LTE终端射频测试技术分析

LTE终端射频测试技术分析
LTE终端射频测试技术分析

RF测试的基础知识

1. 什么是RF 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等) 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 4. RF仿真软件在手机设计调试中的作用是什么 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么 答:基本原则是使EMC(电磁兼容性)最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。 7. DSP和MCU各自主要完成什么样的功能二者有何区别

答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以及由此对硬件的性能要求等内容 答:可以看看和,或许有所帮助。关于TI的wireless solution,可以看看中的wireless communications. 11. 为什么GSM使用GMSK调制,而W-CDMA采用HPSK调制 答:主要是由于GSM和WCDMA标准所定。有兴趣的话,可以看一些有关数字调制的书,了解使用不同数字调制技术的利与弊。 12. 如何解决LCD model对RF的干扰 答:PCB设计过程中,可以在单个层中进行LCD布线。 13. 手机设计过程中,在新增加的功能里,基带芯片发射数据时对FM产生噪声干扰,如何解决这个问题

(完整版)射频指标测试介绍

目录 1GSM部分 (1) 1.1常用频段介绍 (1) 1.2 发射(transmitter )指标 (2) 1.2.1发射功率 (2) 122 发射频谱(Output RF spectrum) (4) 1.2.2.1调制频谱 (4) 1.2.2.2开关频谱 (5) 1.2.3 杂散(spurious emission) (5) 1.2.4 频率误差(Frequency Error) (6) 1.2.5 相位误差( Phase Error) (6) 1.2.6功率时间模板(PVT) 7 1.2 接收(receiver) 指标 (8) 1.2.1接收误码率(BER (8) 2 WCDMA (9) 2.1常用频段介绍 (9) 2.2 发射(Transmitter )指标 (9) 2.3 接收(receiver) 指标 (15) 3 CDMA2000 (15) 3.1常用频段介绍 (15) 3.2 发射(transmitter )指标 (16) 3.3 接收(receiver) 指标 (19) 4 TD-SCDMA 部分 (20) 4.1常用频段介绍 (20) 4.2 发射(transmitter )指标 (20) 4.3 接收指标( Receiver) (26) 1GS M部分 1.1常用频段介绍

1.2 发射(transmitter)指标 1.2.1发射功率 定义:发射机载波功率是指在一个突发脉冲的有用信息比特时间上内,基站传送 到手机天线或收集及其天线发射的功率的平均值。 测量目的:测量发射机的载波输出功率是否符合GSM规范的指标。如果发射功 率在相应的级别达不到指标要求,会造成很难打出电话的毛病,即离基站近时容易打出而离基站远时打出困难,往往表现出发射时总是提示用户重拨号码。如果 发射功率在相应的级别超出指标的要求,则会造成邻道干扰。 测试方法: 手机发射部分由发射信号形成电路、功率放大电路、功率控制电路三个单元组成。 GSM频段分为124个信道,功率级别为5----33dBm,即卩LEVEL5--LEVEL19共15 个级别;DCS频段分为373个信道(512----885),功率级别为0----30dBm,即LEVEL0---LEVEL15共15个级别;每个信道有15个功率等级,测试时选上、中、下三个信道对每个功率等级进行测试,每个功率等级以2dBm增减。 功率控制:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站 近时发射功率小。具体过程如下:手机中的数据存储器存放有功率级别表,当手 机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的 功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。 测试指标: DCS1 800 Power con trol Nomi nal Output Toleranee (dB) for con diti ons

