<等 等。 练习题二 1、某公司看中了例2.1中厂家所拥有的3种资源R 1、R 2、和R 3,欲出价收购(可能用于生产附加值更高的产品)。如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例2.1的对偶问题)。 解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。 确定目标函数 问题的目标很清楚——“收购价最小”。 确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。 因此有如下线性规划问题:123min 170100150w y y y =++ 123123123 5210 ..23518,,0y y y s t y y y y y y ++≥??++≥??≥? *2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。 答:略。 3、用单纯形法求解下列线性规划问题:

最优化原理大作业

基于粒子群算法的神经网络在电液伺服系统中的应用 摘要:由于人工神经网络在解决具有非线性、不确定性等系统的控制问题上具有极大的潜力,因而在控制领域正引起人们的极大关注,并且已在一些响应较慢的过程控制中获得成功应用。由于电液伺服系统属 于非线性系统,因此本文利用神经网络控制电液伺服系统,并利用粒子群优化算法训练该神经网络的 权值。通过对神经网络的优化实现对电液伺服系统的控制。 关键词:神经网络电液伺服系统粒子群算法优化 近年来,由于神经网络具有大规模并行性、冗余性、容错性、本质的非线性及自组织自学习自适应能力,所以已成功地应用于众多领域。但在具有复杂非线性特性的机电设备的实时控制方面,虽然也有一些神经网络技术的应用研究,但距实用仍有一段距离。电液伺服系统就属于这类设备[1]。 神经网路在用于实时控制时,主要是利用了网络所具有的其输人——输出间的非线性映射能力。它实际上是通过学习来逼近控制对象的动、静态特性。也就是构造实际系统的神经网络模型[2]。本文利用神经网络控制一电液伺服系统,并利用粒子群优化算法训练该神经网络的权值,将结果与BP神经网络控制该系统的结果进行比较。从而得在电液伺服系统中引入神经网络是可行的。 1、粒子群算法 粒子群优化算法(Particle Swarm optimization, PSO)是一种进化计算技术, 由Eberhart博士和kennedy博士发明, 源于对鸟群捕食的行为研究, 粒子群优化算法的基本思想是通过群体中个体之间的协作和信息共享来寻找最优解[3]。算法最初受到飞鸟和鱼类集群活动的规律性启发,利用群体智能建立了一个简化模型,用组织社会行为代替了进化算法的自然选择机制,通过种群间个体协作来实现对问题最优解的搜索[4]。 在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置 v[]=v[]+c1*rand()*(pbest[]-present[]) + c2*rand()*(gbest[]-present[]) present[]=persent[]+v[] 式中ω为惯性权重,ω取大值可使算法具有较强的全局搜索能力,ω取小值则算法倾向于局部搜索。一般的做法是将ω初始取0.9并使其随迭代次数的增加而线性递减至0.4,这样就可以先侧重于全局搜索,使搜索空间快速收敛于某一区域,然后采用局部精细搜索以获得高精度的解;c1、c2为两个学习因子,一般取为2;randl和rand2为两个均匀分布在(0,l)之间的随机数;i=1,2,?,m;k=1,2,?,d。另外,粒子在每一维的速度Vi都被一个最大速度Vmax所限制。如果当前粒子的加速度导致它在某一维的速度 超过该维上的最大速度Vmax,则该维的速度被限制为最大速度[5]。 粒子群算法流程如下: (一)初始化粒子群。设群体规模为m,在允许的范围内随机设置粒子的初始位置和速 度。 (二)评价每个粒子的适应值。 (三)调整每一个粒子的位置和速度。 (四)如果达到最大迭代次数genmax或误差达到最初设定数值终止迭代,否则返回(2)。 2、神经网络 神经网络一般由输入层、隐含层、输出层组成。对于输入信号,先向前传播到隐节点,经过节点作用函数后,再把隐节点的输出信息传播到输出节点,最后输出结果。节点的作用函数通常选取S 型函数f(x)=1/(1+e-x)。神经网络算法的学习过程分为正

