线性规划的典型例题

例1:某工厂在计划期内要安排生产n 种产品,已知生产单位产品所需要的设备台时及m 种原材料的消耗见下表。

1 2 3

n

原材料1A 11a

12a 13a

n a 1

kg b 1 原材料2A 21a 22a

23a n a 2 kg b 2

原材料

2A 31a

32a

33a

n a 3

kg b 3

原材料

2A 1,1-m a 2,1-m a 3,1-m a

n m a ,1- kg b m 1- 设备

1,m a

2,m a

3,m a

n m a ,

m b 台时

该工厂生产产品n ,,2,1 种的利润分别是n c c c ,,21,要使该工厂获利最多?

解:设()n i x i ,,2,1 =是计划期内产品的产量,可建立如下数学模型:

()?????????=≥≤+++≤+++≤++++++=n ,1,2,i 0max 122112122221211112121112211

i

m

n mn m m n n n n n n x b

x a x a x a b x a x a x a b x a x a x a x c x c x c z

例2:靠近某河流有m 个化工厂,流经第一化工厂的河流流量为每天B 万立方米,在第i 个工厂与第1+i 个工厂之间所有支流流量的总量为

()1,,2,1-=m i b i ,而

C

b i

为支流产生的净水能力,其中C 很大。第i 个化工厂每天排放含有某种有害物质的工业污水i a 万立方米,从第i 化工厂排出的工业污水流到第1+i 化工厂以前,有i c 可自然净化,其中

10<

个工厂都需要各自处理一部分工业污水。第i 化工厂处理工业污水的成本是i e 元。现在问在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工厂总的处理工业污水的费用最少?

解:设第i 化工厂每天处理工业污水量为i x 万立方米,可建立如下数学模型:

()()()()()()()()

()()??????

?????

??

????????

??=≥=≤≤++++-+??? ??---++??? ??--??? ??---≤++-+??? ??---+??? ??--??? ??---≤+-+??? ??---≥=------=∑m i x m i a x d b b b B x a c b c x a c b c c b c x a d

b b B x a

c b c x a c b c c b c x a

d b B x a c b c x a db x x

e z i i i m

m m m m m m m m m

i i

i ,,2,10,,2,11111111min 211111111111213322

2222111112211

1111

例4:生产与库存的优化安排

某工厂生产n 种产品()n i 2,1=,在m 个月对各种产品的最大市场需求量为ij d ()m j n i ,2,1;,2,1==。已知每件产品的单件售价为i S ,生产每件产品所需要工时为i a ,单价成本为i C 元;该工厂这m 个月正常生产工时为j r ()m

j ,2,1=,各月内允许的最大加班工时为j r ',j C '为加班单

件成本。又每月生产的各种产品如当月销售不完,可以库存。库存费用为i H ()月件元./,但由于仓库有限,所以每月每种产品的库存量不得超过ij l 。假设1月初所以产品的库存为零,并要求m 月底各产品库存量分别为i k 件。后来工厂有人提出可以购买一批新的器材,这样会使工作效率加高,已知这批器材的总价为Q 元,并会使每件产品所需的工时减少i d ,单价成本减少i e 元,加班单价成本减少i e '元。现要求制定生产计划,在尽可能利用生产能力的条件下,购进新器材与沿用旧器材哪种方案获得利润更大。

解:设ij

ij x x ',分别为该工厂第i 种产品的第j 个月在正常时间和加班时间内的生产量;ij y 为i 种产品在第j 月的销售量,ij ω为第i 种产品第j 个月末的库存量。

方案一:仍使用旧器材,模型如下:

ij

n i m

j i n i m

j ij i ij i ij i H x C x C y S z ω∑∑∑∑====-??? ??''--=11

111max ()()()()()()

?????

??

??????????==≥==≥≥'≥≤====-'++===≤='≤'=≤-==∑∑n 1,2j n,1,2i 0m 1,2j n,1,2i ,0,0,0,0m 1,2j n,1,2i m 1,2j n,1,2i m 1,2,j m 1,2,j 601,1

1 ij ij ij ij ij

ij i i i ij ij ij j i ij ij ij j ij n

i i j ij n

i i y x x l k y x x d y r x a r x a ωωωωωω 方案二:使用新器材,模型如下:

()()()Q H x e C x e C y S z ij

n i m

j

i n i m

j

ij i i ij i i ij i --''-'---=∑∑∑∑====ω

11112max

()()()()()()()()

?????