射频测量指标参数

射频指标 1)频率误差 定义:发射机的频率误差是指测得的实际频率与理论期望的频率之差。它是通过测量手机的I/Q信号并通过相位误差做线性回归,计算该回归线的斜率即可得到频率误差。频率误差是唯一要求在衰落条件下也要进行测试的发射机指标。 测试目的:通过测量发射信号的频率误差可以检验发射机调制信号的质量和频率稳定度。频率误差小,则表示频率合成器能很快地切换频率,并且产生出来的信号足够稳定。只有信号频率稳定,手机才能与基站保持同步。若频率稳定达不到要求(±0.1ppm),手机将出现信号弱甚至无信号的故障,若基准频率调节范围不够,还会出现在某一地方可以通话但在另一地方不能正常通话的故障。 条件参数: GSM频段选1、62、124三个信道,功率级别选最大LEVEL5;DCS频段选512、698、885三个信道,功率级别选最大LEVEL0进行测试。GSM频段的频率误差范围为+90HZ ——-90HZ,频率误差小于40HZ时为最好,大于40HZ小于60HZ时为良好,大于60HZ 小于90HZ时为一般,大于90HZ时为不合格;DCS频段的频率误差范围为+180HZ——-180HZ,频率误差小于80HZ时为最好,大于80HZ小于100HZ时为良好,大于100HZ小于180HZ时为一般,大于180HZ时为不合格。 2)相位误差 定义:发射机的相位误差是指测得的实际相位与理论期望的相位之差。理论上的相位轨迹可根据一个已知的伪随机比特流通过0.3 GMSK脉冲成形滤波器得到。相位轨迹可看作与载波相位相比较的相位变化曲线。连续的1将引起连续的90度相位的递减,而连续的0将引起连续的90度相位的递增。 峰值相位误差表示的是单个抽样点相位误差中最恶略的情况,而均方根误差表示的是所有点相位误差的恶略程度,是一个整体性的衡量。 测试目的:通过测试相位误差了解手机发射通路的信号调制准确度及其噪声特性。可以看出调制器是否正常工作,功率放大器是否产生失真,相位误差的大小显示了I、Q数位类比转换器和高斯滤波器性能的好坏。发射机的调制信号质量必须保持一定的指标,才能当存在着各种外界干扰源时保持无线链路上的低误码率。 测试方法:在业务信道(TCH)激活PHASE ERROR即可观测到相位误差值。测试时通过综合测试仪MU200产生比特流进行调制后送给手机,并指令手机处于环回模式。然后去捕捉手机的一个突发信号,对其进行均匀相位抽样,抽样周期为调制信号周期的1/2,最后根据抽样的正常突发中的样点计算出相位轨迹和误差。 测试条件:GSM频段选1、62、124三个频道,功率级别选最大LEVEL5;DCS频段选512、

射频基本知识

引言 在进入射频测试前,让我们回顾一下单相交流电的基本知识。 一、单相交流电的产生 在一组线圈中,放一能旋转的磁铁。当磁铁匀速旋转时,线圈内的磁通一会儿大一会 儿小,一会儿正向一会儿反向,也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等幅的交流电压,这就是一个原理示意性交流发电机。若磁铁每秒旋转50周,则电压的变化必然也是50周。每秒的周期数称为频率f,其单位为赫芝Hz。103Hz=千赫kHz,,106Hz=兆赫MHz,109Hz=吉赫GHz。b5E2RGbCAP 在示波器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。即转了2π弪,每秒旋转了f个2π,称2πf为ω<常称角频率,实质为角速率)。则单相交流电的表达式可写成:p1EanqFDPw V=Vm=Vm 式中Vm(电压最大值>=Ve(有效值或Vr.m.s.>。t为时间<秒),为初相。 二、对相位的理解 1、由电压产生的角度来看 ·设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴<磁铁的磁极)

位置完全相同时,两者发出的电压是同相的。而当两者转轴错开角度时,用双线示波器来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。相位领先为正,滞后为负。DXDiTa9E3d ·假如在单相发电机上再加一组线圈,两组线圈互成90°<也即两电压之间相位差 90°),即可形成两相电机。假如用三组线圈互成120°<即三电压之间,相位各差120°)即可形成三相电机。两相电机常用于控制系统,三相电机常用于工业系统。RTCrpUDGiT 2、同频信号<电压)之间的叠加 当两个电压同相时,两者会相加;而反相时,两者会抵消。也就是说两者之间为复数运算关系。若用方位平面来表示,也就是矢量关系。矢量的模值<幅值)为标量,矢量的角度为相位。5PCzVD7HxA 虽然人们关心的是幅值,但运算却必须采用矢量。 虽然一般希望信号相加,但作匹配时,却要将反射信号抵消。 三、射频 交流电的频率为50Hz时,称为工频。20Hz到20kHz为音频,20kHz以上为超声波 ,当频率高到100 kHz以上时,交流电的辐射效应显著增强;因此100 kHz以上的频率泛称射频。有时会以3 GHz为界,以上称为微波。常用频段划分见附录。jLBHrnAILg