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

电力工程基础课程设计指导书

《电力工程基础》课程设计 指导书 福建工程学院电子信息与电气工程系 电气工程教研室

第一节概述 供配电设计应包括负荷的分析计算、确定配电方案、选择高低压电气设备及成套设备、确定变压器的台数、容量及变电所主结线方案、进行短路计算对电气设备进行校验、考虑电气设备的布臵方案,还可以包括继电保护、二次回路、防雷与接地以及电气照明设计内容。 一、供配电设计必须遵循的一般原则 供配电设计必须遵循以下原则: 1)必须遵循国家的有关法令、标准和规范,执行国家的有关方针、政策。包括节约能源、节约有色金属等技术经济政策。 2)应做到保障人身和设备的安全,供电可靠,电能质量合格,技术先进和经济合理,设计中应采用符合国家现行有关标准的效率高、耗能低、性能先进的电气。 3)必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,合理确定设计方案。 4)应根据工程特点、规模和发展规划,正确处理近期建设与远期发展的关系,做到远近结合,以近期为主,适当考虑扩建的可能性。 二、供配电设计的基本内容 供配电设计主要包括变配电所设计、高压配电线路设计、低压配电线路设计和电气照明设计等。 (一)变配电所设计 变配电所设计包括以下基本内容: 1)负荷计算及无功功率补尝计算。 2)变配电所所址和型式的选择。 3)变电所主要电器台数、容量及类型的选择(配电所设计不含此项内容)。 4)变配电所主接线路的设计。 5)短路电流的计算。 6)变配电所一次设备的选择。 7)变配电所二次回路方案的选择及继电保护装臵的选择与装定。 8)变配电所防雷保护和接地装臵的设计。 9)编写设计说明书及主要设备材料单。 10)绘制变配电所主结线图、平面图和必要的剖面图、二次回路图及其他施工图。 (二)低压配电线路设计 低压配电线路设计包括以下基本内容: 1)低压配电线路系统方案的确定。 2)低压配电线路的负荷计算。 3)低压配电线路的导线和电缆的选择。 4)低压配电设备和保护设备的选择。

最优化方法大作业答案

武工院你们懂的 1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x

列成表格: 00001216 100114 60105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 0000 1 2 121023 10 40116201002 1 21 211-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 002 1232 30210231 040116201002121211-- ----- 再从底行中选元素-3,和第二列正元素2,迭代一次得 4002 3 03410120280114042001112--- 再迭代一次得

10 23021 062 21023 1010 213 000421 2 10 13- - 选取最优解: 01=x 42=x 23=x 3. 试用DFP 变尺度法求解下列无约束优化问题。 min f (X )=4(x 1-5)2+(x 2-6)2 取初始点X=(8,9)T ,梯度精度ε=0.01。 解:取I H =0,初始点()T X 9,8= 2221)6()5(4)(-+-=x x x f ??????--=?122408)(21x x x f ???? ??=?624)() 0(x f T x f d )6,24()()0()0(--=-?= )0(0)0()1(d x x α+= T )69,248(00αα--= ])669()5248(4min[)(min 2020)0(0)0(--+--?=+αααd x f )6()63(2)24()2458(8) (00)0(0)0(=-?-+-?--=+ααααd d x df 13077.013017 0≈= α ???? ??=???? ??--?+???? ??=21538.886153.462413077.098)1(x

电力工程课程设计

电 力 工 程 基 础 课 程 设 计 学校:海南大学 学院:机电工程学院姓名:王映翰 班级:09电气一班 学号:20090304310046

第一部分 设计任务书 一, 设计题目 某工矿企业降压变电所电气设计 二,设计要求 根据本厂用电负荷,并适当考虑生产的发展,按安全可靠,技术先进,经济合理的要求,确定工厂变电所的位置与形式,通过负荷计算,确定主变压器台数及容量,进行短路电流计算,选择变电所的主接线及高、低压电气设备,选择整定继电保护装置,最后按要求写出设计计算说明书,绘出设计图纸。 三,设计资料 设计工程项目 (1) 工厂总平面图: (2) 工厂负荷数据:

