2018年材料阅读题及答案

2018年材料阅读题及答案
2018年材料阅读题及答案

重庆中考材料阅读题分类讲练(含答案)

类型1 代数型新定义问题

例1【2017·重庆A 】对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以,F(123)=6.

(1)计算:F(243),F(617);

(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y(1≤x≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F ()

s F ()

t .当F(s)+F(t)=18时,求k 的最大值.

针对训练

1.对于一个两位正整数xy (0≤y≤x≤9,且x 、y 为正整数),我们把十位上的数与个位上的数的平方和叫做t 的“平方和数”,把十位上的数与个位上的数的平方差叫做t 的

“平方差数”.例如:对数62来说,62+22=40,62-22

=32,所以40和32就分别是62的“平方和数”与“平方差数”.

(1)75的“平方和数”是________,5可以是________的“平方差数”;若一个数的“平方和数”为10,它的“平方差数”为8,则这个数是________.

(2)求证:当x≤9,y ≤8时,t 的2倍减去t 的“平方差数”再减去99所得结果也是另一个数的“平方差数”.

(3)将数t 的十位上的数与个位上的数交换得到数t′,若t 与t 的“平方和数”之和等于t′与t′的“平方差数”之和,求t.

2.将一个三位正整数n 各数位上的数字重新排列后(含n 本身).得到新三位数abc(a <c),在所有重新排列中,当||a +c -2b 最小时,我们称abc 是n 的“调和优选数”,并

规定F(n)=b 2

-ac.例如215可以重新排列为125、152、215,因为||1+5-2×2=2,||1+2-2×5=7,||2+5-2×1=5,且2<5<7,所以125是215的“调和优选数”,

F(215)=22

-1×5=-1. (1)F(236)=________;

(2)如果在正整数n 三个数位上的数字中,有一个数是另外两个数的平均数,求证:F(n)是一个完全平方数;

(3)设三位自然数t =100x +60+y(1≤x≤9,1≤y ≤9,x ,y 为自然数),交换其个位上的数字与百位上的数字得到数t′.若t -t′=693,那么我们称t 为“和顺数”.求所有“和顺数”中F(t)的最大值.

3.进制也就是进位制,是人们规定的一种进位方法.对于任何一种进制——X 进制,就表示某一位置上的数运算时是逢X 进一位.十进制是逢十进一,十六进制是逢十六进一,二进制就是逢二进一,以此类推,X 进制就是逢X 进一.为与十进制进行区分,我们常把用X 进制表示的数a 写成(a)X .

类比于十进制,我们可以知道:X 进制表示的数(1111)X 中,右起第一位上的1表示1×X 0

第二位上的1表示1×X 1,第三位上的1表示1×X 2,第四位上的1表示1×X 3

.故(1111)X

=1×X 3+1×X 2+1×X 1+1×X 0,即:(1111)X 转化为十进制表示的数为X 3+X 2+X 1+X 0

.如:

(1111)2=1×23+1×22+1×21+1×20=15,(1111)5=1×53+1×52+1×51+1×50

=156.根据材料,完成以下问题:

(1)把下列进制表示的数转化为十进制表示的数:

(101011)2=________;(302)4=________;(257)7=________

(2)若一个五进制三位数(a4b)5与八进制三位数(ba4)8之和能被13整除(1≤a≤5,1≤b ≤5,且a 、b 均为整数),求a 的值;

(3)若一个六进制数与一个八进制数之和为666,则称这两个数互为“如意数”,试判断(mm1)6与(nn5)8是否互为“如意数”?若是,求出这两个数;若不是,说明理由.

4.我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解.并规定:F(n)=p

q .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2

>4-3,所以3×4是12的最佳分解,所以F(12)=3

4

.

(1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数. 求证:对任意一个完全平方数m ,总有F(m)=1.

(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”;

(3)在(2)所得的“吉祥数”中,求F(t)的最大值.

类型2 函数型新定义问题

例2 已知一个大于1的正整数t 可以分解成t =ac +b 2

的形式(其中a≤c,a ,b ,c 均为

正整数),在t 的所有表示结果中,当bc -ba 取得最小值时,称“ac+b 2

”是t 的“等比中项分解”,此时规定:P(t)=b +c 2(a +b ),例如:7=1×6+12=2×3+12=1×3+22

,1

×6-1×1>2×3-2×1>1×3-1×2,所以2×3+12

是7的“等比中项分解”,P(7)=23

. (1)若一个正整数q =m 2

+n 2

,其中m 、n 为正整数,则称q 为“伪完全平方数”,证明:对任意一个“伪完全平方数”q 都有Ρ(q)=1

2

.

(2)若一个两位数s =10x +y(1≤y≤x≤5,且x ,y 均为自然数),交换原数十位上的数字和个位上的数字得到的新数的两倍再加上原数的14倍,结果被8除余4,称这样的数s 为“幸福数”,求所有“幸福数”的P(s)的最大值.