1第1章 射频基本知识

引言在进入射频测试前,让我们回顾一下单相交流电的基本知识。 一、单相交流电的产生在一组线圈中,放一能旋转的磁铁。当磁铁匀 速旋转时,线圈内的磁通一会儿大一会儿小,一会儿正向一会儿反向, 也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等 幅的交流电压,这就是一个原理示意性交流发电机。若磁铁每秒旋转50 周,3则电压的变化必然也是50周。每秒的周期数称为频率f,其单位为 赫芝Hz。10Hz=千赫69kHz,,10Hz=兆赫MHz,10Hz=吉赫GHz。在示波 器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。即转 了2π弪,每秒旋转了f个2π,称2πf为ω(常称角频率,实质为角速 ft )sin(t ) 率)。则单相交流电的表达式可写成: sin(2 V=V=V mm00 2式中V(电压最大值)=V(有效值或V)。t为时间(秒),为初相。 mer.m.s.0二、对相位的理解1、由电压产生的角度来看 2设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴(磁铁的磁极) 位置完全相同时,两者发出的电压是同相的。而当两者转轴错开角度时,用双线示波器0来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。相位领先为正,滞后为负。 2假如在单相发电机上再加一组线圈,两组线圈互成90°(也即两电压之间相位差90°),即可形成两相电机。假如用三组线圈互成120°(即三电压之间,相位各差120°)即可形成三相电机。两相电机常用于控制系统,三相电机常用于工业系统。 2、同频信号(电压)之间的叠加当两个电压同相时,两者会相加;而反相时,两者会抵消。也就是说两者之间为复数运算关系。若用方位平面来表示,也就是矢量关系。矢量的模值(幅值)为标

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3G Hz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(LO) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstop10格的频率差,例如:Span=1MHz,则100kHz/div.

RF测试原理小结

RF 测试原理小结 本文旨在阐述RF 测试项目的有关原理性知识,基本不涉及具体的测试方法,测试方法请参照相关文档。 首先学习射频离不开天线,要对天线知识有所了解。 天线(antenna )是RF 系统中最关键的零件,发送的时候它负责将线路中的电信号转化为电波发射出去,接收的时候它负责将电波转化为电信号。根据洛伦兹定理,变化的电场会产生磁场,因施加在天线上的电流不同,就会产生电波;当无线电波遇到天线时,电子就会流入天线导体而产生电流。 天线分为全向型和定向型两种。全向型天线收发所有方向的信号,定向性天线只收发天线所指向方向上的信号,可以将能量传送到更远的距离,信号也比较清楚,实际上根本没有真正意义上的全向天线。 天线的长度取决于频率:频率越高,天线越短。根据经验,一般的简易型天线为其波长的一般。波长和频率的计算公式是:8(310/)c c m s f λ= =?其中,例如使用830KHz 的调幅广播电台,其电波的波长约为360米,因此必须使用约180米的大型天线。当然天线工程师可以运用一些技巧,进一步缩短天线,甚至可以做到随身携带的程度。 一般在天线的前端还会有个功率放大器PA(power amplifier),其实将功率提升到做大功率后发送。 然后具体了解RF 测试中各个参数的含义及其影响因素。 一、调制带宽: 调制子载波占用的频带宽度,有20MHz (11b/g )和40MHz (11n )的,我们从频谱模板的波形中也可以看出来。 二、EVM :Error Vector Magnitude ,误差矢量幅度: 其是调制后的射频信号与理想原始信号的矢量差,反映了调制的精度,是衡量信号质量的重要参数。原理上是接收到的码片信号,经过解调、解扰、解扩之后,再重复一遍发射端点的过程,即调制、加扰、扩频,然后再拿这个码矢量信号与接收到的矢量信号做矢量差,将其做统计平均,即为EVM 值。EVM 越大,说明信号受到的干扰越大,接收到的信号质量越差;反之,干扰小,接收到的信号质量就好。 EVM 有幅度偏差、频率偏差、相位偏差之分。功率放大器的非线性失真影响幅度偏差,I/Q 信号同步影响相位偏差,本振的噪声和电源噪声影响频率偏差, 影响EVM 因素主要有功率放大器的非线性失真、噪声、以及供电环境。 EVM 标准有IEEE 标准和一些国家电信的标准,下面列出IEEE 的标准供参考。

射频各项测试指标.