(3)供电电源情况:按与供电局协议,本厂可由东南方19公里处的变电所110/38.5/11kv,50MVA变压器供电,供电电压可任选。 (4)电源的短路容量:35kv母线的出线断路器断流容量为1500MVA;10kv母线的出线断路器断流容量为350MVA。 (5)供电局要求的功率因数:当35kv供电时,要求工厂变电所高压侧cos¢>=0.9;当以10kv供电时,要求工厂变电所高压侧cos

¢>=0.95. (6) 气象资料: 四,设计任务 (一) 设计计算说明书 (二) 设计图纸 第二部分 设计计算书 一、各区域计算负荷和无功补偿 1.采选矿区 已知:P30=3000KVA Tmax=5000h cos¢0.9 Q30= P30*tan¢=3000*0.48=1440 Kvar S30=2 30 230Q P + =3327.70KVA 2.冶炼厂 已知:P30=2200KVA Tmax=4200h cos¢0.9 Q30= P30*tan¢=2200*0.48=1056 Kvar S30=230 230Q P + =2440.31KVA 3.化工厂 已知:P30=2000KVA Tmax=4200h cos¢0.9 Q30= P30*tan¢=2000*0.48=960 Kvar S30=230 230Q P + =2218.47 KVA 4.机械制造厂 已知:P30=1500KVA Tmax=2880h cos¢0.9 Q30= P30*tan¢=1500*0.48=720 Kvar S30=230 230Q P + =1163.85KVA 5.厂区和职工居住区照明 已知:P30=800KVA Tmax=1800h cos¢0.9 Q30= P30*tan¢=800*0.48=384 Kvar S30=230 230Q P + =887.39KVA 6.所用电 已知:P30=500KVA Tmax=1800h cos¢0.9 Q30= P30*tan¢=500*0.48=240 Kvar S30=230 230Q P + =554.62KVA

北航数值分析大作业第二题精解

目标:使用带双步位移的QR 分解法求矩阵10*10[]ij A a =的全部特征值,并对其中的每一个实特征值求相应的特征向量。已知:sin(0.50.2)() 1.5cos( 1.2)(){i j i j ij i j i j a +≠+== (i,j=1,2, (10) 算法: 以上是程序运作的逻辑,其中具体的函数的算法,大部分都是数值分析课本上的逻辑,在这里特别写出矩阵A 的实特征值对应的一个特征向量的求法: ()[]()() []()[]()111111I 00000 i n n n B A I gause i n Q A I u Bu u λλ-?-?-=-?-?? ?-=????→=??????→= ?? ? 选主元的消元 检查知无重特征值 由于=0i A I λ- ,因此在经过选主元的高斯消元以后,i A I λ- 即B 的最后一行必然为零,左上方变 为n-1阶单位矩阵[]()()11I n n -?-,右上方变为n-1阶向量[]()11n Q ?-,然后令n u 1=-,则 ()1,2,,1j j u Q j n ==???-。

这样即求出所有A所有实特征值对应的一个特征向量。 #include #include #include #define N 10 #define E 1.0e-12 #define MAX 10000 //以下是符号函数 double sgn(double a) { double z; if(a>E) z=1; else z=-1; return z; } //以下是矩阵的拟三角分解 void nishangsanjiaodiv(double A[N][N]) { int i,j,k; int m=0; double d,c,h,t; double u[N],p[N],q[N],w[N]; for(i=0;i

《最优化方法》复习题(含答案)

x zD 天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 判断与填空题 arg max f(x)二 arg min 以儿 “ max(x): x D 二 R n 』=-min(x): x D 二 R n ; 设f : D 5 R n > R.若x : R n ,对于一切R n 恒有f(x”)^f(x),则称x”为 设f : D 5 R n >R.若x ” ? D ,存在x ”的某邻域N ;(x”),使得对一切 x ?N .(x)恒有f(x”)::: f (x),则称x”为最优化问题 min f (x)的严格局部最 优解? 给定一个最优化问题,那么它的最优值是一个定值 ? V 非空集合D R n 为凸集当且仅当 D 中任意两点连线段上任一点属于 D . V 非空集合D R n 为凸集当且仅当D 中任意有限个点的凸组合仍属于 D . V 任意两个凸集的并集为凸集? 函数f:D R n >R 为凸集D 上的凸函数当且仅当 -f 为D 上的凹函数? V 设f : D R n >R 为凸集D 上的可微凸函数,X :D ?则对-D ,有 f (x) - f(x )乞 f (x )T (X —X )? 若c(x)是凹函数,则 D={x^R n C(x)启0}是凸集。 V f(x)的算法A 产生的迭代序列,假设算法 A 为下降算法, 则对-k ? 5,1, 2,…匚恒有 ________________ f(x k1)乞 f(x k ) ______________ ? 算法迭代时的终止准则(写出三种) : ___________________________________________________ 凸规划的全体极小点组成的集合是凸集。 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