??

??????????==≥==≥≥'≥≤====-'++===≤='≤'-=≤--==∑∑n 1,2j n,1,2i 0m 1,2j n,1,2i ,0,0,0,0m 1,2j n,1,2i m 1,2j n,1,2i m 1,2,j m 1,2,j 601,1

1 ij ij ij ij ij

ij i i i ij ij ij j i ij ij ij j ij n

i i i j ij n

i i i y x x l k y x x d y r x d a r x d a ωωωωωω 算出21,z z ,

例5:连续投资的问题

某部门在今后m 年内考虑给下列项目投资,已知:

项目1A ,从第1年到第1-m 年每年年初需要投资,并于次年末回收本利i b )1,2,1(-=m i ;

项目i A ,第i 年初需要投资,到第m 年末能回收本利i d ,但规定最大投资额不超过i e 万元()2,,2-=m i ;

项目1-m A ,m 年内每年初可购买公债,于当年末归还,并加利息

i c ()2,,3,2-=m i ;

该部门现有资金d 万元,问它应如何确定给这些项目每年的投资额,使到第m 年末拥有的资金的本利总额为最大? 解:

ii

m j i i m m m m m x d x c x b z ∑-=-----++=2

2

,111212max

()

????????

??

?????-=≥≤=+---=+++-=-+∑∑-=-----------1,,2,100002

222,12121111222211111111m i x e x x x b x c x d x x x x

c d x x ii i m i ii m j i m m m m m m m ii i m m m

整数规划:

例1:现有m 节铁路货车,车箱长分别为i L 米,最大载重量分别为i M 吨,可以运载n 类货物包装箱。包装箱的厚度和重量不同,但宽和高相同且适合装车,每件包装箱不能拆开装卸,只能装或不装。每件货物的重量、厚度与价值如下表所示。请给出装货方案,使总的价值最大?

货物 厚度(厘米) 重量(吨/件)

价值(千元)

件数

1A 1a

1m 1c 1b

2A

2a

2m

2c

2b

n A

n a

n m

n c

n b

解:设ij x 代表第i 节车厢装入第j 类货物的件数,则

()()

()?????

??????==∈≤=≤=≤++=+

====∑∑∑∑n j m i N x b x m i M x m m i L x a x c x c x c z ij m

i j ij n

j i ij j n

j i ij j m

i in

n i i ,,2,1;,,2,1,,2,1,,2,1max 11

11

2211 例4:应急选址问题

某城市要在市区设置k 个应急服务中心,经过初步筛选确定了m 个备选地,且每个备用地建站费用为j a ,其服务满意度为j b ,可服务的小区容量为j c ()m j ,,2,1 =。现已知共有n 个居民小区,各小区到各备选地的距离为,1,2,...,,1,2,...,,ij d i n j m == 为了使得各小区能及时得到应急服务,要求各小区到最近的服务中心的距离尽可能的短,且要求费用最低和满意度最高,试给出中心选址方案。

解:该问题与传统的选址问题的主要区别在于其目标不再是要求费用最小,而是要求最长距离最短。也就是离服务中心距离最远的小区离最近的服务中心距离最小。变量:当中心的位置确定下来后,各小区对应的最近中心也就确定,所以真正的变量也就是中心的位置。设

0,1,1,2,...,,j x j m ==(选用1表示,不选用0表示)

为了便于说明问题引入间接变量,第i 小区是否由第j 个中心服务ij y ,第j 中心是否服务第i 小区ji z 以及最远的距离d 。

()1

1

11 1

min ,1,2,...,,1,2,...,,1,1,2,...,,

,1,2,...,,1,2,...,,.1,2,,,1,2,...,,1,2,...,,,,0,1,1,2,m m

j j j j

j j ij j m

ij

j ij ij m

j j n

ji j i ij ji j ij ji z d a x b x y x i n j m y i n d y d i n j m s t x k z c j m d z d i n j m x y z i ======+-≤====≤===≤=≤====∑∑∑∑∑ ...,,1,2,...,,0

n j m d ?????

???

????????=≥?