双频段GSM/DCS移动电话射频指标分析 2003-7-14 [摘要]本文对GSM移动电话的射频指标进行了分析,并讨论了改进办法。其中一些测试及提高射频指标的方法是从实践经验中总结出来的,有一定的参考价值。第一部分对各射频指标作了简要介绍。第二部分介绍了射频指标的测试方法。第三部分介绍了一些提高射频指标的设计和改进方法。 1 射频(RF)指标的定义和要求 1.1 接收灵敏度(Rx sensitivity) (1)定义 接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来测量接收灵敏度。 残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。 (2)技术要求 ●对于GSM900MHz频段 接收灵敏度要求:当RF输入电平为-102dBm(分贝)时,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09~-l07dBm,则接收灵敏度为优;若RF输入电平为-l07~l05dBm,则接收灵敏度为良好;若RF输入电平为 -105~-l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。 ●对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l08~-105dBm,则接收灵敏度为优;若RF输入电平为-105~ -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03~ -100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。 1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS (1)定义 测量发射信号的频率和相位误差是检验发信机调制信号的质量。GSM调制方案是高斯最小频移键控(GMSK),归一化带宽为BT=0.3。 发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。理论上的相位轨迹可根据一个己知的伪随机比特流通过GMSK脉冲成形滤波器得到。

推荐-WCDMA射频测试经验总结 精品

WCDMA主要射频指标测试经验总结 本文档列写了在使用Agilent 8960进行WCDMA射频各项测试的简要测试方法及步骤,注意事项和相关归纳总结,敬请参考。 一、测试前的设置 1.选择前面板上的“CALL SETUP” 2.按下F1键,把Operating Mode选择成“Cell Off” NOTE: 若不在CELL OFF状态下,有些参数无法设置

3.按More键,把页面切换到第二页,共四页。“2 of 4”4.按下F2,设置Cell Parameter --- 设置“BCCH Update Page” 到“Auto”状态 --- 设置“ATT Flag State” 到“set”状态 --- 按下F6,关闭当前窗口

5、按下F4设置“Uplink Parameters” --- 设置“Maximum Uplink Transmit Power Level”到24dBm --- 按下F6,关闭当前窗口 6、按下前面板左边的“More”切换页面到第一页,“1 of 4” 7、按下F1,设置“Operating Mode”到“Active Cell” 8、按下F7,设置“Cell Power”到-93dBm/3.84MHz 9、手机开机,等待手机registration 注:1、“security settings” 要依据UE的要求,通常情况应设置为“Auth.&Int”

NOTE: 使用小白卡,在8960关闭鉴全的情况下,依然可以注册,并且模块本身也应使用QPST关闭鉴全,若默认已关闭无需操作。 2、假如UE用的是Qualm chipset,就必须把“RLC Reestablish”设置成“Off”

RF的一些基本知识

1. 什么是RF? 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)? 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高? 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 4. RF仿真软件在手机设计调试中的作用是什么? 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么? 答:基本原则是使EMC最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意? 答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。 7. DSP和MCU各自主要完成什么样的功能?二者有何区别? 答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么? 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点? 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以及由此 对硬件的性能要求等内容? 答:可以看看https://www.360docs.net/doc/d314050415.html,/和https://www.360docs.net/doc/d314050415.html,,或许有所帮助。关于TI的wireless solution,可以看看https://www.360docs.net/doc/d314050415.html,/中的wireless communications. 11. 为什么GSM使用GMSK调制,而W-CDMA采用HPSK调制? 答:主要是由于GSM和WCDMA标准所定。有兴趣的话,可以看一些有关数字调制的书,了解使用不同数字调制技术的利与弊。

射频基本知识

引 言 在进入射频测试前,让我们回顾一下单相交流电的基本知识。 一、 单相交流电的产生 在一组线圈中,放一能旋转的磁铁。当磁铁匀速旋转时,线圈内的磁通一会儿大一会 儿小,一会儿正向一会儿反向,也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等幅的交流电压,这就是一个原理示意性交流发电机。若磁铁每秒旋转50周,则电压的变化必然也是50周。每秒的周期数称为频率f ,其单位为赫芝Hz 。103Hz=千赫kHz,,106Hz=兆赫MHz ,109Hz=吉赫GHz 。 在示波器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。即转了2π弪,每秒旋转了f 个2π,称2πf 为ω(常称角频率,实质为角速率)。则单相交流电的表达式可写成: V=V m )sin(0?ω+t =V m )2sin(0?π+ft 式中V m (电压最大值)=2V e (有效值或V r.m.s.)。t 为时间(秒),0?为初相。 二、 对相位的理解 1、 由电压产生的角度来看 2设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴(磁铁的磁极) 位置完全相同时,两者发出的电压是同相的。而当两者转轴错开0?角度时,用双线示波器来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。相位领先为正,滞后为负。 2假如在单相发电机上再加一组线圈,两组线圈互成90°(也即两电压之间相位差 90°),即可形成两相电机。假如用三组线圈互成120°(即三电压之间,相位各差120°)即可形成三相电机。两相电机常用于控制系统,三相电机常用于工业系统。 2、 同频信号(电压)之间的叠加 当两个电压同相时,两者会相加;而反相时,两者会抵消。也就是说两者之间为复数运算关系。若用方位平面来表示,也就是矢量关系。矢量的模值(幅值)为标量,矢量的角度为相位。 虽然人们关心的是幅值,但运算却必须采用矢量。 虽然一般希望信号相加,但作匹配时,却要将反射信号抵消。 三、 射频 交流电的频率为50Hz 时,称为工频。20Hz 到20kHz 为音频,20kHz 以上为超声波 ,当频率高到100 kHz 以上时,交流电的辐射效应显著增强;因此100 kHz 以上的频率泛称射频。有时会以3 GHz 为界,以上称为微波。常用频段划分见附录。