大连理工优化方法大作业MATLAB编程

function [x,dk,k]=fjqx(x,s) flag=0; a=0; b=0; k=0; d=1; while(flag==0) [p,q]=getpq(x,d,s); if (p<0) b=d; d=(d+a)/2; end if(p>=0)&&(q>=0) dk=d; x=x+d*s; flag=1; end k=k+1;

if(p>=0)&&(q<0) a=d; d=min{2*d,(d+b)/2}; end end %定义求函数值的函数fun,当输入为x0=(x1,x2)时,输出为f function f=fun(x) f=(x(2)-x(1)^2)^2+(1-x(1))^2; function gf=gfun(x) gf=[-4*x(1)*(x(2)-x(1)^2)+2*(x(1)-1),2*(x(2)-x(1)^2)]; function [p,q]=getpq(x,d,s) p=fun(x)-fun(x+d*s)+0.20*d*gfun(x)*s'; q=gfun(x+d*s)*s'-0.60*gfun(x)*s'; 结果: x=[0,1]; s=[-1,1]; [x,dk,k]=fjqx(x,s) x =-0.0000 1.0000 dk =1.1102e-016 k =54

function f= fun( X ) %所求问题目标函数 f=X(1)^2-2*X(1)*X(2)+2*X(2)^2+X(3)^2+ X(4)^2- X(2)*X(3)+2*X(1)+3*X(2)-X(3); end function g= gfun( X ) %所求问题目标函数梯度 g=[2*X(1)-2*X(2)+2,-2*X(1)+4*X(2)-X(3)+3,2*X(3)-X(2)-1,2*X(4)]; end function [ x,val,k ] = frcg( fun,gfun,x0 ) %功能:用FR共轭梯度法求无约束问题最小值 %输入:x0是初始点,fun和gfun分别是目标函数和梯度 %输出:x、val分别是最优点和最优值,k是迭代次数 maxk=5000;%最大迭代次数 rho=0.5;sigma=0.4;

《基础工程》课程设计指导书8页

道路桥梁与渡河工程专业 《基础工程》课程设计指导书 第一部分柱式墩配多排桩基础 1 拟定桥墩及基础尺寸 1.1 标高推算及铅垂方向尺寸拟定 墩帽顶面标高:从水文角度出发,推算墩帽顶面标高。 计算水位=设计水位+波浪壅水等 梁底标高=计算水位+安全净空 裸梁顶面标高=梁底标高+梁高 墩帽顶面标高=梁底标高-支座及垫石厚度 墩帽厚度:根据桥的规模,满足《桥规》有关最小厚度的要求,自行拟定。 承台顶面标高:考虑冰冻、撞击及方便基础施工决定。 承台厚度:为谋求较大刚度,按照《桥规》,承台厚度应不小于1.5m。 承台底面标高=承台顶面标高—承台厚度 墩高=墩帽顶面标高—承台顶面标高 墩柱长度=墩高—墩帽厚度。 桩长及桩底标高:由计算决定。 1.2 顺桥方向尺寸拟定 墩帽宽度:根据标准跨径、计算跨径、支座垫板宽度、《桥规》有关C1、C2的规定,进行设计:B≥(标准跨径—计算跨径)+支座垫板宽度+2 C1+2C2 墩柱直径:墩帽宽度—2C1,且应满足《桥规》的有关规定。 承台宽度:根据墩柱直径、桩的排数、桩的直径(1~2m)、桩的中距要求(≥2.5倍成孔直径(摩)、≥2.0倍成孔直径(柱))、边桩外缘到承台边缘的最小净距要求(见《桥规》或笔记),自行拟定。 1.3 横桥方向尺寸拟定 墩帽长度:根据主梁间距、横桥向主梁片数、支座垫板宽度、《桥规》有关C1、C2的规定,满足安放主梁的要求。同时考虑施工方法。 墩柱间距:对墩帽受力有利,参照标准图。 承台长度:根据墩柱间距与直径、桩的排数、直径、间中距要求、边桩外缘到承台边缘的最小净距要求,自行拟定。 2 承台底面形心荷载计算 2.1 荷载类型(本次时间有限,简化如下) (1)承台底面形心竖向荷载 包括:恒载(栏杆、人行道、桥面铺装、主梁、盖梁、墩柱、承台等)、 汽车(及冲击)