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

3.3.2简单的线性规划问题导学案(1)

3.3.2简单的线性规划问题导学案(1) 班级 姓名 【学习目标】 1、了解线性规划的意义及线性约束条件、线性目标函数、可行解、可行域、最 优解等概念; 2、能根据条件,建立线性目标函数; 3、了解线性规划问题的图解法,并会用图解法求线性目标函数的最大(小)值。 【学习过程】 一、自主学习 (1)目标函数: (2)线性目标函数: (3)线性规划问题: (4)可行解: (5)可行域: (6) 最优解: 二、合作探究 在约束条件???????≥≥≤+≥+0 0221y x y x y x 下所表示的平面区域内, 探索:目标函数2P x y =+的最值? (1)约束条件所表示的平面区域称为 (2)猜想在可行域内哪个点的坐标00(,)x y 能使P 取到最大(小)值? (3)目标函数2P x y =+可变形为y= ,p 的几何意义: (4)直线2y x p =-+与直线2y x =-的位置关系 (5)直线2y x p =-+平移到什么位置时,在y 轴上的截距P 最大? (6)直线2y x p =-+平移到什么位置时,在y 轴上的截距P 最小? 三、交流展示 1、已知变量,x y 满足约束条件?? ???≥≤+-≤-1255334x y x y x ,求2t x y =-的最值。

规律总结:用图解法解决简单的线性规划问题的基本步骤? 四、达标检测 A 组:1.下列目标函数中,Z 表示在y 轴上截距的是( ) A.y x z -= B.y x z -=2 C.y x z += D.y x z 2+= 2.不等式组 x –y+5≥0 x + y ≥0 x ≤3表示的平面区域的面积等于( ) A 、32 B 、1214 C 、1154 D 、632 3.若?? ???≤+≥≥100y x y x ,则y x z -=的最大值为( ) A.-1 B.1 C.2 D.-2 4.已知x ,y 满足约束条件5003x y x y x -+??+??? ≥≥≤,则24z x y =+的最小值为( ) A .5 B .6- C .10 D .10- 5.若?? ???≥≤+≤--0101x y x y x ,则目标函数y x z +=10的最优解为( ) A .(0,1),(1,0) B.(0,1),(0,-1) C.(0,-1),(0,0) D.(0,-1),(1,0) 6. 若222x y x y ????+? ≤≤≥,则目标函数2z x y =+的取值范围是( ) A .[26], B .[25], C .[36], D .[35], 7.若A(x, y)是不等式组 –1<x <2 –1<y <2)表示的平面区域内的点,则2x –y 的取值范围是( ) A 、(–4, 4) B 、(–4, –3) C 、(–4, 5) D 、(–3, 5) B 组:1.在不等式组 x >0 y >0 x+y –3<0表示的区域内,整数点的坐标是 。 2.若y x ,都是非负整数,则满足5≤+y x 的点共有________个。

线性规划题及答案

线性规划题型及解法 一、已知线性约束条件,探求线性目标关系最值问题 2x -y _2 例1、设变量x、y满足约束条件x 一y _ _1,则z =2x ? 3y的最大值为__________ 。 x y _1 二、已知线性约束条件,探求非线性目标关系最值问题 \ >1, 例2、已知」x-y+1兰0,则x2+y2的最小值是_」“(x-1)2+(y+2『”值域? 2x - y - 2 <0 三、约束条件设计参数形式,考查目标函数最值范围问题。 Zf x _0 例3、在约束条件y_0 下,当3乞s乞5时,目标函数Z=3x?2y的最大值的变化范围是() |y x _s y 2x^4 A. [6,15] B. [7,15] C. [6,8] D. [7,8] 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线x2-y2 =4的两条渐近线与直线x=3围成一个三角形区域,表示该区域的不等式组是() fx-yZ0 「x-yX0 『x-y^0 "x-y 兰0 (A) x y _ 0 (B) x y 乞0 (C) x y 乞0 (D) x y _ 0 0 _x _3 0 _x _3 0 _x _3 0 _x _3 五、已知最优解成立条件,探求目标函数参数范围问题。 (1 ::: x :「v ‘::4 例5已知变量x,y满足约束条件若目标函数ax y (其中a 0)仅在 [―2 兰x—y 兰2 点(3,1)处取得最大值,则a的取值范围为 __________ 。 六、设计线性规划,探求平面区域的面积问题 丄x y _ 2 _ 0 _ 例6在平面直角坐标系中,不等式组x_y,2_0表示的平面区域的面积是()(A)4、、2 (B)4 [八0 (C) 2.2 (D)2 七、研究线性规划中的整点最优解问题 ”5x-11y —22, 例7、某公司招收男职员x名,女职员y名,x和y须满足约束条件<2x+3yX9, 则 、2x 兰11. z =10x 10y 的最大值是(A)80 (B) 85 (C) 90 (D)95 八、比值问题 当目标函数形如z =-—a时,可把z看作是动点P x, y与定点Q b, a连线的斜率,这样目 x —b 标函数的最值就转化为PQ连线斜率的最值。 x—y+ 2W 0,V