常用射频指标测试大纲

常用射频指标 测试大纲 通信对抗 2015/10/30 Ver. 1.0

目录 目录1 1.1dB压缩点(P1dB) (1) 1.1基本概念 (1) 1.2测量方法 (1) 2.三阶交调(IP3) (2) 2.1基本概念 (2) 2.2测量方法 (3) 3.三阶互调(IM3) (4) 3.1基本概念 (4) 3.2测量方法 (5) 3.2.1直接测量 (5) 3.2.2间接法 (5) 4.噪声系数(NF) (5) 4.1基本概念 (5) 4.2测量方法 (6) 4.2.1使用噪声系数测试仪 (6) 4.2.2增益法 (6) 4.2.3Y因数法 (8) 4.2.4测量方法小结 (10) 5.灵敏度 (10) 5.1基本概念 (10) 5.2测量方法 (11) 5.2.1间接法-噪声系数法测量 (11) 5.2.2直接法-临界灵敏度测量 (11) 6.镜频抑制 (11) 6.1基本概念 (11) 6.2测量方法 (12) 7.相位噪声 (13) 7.1基本概念 (13) 7.2测量方法 (13)

7.2.1基于频谱仪的相位噪声测试方法 (13)

1.1dB压缩点(P1dB) 1.1基本概念 射频电路(系统)有一个线性动态范围,在这个范围内,射频电路(系统)的输出功率随输入功率线性增加,即输出功率P out– P in = G,输出信号的功率步进等于输入信号的功率步进ΔP out = ΔP in,这种射频电路(系统)称之为线性射频电路(系统),这两个功率之比就是功率增益G。 随着输入功率的继续增大,射频电路(系统)进入非线性区,其输出功率不再随输入功率的增加而线性增加,也就是说,其输出功率低于小信号增益所预计的值。当输出功率满足P out– P in = G – 1时,对应的P out即为输出1dB压缩点,对应的P in即为输入1dB压缩点。 通常把增益下降到比线性增益低1dB 时的输出功率值定义为输出功率的1dB 压缩点,用P1dB表示(图1)。典型情况下,当功率超过P1dB时,增益将迅速下降并达到一个最大的或完全饱和的输出功率,其值比P1dB大3dB~4dB。 1dB压缩点愈大,说明射频电路(系统)线性动态范围愈大。 图 1 输出功率随输入功率的变化曲线 1.2测量方法 频谱仪直接测量。 1,DUT的输入端连接信号源,输出端连接频谱仪; 2,将输入信号的功率由小至大缓慢增加,并记录输入功率、输出功率极其

基本射频和天线基础知识

基本射频知识

培训目录 移动通信频谱划分 射频几个基本参数 无源器件基本知识

电信和广播电视的工作频带分配

移动通信频率 FDMA 30 kHz Frequency Time 1 2 3 1 TDMA 30 kHz Frequency Time 1.23 MHz Frequency Time CDMA 多址方式