电力工程课程设计汇总

新能源与动力工程学院 课程设计报告 电力工程课程设计 2015年 7 月 兰州交通大学新能源与动力工程学院课程设计任务书 专业 电力工程与管理 班级 1201班 姓名 关海波 学 号 201211318 指导教师 杜露露

课程名称:电力工程课程设计指导教师(签名):杜露露 班级:电力1201 姓名:关海波学号: 201211318

指导教师评语及成绩评定表 指导教师签字: 年月日 目录

第一章设计任务 ............................................................ - 0 - 1.1、设计要求 ............................................................ - 0 - 1.2、设计依据 ............................................................ - 0 - 1.2.1、工厂总平面图................................................... - 0 - 1.2.2、工厂负荷情况................................................... - 1 - 1.2.3、供电电源情况................................................... - 1 - 1.2.4、气象资料....................................................... - 1 - 1.2.5、地质水文资料................................................... - 1 - 1.2.6、电费制度....................................................... - 3 - 第二章负荷计算和无功功率补偿................................................ - 3 - 2.1、负荷计算 ............................................................ - 3 - 2.1.1、单组用电设备计算负荷的计算公式................................. - 3 - 2.1.2、多组用电设备计算负荷的计算公式................................. - 4 - 2.1.3、各车间负荷统计计算............................................. - 4 - 2.1.4、总的计算负荷计算............................................... - 7 - 2.2、无功功率补偿......................................................... - 9 - 第三章变电所位置与型式的选择................................................ - 10 - 3.1、变配电所的任务...................................................... - 10 - 3.2、变配电所的类型...................................................... - 10 - 第四章变电所主变压器及主接线方案的选择..................................... - 10 - 4.1、变电所主变压器的选择................................................ - 10 - 4.1.1、变压器型号的选择.............................................. - 10 - 4.2、变电所主接线方案的选择.............................................. - 11 - 第五章短路电流的计算....................................................... - 13 - 5.1、绘制计算电路........................................................ - 13 - 5.2、确定短路计算基准值.................................................. - 13 - 5.3、计算短路电路中各个元件的电抗标幺值.................................. - 13 - 5.3.1、电力系统...................................................... - 13 - 5.3.2、架空线路...................................................... - 13 - 5.3.3、电力变压器.................................................... - 13 - 5.4 、k-1点(10.5kV侧)的相关计算....................................... - 14 - 5.4.1、总电抗标幺值.................................................. - 14 - 5.4.2、三相短路电流周期分量有效值.................................... - 14 - 5.4.3、其他短路电流.................................................. - 14 - 5.4.4、三相短路容量.................................................. - 14 - 5.5 、k-2点(0.4kV侧)的相关计算........................................ - 14 - 5.5.1、总电抗标幺值.................................................. - 14 - 5.5.2、三相短路电流周期分量有效值.................................... - 14 - 5.5.3、其他短路电流.................................................. - 14 - 5.5.4、三相短路容量.................................................. - 14 - 第六章变电所一次设备的选择校验............................................ - 16 - 6.1、10kV侧一次设备的选择校验........................................... - 16 - 6.2、380V侧一次设备的选择校验........................................... - 16 - 6.3、高低压母线的选择.................................................... - 16 -

相关文档
最新文档