高中物理必修一经典例题附解析

华辉教育物理学科备课讲义 A.大小为2N,方向平行于斜面向上 B.大小为1N,方向平行于斜面向上 C.大小为2N,方向垂直于斜面向上 D.大小为2N,方向竖直向上 答案:D 解析:绳只能产生拉伸形变, 绳不同,它既可以产生拉伸形变,也可以产生压缩形变、弯曲形变和扭转形变,因此杆的弹力方向不一定沿杆. 2.某物体受到大小分别为 闭三角形.下列四个图中不能使该物体所受合力为零的是 ( 答案:ABD 解析:A图中F1、F3的合力为 为零;D图中合力为2F3. 3.列车长为L,铁路桥长也是 桥尾的速度是v2,则车尾通过桥尾时的速度为 A.v2

答案:A 解析:推而未动,故摩擦力f=F,所以A正确. .某人利用手表估测火车的加速度,先观测30s,发现火车前进540m;隔30s 现火车前进360m.若火车在这70s内做匀加速直线运动,则火车加速度为 ( A.0.3m/s2B.0.36m/s2 C.0.5m/s2D.0.56m/s2 答案:B 解析:前30s内火车的平均速度v=540 30 m/s=18m/s,它等于火车在这30s 10s内火车的平均速度v1=360 10 m/s=36m/s.它等于火车在这10s内的中间时刻的速度,此时刻Δv v1-v36-18

两根绳上的张力沿水平方向的分力大小相等. 与竖直方向夹角为α,BC与竖直方向夹角为 .利用打点计时器等仪器测定匀变速运动的加速度是打出的一条纸带如图所示.为我们在纸带上所选的计数点,相邻计数点间的时间间隔为0.1s. ,x AD=84.6mm,x AE=121.3mm __________m/s,v D=__________m/s 结果保留三位有效数字)

简单的线性规划问题学案

3.3.2简单的线性规划问题学案(一) 预习案(限时20分钟) 学习目标:1.了解线性规划的意义,了解线性规划的基本概念;2.掌握线性规划问题的图解法.3.能用线性规划的方法解决一些简单的实际问题,提高学生解决实际问题的能力. 学习重点,难点: 会画二元一次不等式(组)所表示的平面区域及理解数形结合思想,求目标函数的值。 预习指导:预习课本P87-91 1.如果两个变量y x ,满足一组一次不等式组,则称不等式组是变量y x ,的约束条件,这组约束条件都是关于y x ,的 次不等式,故又称 条件. 2.关于y x ,的一次式),(y x f z =是达到最大值或最小值所涉及的变量y x ,的解析式,叫线性目标函数. 3.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为 规划问题. 4.可行解、可行域和最优解:在线性规划问题中, ①满足线性约束条件的解(,)x y 叫 ;②由所有可行解组成的集合叫做 ; ③使目标函数取得最大或最小值的可行解叫线性规划问题的 解. 线性规划问题,就是求线性目标函数在线性约束条件下的最大值或最小值的问题. 预习检测 1.设变量y x ,满足约束条件?? ???≥+≤+≥-12102y x y x y x ,则目标函数y x z +=2的最大值为 ( ) A .。34 B .2 C .23 D .2 3- 2.若变量y x ,满足约束条件?? ???-≥≤+≤1,1y y x x y 且y x z +=2的最大值和最小值分别为m 和n ,则n m -=( ) A .5 B . 6 C . 7 D . 8 3.若y x ,满足约束条件103030x y x y x -+≥??+-≥??-≤? ,则目标函数2z x y =-的最小值为__________ 4.求35z x y =+的最大值和最小值,使式中的y x ,满足约束条件5315153x y y x x y +≤??≤+??-≥? .