当前中国2G与3G频谱分配 DCS1800 Rx 1710 –1785 DCS1800 Tx 1805 –1880 8 2 5 - 8 3 5 8 3 5 - 8 3 9 8 7 - 8 8 8 8 - 8 8 6 8 9 - 9 3 9 3 - 9 9 9 3 1 - 9 3 5 9 3 5 - 9 4 8 9 4 8 - 9 5 4 9 5 4 - 9 6 0 8 3 9 - 8 4 5 8 8 6 - 8 9 9 9 - 9 1 5 R e s e r v e d TACS-C (Rx) AMPS-A (Rx) 825-835 AMPS-B (Rx) 835-845 TACS-A (Rx) 890-897.5 TACS-B (Rx) 897.5-905 GSM (Rx) 905-915 TACS-A (Tx) 935-942.5 TACS-B (Tx) 942.5-950 GSM (Tx) 950-960 TACS-C (Tx) 924-935 联通 CDMA CT2 (空)中移动GSM 联通 GSM M O R G S M - R 中移动GSM联通 GSM AMPS-A (Tx) 870-880 AMPS-B (Tx) 880-890 M O R G S M - R 联通 CDMA r e s e r v e 保 留 中移动联通 信产部 尚未发放 美国标准中国电信 ITU标准 TDD 频谱 C M C C D C S 1 8 T D D T D - S C D M A DCS 1800 未发放联 通 D C S 1 8 DCS 1800 未发放联 通 D C S 1 8 中 移 动 D C S 1 8 SCD MA 中国 电信 CDM A WLL PCS1900 Rx 1850 -1910 PCS1900 Tx 1930 -1990 中 移 动 D C S 1 8 I T U M S S 1 9 8 - 2 1 PHS 1 8 5 - 1 8 2 1 9 - 1 9 1 1 8 5 - 1 8 6 5 1 8 6 5 - 1 8 8 1 8 8 - 1 9 1 9 4 5 - 1 9 6 1 9 6 - 1 9 8 1 7 1 - 1 7 2 5 1 7 4 5 - 1 7 5 5 1 8 4 - 1 8 5 1 7 5 5 - 1 7 8 5 1 7 8 5 - 1 8 5 2 1 - 2 2 5 1 9 8 - 2 1 1 9 1 - 1 9 2 CDMA PCS ITU IMT-2000 Rx 1920 -1980 中国 电信 CDM A WLL 2 1 1 - 2 1 7 2 3 - 2 4 ITU IMT-2000 Tx 2110 -2170 FDD 补充频段 TDD 主要 FDD 补充频段 FDD 主要频段 FDD 主要频段 TDD 主要频段 TDD 补充 信产部 3G规划

GSM射频指标详解

1 射频(RF)指标的定义和要求 1.1 接收灵敏度(Rx sensitivity) (1)定义 接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。衡量收信机误码性能主 要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来测量接收灵敏 度。 残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。 (2)技术要求 ●对于GSM900MHz频段 接收灵敏度要求:当RF输入电平为一102dBm时,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的 测试结果来看:当RBER=2%时,若RF输入电平为-l09一l07dBm,则接收灵敏度为优;若RF输入电平为-l07一l05dBm,则接 收灵敏度为良好;若RF输入电平为-105一l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合 格。 ●对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测 试结果来看:当RBER=2%时,若RF输入电平为一l08一-105dBm,则接收灵敏度为优;若RF输入电平为一105-- -l03dBm, 则接收灵敏度为良好;若RF输入电平为-l03一-100dBm,则接收灵敏度为一般;若RF 输入电平为>-l00 dB mm,则接收灵 敏度为不合格。 1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS (1)定义 测量发射信号的频率和相位误差是检验发信机调制信号的质量。GSM调制方案是高斯最小移频键控(GMSK),归一化带宽 为BT=0.3。 发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。理论上的相位轨迹可根据一个己 知的伪随机比特流通过GMSK脉冲成形滤波器得到。 频率误差定义为考虑了调制和相位误差的影响以后,发射信号的频率与该绝对射频频道号(ARFCH)对应的标称频率之间 的差。它通过相应误差做线性回归,计算该回归线的斜率即可得到频率误差(因为ω=θ/t)相位误差峰值Pepeak是离该回 归线最远的值。相位误差有效值PeRMS即相位误差均方根值,是所有点的相位误差和其线性回归之间的差的均方根值。 (2)技术要求 ●对于GSM900MHz频段 ①频率误差Fe 若Fe<40Hz,则频率误差为优;