线性规划习题附答案模板

习题 2-1 判断下列说法是否正确: (1)任何线性规划问题存在并具有惟一的对偶问题; (2)对偶问题的对偶问题一定是原问题; (3)根据对偶问题的性质, 当原问题为无界解时, 其对偶问题无可行解, 反之, 当对偶问题无可行解时, 其原问题具有无界解; (4)若线性规划的原问题有无穷多最优解, 则其对偶问题也一定具有无穷多最优解; (5)若线性规划问题中的b i, c j值同时发生变化, 反映到最终单纯形表中, 不会出现原问题与对偶问题均为非可行解的情况; (6)应用对偶单纯形法计算时, 若单纯形表中某一基变量x i<0, 又x i所在行的元素全部大于或等于零, 则能够判断其对偶问题具有无界解。 (7)若某种资源的影子价格等于k, 在其它条件不变的情况下, 当该种资源增加5个单位时, 相应的目标函数值将增大5k;

(8) 已知y i 为线性规划的对偶问题的最优解, 若y i >0, 说明在最优生产计划中第i 种资源已经完全耗尽; 若y i =0, 说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z ()??? ??≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 解: (1)令'''444x x x =-, 增加松弛变量5x , 剩余变量6x , 则该问题的标准形式如下所示: ''' 12344''' 12344''' 123445''' 123446'''1234456max 342554222214..232 ,,,,,,0 z x x x x x x x x x x x x x x x x s t x x x x x x x x x x x x x =-+-+-?-+-+-=?+-+-+=??-++-+-=??≥? (2)令'z z =-, '11x x =-, '''333x x x =-, 增加松弛变量4x , 则该问题的标准形式如下所示: ''''' 1233'''' 1233'''' 12334''''12334 max 22334 ..26,,,,0z x x x x x x x x s t x x x x x x x x x x =+-+?++-=?+-++=??≥? 2-3分别用图解法和单纯形法求解下述线性规划问题, 并对照

高二数学简单线性规划知识点

高二数学简单线性规划知识点 导读:我根据大家的需要整理了一份关于《高二数学简单线性规划知识点》的内容,具体内容:数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。归纳1.在同一坐标系上作出下列直线:2x+y=0;2x+y=1;2x+y=-... 数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。 归纳 1.在同一坐标系上作出下列直线: 2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7xYo简单线性规划(1)-可行域 上的最优解2y 问题1:x 有无最大(小)值? 问题2:y 有无最大(小)值? 问题3:2x+y 有无最大(小)值? 2.作出下列不等式组的所表示的平面区域3二.提出问题 把上面两个问题综合起来: 设z=2x+y,求满足 时,求z的最大值和最小值.4y 直线L越往右平移,t随之增大. 以经过点A(5,2)的直线所对应的t值最大;经过点B(1,1)的直线所对应的t值最小.

可以通过比较可行域边界顶点的目标函数值大小得到。 思考:还可以运用怎样的方法得到目标函数的最大、最小值?5线性规划问题:设z=2x+y,式中变量满足 下列条件: 求z的最大值与最小值。 目标函数 (线性目标函数)线性约束条件 象这样关于x,y一次不等式组的约束条件称为线性约束条件 Z=2x+y称为目标函数,(因这里目标函数为关于x,y的一次式,又称为线性目标函数6线性规划 线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 可行解:满足线性约束条件的解(x,y)叫可行解; 可行域:由所有可行解组成的集合叫做可行域; 最优解:使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。可行域2x+y=32x+y=12(1,1)(5,2)7 线性目标函数 线性约束条件 线性规划问题 任何一个满足不等式组的(x,y)可行解可行域所有的最优解 目标函数所表示的几何意义——在y轴上的截距或其相反数。8线性规划

(完整word版)高中物理功和功率典型例题解析

功和功率典型例题精析 [例题1] 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ] A.加速过程中拉力的功一定比匀速过程中拉力的功大 B.匀速过程中拉力的功比加速过程中拉力的功大 C.两过程中拉力的功一样大 D.上述三种情况都有可能 [思路点拨]因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma, 匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2. [解题过程] 比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系. 因此选项A、B、C的结论均可能出现.故答案应选D. [小结]由恒力功的定义式W=F·S·cosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功. [例题2]质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图8-1所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.

[思路点拨] 此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功. [解题过程] 由F=ma得m与M的各自对地的加速度分别为 设抽出木板所用的时间为t,则m与M在时间t内的位移分别为 所以把长木板从小物块底下抽出来所做的功为 [小结]解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图8-2).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm与木板长度L之和,而它们各自的匀加速运动均在相同时间t内完成,再根据恒力功的定义式求出最后结果.

【精品】第47课时—简单的线性规划学案

高三数学第一轮复习讲义(47)2004。10.27 简单的线性规划 一.复习目标: 1.了解用二元一次不等式表示平面区域,了解线性规划的意义,并会简单的应用; 2.通过以线性规划为内容的研究课题与实习作业,提高解决实际问题的能力. 二.知识要点: 已知直线0Ax By C ++=,坐标平面内的点00(,)P x y . 1.①若0B >,000Ax By C ++>,则点00(,)P x y 在直线的方; ②若0B >,000Ax By C ++<,则点00(,)P x y 在直线的方. 2.①若0B >,0Ax By C ++>表示直线0Ax By C ++=方的区域; ②若0B <,0Ax By C ++>表示直线0Ax By C ++=方的区域. 三.课前预习: 1.不等式240x y -->表示的平面区域在直线240x y --=的() ()A 左上方()B 右上方()C 左下方()D 右下方 2.表示图中阴影部分的二元一次不等式组是()

()A 220102x y x y -+≤??-≥??≤?()B 21002x y x y -??-≥??≤≤?()C 1002x y -≤??≤≤?()D 10 02x y -≤??≤≤? 3.给出平面区域(包括边界)如图所示,若使目标函数(0)z ax y a =+> 取得最大值的最优解有无穷多个,则a 的值为() () A 14() B 35() C 4() D 53 4.原点和点(1,1)在直线0x y a +-=的两侧, 则a 的取值范围是. 5.由|1|1y x ≥+-及||1y x ≤-+2)

四.例题分析: 例1.某人上午7时乘船出发,以匀速v 海里/时(420v ≤≤)从A 港到相距50海里的B 港去,然后乘汽车以ω千米/时(30100ω≤≤)自B 港到相距300千米的C 市去,计划在当天下午4至9时到达C 市.设乘船和汽车的时间分别为x 和y 小时,如果已知所要的经费(单位:元)1003(5)(8)P x y =+?-+-,那么v ,ω分别是多少时所需费用最少?此时需要花费多少元? 小结: 例2.某运输公司有10辆载重量为6吨的A 型卡车与载重量为8吨的B 型卡车,有11名驾驶员。在建筑某段高速公路中,该公司承包了每天至少搬运480吨沥青的任务.已知每辆卡车每天往返的次数为A 型卡车8次,B 型卡车7次;每辆卡车每天的成本费A 型车350元,B 型车400元.问每天派出A 型车与B 型车各多少辆,公司所花的成本费最低,最低为多少? 小结:

高考全国卷及各省数学线性规划真题附答案.docx

2017 高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) x 3y 3, 1. ( 17 全国卷 I ,文数 )设 x ,y 满足约束条件 x y 1, 则 z=x+y 的最大值为( ) 7 y 0, A . 0 B . 1 C .2 D .3 答案: D 解析:如图,由图易知当目标函数 z x y 经过 直线 x 3 y 3 和 y 0 (即 x 轴)的交点 A(3,0) 时, z 能取到最大值,把 A(3,0) 代入 z=x+y 可得 z max 3 0 3 ,故选 D. x 2 y 1 2.(17 全国卷 I, 理数 14 题)设 x ,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值 x y 0 为 答案: 5 x 2 y 1 解析:不等式组 2x y 1 表示的平面区域如图所示。 x y 0 由 z 3x 2 y 变形得 y 3 x z 。要求 z 的最小值, 2 2 即求直线 y 3 x z 的纵截距的最大值。由右图,易知 2 2 当直线 y 3 x z 过图中点 A 时,纵截距最大。 2 2 联立方程组 2 x y 1 ,此时 z 3(1) 2 1 5 。 x 2 y 1 ,解得 A 点坐标为 ( 1,1) 故 z 3x 2 y 的最小值是 -5.