射频基础二级工程师考试题及答案

射频基础二级工程师考试题及答案 射频基础考试题(共100分) 分支机构名称:员工姓名:得分: 一.填空题(共40分)< 每题2分> 1.移动通信射频指的是VHF(米)波和UHF(分米)波波段; 2.1G指的TACS 制式,2G指的GSM900/1800 和CDMA800 制式; 3G指的TD-SCDMA制式、WCDMA制式和CDMA2000制式; 3.GSM手机发射功率2W为33 dBm,基站输出功率46dBm为40W; 4.GSM规范中,最大时间提前量TA=63bit,推算小区覆盖半径为35Km; 5.G网设计中选用BCCH信道作为发射参考功率,通常该信道不进行功率控制; 6.GSM中射频调制采用GMSK调制,EDGE采用8PSK调制 7.移动通信电波在自由空间中传播是扩散损耗,在金属表面传播由于趋肤效应会产 生热损耗; 8.两个载频f1和f2,其三阶互调产物公式为2f1-f2和2f2-f1。 9.半波偶极子天线增益2.1 dBi,.或0 dBd 10. 当基站天线增益相同时,频率越低其天线长度越长。 11.电压驻波比越大反射损耗越小。 12、GSM规范中,工程上同频干扰保护比C/I≥(12 ) 13、GSM规范中,每个TDMA定义为一个载频,每载频包含(8 )个信道,每载波间隔为(200 )KHZ。 14、GSM系统跳频有(射频跳频)(基带跳频)两种方式。 15、WCDMA载波宽度为(5)MHZ。 16、3G支持的高速运动、步行和室内环境的数据业务最高速率分别为(144Kbit/S、384 Kbit/S、2 Mbit/S )。 17、TD-SCDMA系统是一个(TDD )双工系统。 18、某设备带外杂散指标为-67 dBm/100kHz,则相当于(-64 )dBm/200kHz。 19、通信系统中采用的“先建立,后断开”的切换方式称为(软切换),“先断开,后建立” 的切换方式称为(硬切换)。 20、由于衰落具有频率、时间和空间的选择性,因此分集技术主要包括(空间分集)、(频率分集)、(时间分集)和(极化分集)。 二.选择题(共18分)< 每题2分> 1. 1dBm+(-1dBm)= C dBm。A. 0 dBm B. 2.1 dBm C. 3.1dBm 2. 电压驻波最大点对应是电流 B 。A. 最大点 B. 最小点 3. 由于导线中通过电流,周围将有磁场,表明导线存在 B 。 A. 分布电容效应 B. 分布电感效应 C. 分布电导效应

射频指标

姚方华李航广州南方高科有限公司 [摘要]本文对GSM移动电话的射频指标进行了分析,并讨论了改进办法。其中一些测试及提高射频指标的方法是从实践经验中总结出来的,有一定的参考价值。第一部分对各射频指标作了简要介绍。第二部分介绍了射频指标的测试方法。第三部分介绍了一些提高射频指标的设计和改进方法。 1 射频(RF)指标的定义和要求 1.1 接收灵敏度(Rx sensitivity) (1)定义 接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来测量接收灵敏度。 残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。 (2)技术要求 ●对于GSM900MHz频段 接收灵敏度要求:当RF输入电平为一102dBm时,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09一l07dBm,则接收灵敏度为优;若RF输入电平为-l07一l05dBm,则接收灵敏度为良好;若RF输入电平为-105一l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。 ●对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为一l08一 -105dBm,则接收灵敏度为优;若RF输入电平为一105-- -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03一 -100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。 1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS (1)定义 测量发射信号的频率和相位误差是检验发信机调制信号的质量。GSM调制方案是高斯最小移频键控(GMSK),归一化带宽为BT=0.3。 发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。理论上的相位轨迹可根据一个己知的伪随机比特流通过GMSK脉冲成形滤波器得到。 频率误差定义为考虑了调制和相位误差的影响以后,发射信号的频率与该绝对射频频道号(ARFCH)对应的标称频率之间的差。它通过相应误差做线性回归,计算该回归线的斜率即可得到频率误差(因为ω=θ/t)相位误差峰值Pepeak是离该回归线最远的值。相位误差有效值PeRMS即相位误差均方根值,是所有点的相位误差和其线性回归之间的差的均方根值。 (2)技术要求 ●对于GSM900MHz频段 ①频率误差Fe 若Fe<40Hz,则频率误差为优; 若40Hz≤Fe6≤60Hz,则频率误差为良好; 若60Hz≤Fe≤90Hz,则频率误差为一般; 若Fe>90Hz,则频率误差为不合格。 ②相位误差峰值Pepeak 若Pepeak<7de8,则相位误差峰值为优; 若7deg≤Pepeak≤l0deg,则相位误差峰值为良好; 若10deg≤Pepeak≤20deg则相位误差峰值为一般; 若Pepesk>20deg,则这项指标为不合格。 ②相位误差有效值PeRMS 若PeRMs<2.5deg,则相位误差有效值为优;

射频基础知识

第一部分射频基本概念 第一章常用概念 一、特性阻抗 特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。 在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。当不相等时则会产生反射,造成失真和功率损失。反射系数(此处指电压反射系数)可以由下式计算得出: z1 二、驻波系数 驻波系数式衡量负载匹配程度的一个指标,它在数值上等于: 由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。射频很多接口的驻波系数指标规定小于1.5。 三、信号的峰值功率 解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。峰值功率即是指以某种概率出现的尖峰的瞬态功率。通常概率取为0.1%。