2x+3y 30 3. (17 全国卷Ⅱ,文数 7、理数 5)设 x、y 满足约束条件2x 3 y 3 0 .则z2x y的 y 30 最小值是() A.-15 C.1D9 答案: A 2x+3y 30 解析:不等式组2x 3y 30 表示的可行域如图所示, y30 易知当直线z 2x y 过到y 2 x 1与 y 3 交点 3 6 ,3 时,目标函数 z2x y 取到最小值,此时有 z min 26315 ,故所求z 最小值为15. )设,满足约束条件 3x 2 y60 的取值范围是 4. (17 全国卷Ⅲ,文数 5 x0,则 z=x-y x y y0 () A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 答案: B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z x y 在直线3x 2y 60 与= - 直线 x0 (即x 轴)的交点A0,3处取得最小值, 此时 z min0 3 3。在点B2,0处取得最大值,此时 z max 2 0 2 . 故本题选择 B 选项 . 5.(17 全国卷Ⅲ,理数13)若 x,y 满足约束条件x y 0 x y 2 0 则z3x 4 y 的最小值为y 0 ________.

线性规划知识复习、题型总结

线性规划 基础知识: 一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0 2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0 3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断 Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。 方法二:利用规律: 1.Ax+By+C>0,当B>0时表示直线Ax+By+C=0上方(左上或右上), 当B<0时表示直线Ax+By+C=0下方(左下或右下); 2.Ax+By+C<0,当B>0时表示直线Ax+By+C=0下方(左下或右下) 当B<0时表示直线Ax+By+C=0上方(左上或右上)。 四、线性规划的有关概念: ①线性约束条件: ②线性目标函数: ③线性规划问题: ④可行解、可行域和最优解: 典型例题一--------画区域 1. 用不等式表示以)4,1(A ,)0,3(-B ,)2,2(--C 为顶点的三角形内部的平面区域. 分析:首先要将三点中的任意两点所确定的直线方程写出,然后结合图形考虑三角形内部区域应怎样表示。 解:直线AB 的斜率为:1) 3(104=---=AB k ,其方程为3+=x y . 可求得直线BC 的方程为62--=x y .直线AC 的方程为22+=x y . ABC ?的内部在不等式03>+-y x 所表示平面区域内,同时在不等式062>++y x 所表示的平面区域内,同时又在不等式022<+-y x 所表示的平面区域内(如图). 所以已知三角形内部的平面区域可由不等式组?? ???<+->++>+-022, 062,03y x y x y x 表示. 说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线. 2 画出332≤<-y x 表示的区域,并求所有的正整数解),(y x . 解:原不等式等价于???≤->.3,32y x y 而求正整数解则意味着x ,y 还有限制条件,即求??? ??? ?≤->∈∈>>.3, 32, ,,0,0y x y z y z x y x .

高中物理牛顿第二定律经典例题

牛顿第二运动定律 【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速 率都是先增大,后减小 D、物体在B点时,所受合力为零 的对应关系,弹簧这种特 【解析】本题主要研究a与F 合 殊模型的变化特点,以及由物体的受力情况判断物体的 运动性质。对物体运动过程及状态分析清楚,同时对物 =0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置mg=kx c,a=0,物体速度达最大。由C→B的过程中,由于mgf m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。 综合上述,正确答案应为A、B、D。 【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少? 【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线 中拉力T,滑块A的支持力N,如 图3-12所示,小球在这三个力作用 下产生向左的加速度,当滑块向左

74简单的线性规划学案

7.4 简单的线性规划第二课时学案 一、知识点: 1、二元一次方程表示平面区域: 2、目标函数、可行域、可行解、最优解、线性规划问题: 3、解线性规划问题的基本步骤: 二、应用: 例1:(1)已知,x y满足不等式组 22 21 0,0 x y x y x y +≥ ? ? +≥ ? ?≥≥ ? ,求3 z x y =+的最小值. (2) 已知,x y满足不等式组 270 43120 230 x y x y x y -+≥ ? ? --≤ ? ?+-≥ ? ,求 ①43 z x y =-的最大值与最小值; ②22 z x y =+的最大值与最小值; ③y z x =的取值范围.