四、功率的dB表示 射频信号的功率常用dBm、dBW表示,它与mW、W的换算关系如下: dBm=10logmW dBW=10logW 例如信号功率为x W,利用dBm表示时其大小为 五、噪声 噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。 六、相位噪声

相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。 例如晶体的相位噪声可以这样描述: 七、噪声系数 噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:

信道机常见电性能指标含义及其测试方法

发信机主要电性能指标: 1.载波额定功率 载波额定功率是指无调制时馈给匹配负载(天线或等效电阻)的平均功率。对于常用的调频或调相方式,载波功率不因有无调制而变化。载波功率是决定通信距离与质量的重要因数之一。在系统设计中根据工作频率、服务范围和地形条件,对发信机载波额定功率提出适当的要求。不适当地增大发射功率不仅会造成浪费,更重要的是会增加系统间的干扰,不利于频谱的有效利用。国家规定移动通信设备的功率等级分为0.5W、2W、3.5W、10W、15W、25W和50W。 2.载波频率容限 载波频率容限是指发射载波频率与其表称值之最大允许差值,它决定了对频率稳定度的要求。 在移动通信中,随着工作频率的提升和信道间隔的减小,对频率稳定度的要求也越来越高。发信机中或者直接用晶体振荡器,或者用频率合成器作频率源。频率合成器的频率稳定度也取决于它的基准晶体振荡器。不同工作频段和不同信道间隔的移动通信中对载频容限的技术要求如下表: 3.调制频偏及其限制 调制频偏是指已调制信号瞬时频率与载频的差值。它是标志发信机调制特性的性能指标,具体有以下几项。 (1)最大允许频偏:最大允许频偏是根据信道间隔所规定的,已调信号瞬时频率与标称载频的最大允许差值。不同信道间隔的额定值如下表。 (2)调制灵敏度:调制灵敏度是指发信机输出获得“额定频偏”时,其音频输入端所需音频调制信号电压(一般指1KHz)的大小。所谓“额定频偏”通常规定为最大允许频偏的60%。例如查上表:信道间隔为25KHz时的最大频偏为±

5KHz,那么额定频偏即为±3KHz。 调制灵敏度应该足够高,否则不能正常工作,但也不是越灵敏越好,否则易受外界干扰的影响而引起辐射带宽的展宽,是十分不利的。一般调制灵敏度为mV 级。当送话器的灵敏度过高时,为减小环境噪声的影响,应认为降低调制灵敏度。(3)高音频调制特性:是指当音频调制频率超过3KHz时,调制信号频偏下降的情况。通常用相对于1KHz时额定频偏的相对值表示。 按技术要求是,在3-6KHz之间,频偏不得超过额定值;6KHz处,频偏至少比1KHz时的值低6dB;6-20KHz之间,至少以每倍频程14dB的斜率递减。(4)剩余频偏:是指在没有外加调制信号的情况下,由噪声和电源纹波引起的射频寄生调频频偏。剩余频偏相对于额定频偏应不大于-35dB。若最大允许频偏为5KHz,则额定频偏为3KHz。剩余频偏比它低35dB约为54Hz。 (5)呼叫音频偏:当音频输入端呼叫时,已调信号的调频频偏称为呼叫音频偏,它的额定值应为最大允许频偏的70-90%。 4.音频响应 发信机音频响应是指调制音频在300-3000Hz范围内变化时,射频频偏与予加重特性的要求(通常认为每倍频程6dB提升)之间的一致程度。 5.音频非线性失真系数 音频非线性失真系数是指音频输入端加入标准测试音(调频频率为1KHz,失真系数小于1%,幅值使已调信号频偏达到额定频偏)调制时,发信机输出调频信号经解调后测得的音频各谐波成分的总有效值对整个信号的有效值之比。可用非线性失真仪测量。按技术要求通常基地台的非线性失真系数小于7%,移动台不大于10%。 6.寄生调幅 寄生调幅,是指调频发信机已调射频信号呈现的寄生调幅。它是发信机用标准音调制下测得的。通常用输出调频信号幅度变化对载波幅度的百分数表示,一般不应大于3%。 7.邻道辐射功率 邻道辐射功率是指发信机在额定调制状态下,总输出功率中落在邻道频率接收带宽内的那部分功率。邻道辐射功率是调频频谱的边带扩展。噪声和哼声所产生

相关文档
最新文档