(3) 已知,x y 满足不等式组2040250x y x y x y -+≥??+-≥??--≤? , 求①23z x y =-的最值; ②22222z x y x y =++-+的最小值; ③12 y z x +=+的最大值; ④24z x y =+-的最大值. 例2:给出平面区域如图所示,若使目标函数()0z ax y a =+> 取到最大值的最优解有无穷多个,则a 的值为( ). A. 14 B. 35 C. 4 D.53 变式: 给出平面区域如图所示,若使目标函数()0z ax y a =+> 取到最大值的最优解只在C 处,则a 的范围为 . 例3:已知()2,f x ax c =-且()()411,125f f -≤≤--≤≤,求()3f 的取值范围.

7.4 简单的线性规划第三课时学案 一、知识点: 1、目标函数、可行域、可行解、最优解、线性规划问题: 2、实际问题: 3、整点问题: 二、应用: 例1:某工厂生产甲、乙两种产品.已知生产甲种产品1t需耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1t需耗A种矿石4t、B 种矿石4t、煤9t.每1t甲种产品的利润是600元, 每1t乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、B种矿石不超过200t、煤不超过363t.问甲、乙两种产品应各生产多少,能使利润总额达到最大?

简单的线性规划 习题含答案

线性规划教案 1.若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 2.不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为 () A、4 B、1 C、5 D、无穷大解:如图,作出可行域,△ABC的面 积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选 B 3.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥ ? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D 四、求线性目标函数中参数的取值范围 4.已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使 z=x+ay(a>0)取得最小值的最优解有无数个,则a的值 为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函 数z=x+ay(a>0)取得最小值的最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选 D 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

【全国百强校】山东省日照第一中学人教版高中数学必修五3.3简单线性规划学案

【自学】 对于题目:已知实数,x y 满足:12,x y ≤+≤11x y -≤-≤,求2x y +的取值范围. 有个同学的解法如下: 解:由已知,得不等式组:12(1) 11(2)x y x y ≤+≤ ?? -≤-≤ ? , 两个同向不等式作加法,得: 原不等式组化为 两个同向不等式作加法,得023(4)y ≤≤ 即 0 1.5y ≤≤ (5). 两个同向不等式(3)和(5)作加法,得 从而2x y +的取值范围是[0,4.5]. 思考:上题合适的解法该是怎样的呢??? 【对话】 【精讲点拨】 例1、已知2z x y =+,其中实数,x y 满足:12 11 x y x y ≤+≤??-≤-≤?,求z 的最大值和最 小值. 小结:

1、线性规划中的几个相关概念: 2、解决简单线性规划的方法: 3.解简单线性规划问题的步骤:

【对话】 【合作探究与展示分享】 例2、设2z x y =+,式中变量,x y 满足条件4335251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最小值. 变式1、在例2中将2z x y =+改为610z x y =+,求z 的最大值和最小值. 变式2、在例2中将2z x y =+改为2z x y =-,求z 的最大值和最小值. 例3、设变量,x y 满足条件1035371x y x y x -+≤?? +≤??≥? , (1) 找出,x y 均为正整数的可行解; (2) 求出目标函数53z x y =+的最大值; (3) 若,x y 均为正整数,求目标函数53z x y =+的最大值.

【评价】 【自我评价】 1. 右图中阴影部分的点满足不等式组52600 x y x y x y +≤??+≤? ?≥??≥?在这些点中,使目标函数68z x y =+取得最大值的点的坐标是______________. 2. 求函数23z x y =+的最大值,式中的,x y 满足约束条件2324700 x y x y x y +-≤ ??-≤? ?≥??≥? *3、在例2中将2z x y =+改为y z x =,求z 的最大值和最小值. *4、在例2中将2z x y =+改为2 2 z x y =+,求z 的最大值和最小值. **5.已知变量,x y 满足约束条件14 22x y x y ≤+≤?? -≤-≤? ,若目标函数 (0)z ax y a =+>其中仅在点(3,1)处取得最大值,则a 的取值范围为____________.

相关文档
最新文档