针对训练

1. 如果关于x 的一元二次方程ax 2

+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法:

①方程x 2

-x -2=0是倍根方程;

②若(x -2)(mx +n)=0是倍根方程,则4m 2+5mn +n 2

=0;

③若点(p ,q)在反比例函数y =2x 的图象上,则关于x 的方程px 2

+3x +q =0是倍根方程.

其中正确的是________.(写出所有正确说法的序号)

2. 先阅读下列材料,再解答下列问题:

材料:因式分解:(x +y)2

+2(x +y)+1.

解:将“x+y”看成整体,令x +y =A ,则原式=A 2+2A +1=(A +1)2

.

再将“A”还原,得原式=(x +y +1)2

.

上述解题中用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:

(1)因式分解:1+2(x -y)+(x -y)2

=________; (2)因式分解:(a +b)(a +b -4)+4=________;

(3)证明:若n 为正整数,则式子(n +1)(n +2)(n 2

+3n)+1的值一定是某一个整数的平方.

3. 若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.

(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由;

(2)若M(t ,y 1),N(t +1,y 2),R(t +3,y 3)三点均在函数y =k

x (k 为常数,k ≠0)的图象

上,且这三点的纵坐标y 1,y 2,y 3构成“和谐三数组”,求实数t 的值;

(3)若直线y =2bx +2c(bc≠0)与x 轴交于点A(x 1,0),与抛物线y =ax 2

+3bx +3c(a≠0)交于B(x 2,y 2),C(x 3,y 3)两点.

①求证:A ,B ,C 三点的横坐标x 1,x 2,x 3构成“和谐三数组”; ②若a >2b >3c ,x 2=1,求点P(c a ,b

a )与原点O 的距离OP 的取值范围.

4.若一个整数能表示成a2+b2(a,b是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为5=22+12.再如,M=x2+2xy+2y2=(x+y)2+y2(x,y是整数),所以M也是“完美数”.

(1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”.

(2)已知S=x2+4y2+4x-12y+k(x,y是整数,k是常数),要使S为“完美数”,试求出符合条件的一个k值,并说明理由.

(3)如果数m,n都是“完美数”,试说明mn也是“完美数”.

5. 若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”P,取任意的一个“3倍点”P,到点P距离为1的点所对应的数分别记为a,b.定义:若数K=a2+b2-ab,则称数K为“尼尔数”.例如:若P所表示的数为3,则a=2,b=4,那么K=22+42-2×4=12;若P所表示的数为12,则a=11,b=13,那么K=132+112-13×11=147,所以12,147是“尼尔数”.

(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;

(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”.

类型3 整除问题

例3 我们知道,任意一个大于1的正整数n都可以进行这样的分解:n=p+q(p、q是正整数,且p≤q),在n的所有这种分解中,如果p、q两数的乘积最大,我们就称p+q 是n的最佳分解.并规定在最佳分解时:F(n)=pq.例如6可以分解成1+5或2+4或3+3,因为1×5<2×4<3×3,所以3+3是6的最佳分解,所以F(6)=3×3=9.

(1)求F(11)的值;

(2)一个正整数,由N个数字组成,若从左向右它的第一位数能被1整除,它的前两位数被2除余1,前三位数被3除余2,前四位数被4除余3,…,一直到前N位数被N除余(N-1),我们称这样的数为“多余数”.如:236的第一位数“2”能被1整除,前两位数“23”被2除余1,“236”被3除余2,则236是一个“多余数”.若把一个小于200的三位“多余数”记为t,它的各位数字之和再加1为一个完全平方数,请求出所有“多余数”中F(t)的最大值.

针对训练

1. 一个正整数,由N个数字组成,若从左向右它的第一位数可以被1整除,它的前两位数可以被2整除,前三位数可以被3整除,…,一直到前N位数可以被N整除,则这样的数叫做“精巧数”.如:123的第一位数“1”可以被1整除,前两位数“12”可以被2整除,“123”可以被3整除,则123是一个“精巧数”.

(1)若四位数123k是一个“精巧数”,求k的值;

(2)若一个三位“精巧数”2ab各位数字之和为一个完全平方数,请求出所有满足条件的三位“精巧数”.

2. 人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为1+2+3+6+9=21;51的正因数有1、3、17、51,它的真因数之和为1+3+17=21,所以称18和51为“亲和数”.数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.

(1)8的真因数之和为________;求证:一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍的差,能被7整除;

(2)一个百位上的数为4的五位“两头蛇数”能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.

3. 材料1:将分式x 2

-x +3

x +1拆分成一个整式与一个分式(分子为整数)的和的形式.

解:x 2

-x +3x +1=x (x +1)-2(x +1)+5x +1=x (x +1)x +1-2(x +1)x +1+5x +1=x -2+5x +1,

这样,分式x 2

-x +3x +1就拆分成一个整式x -2与一个分式5x +1

的和的形式.

材料2:已知一个能被11整除的个位与百位相同的三位整数100x +10y +x ,且1≤x≤4,

求y 与x 的函数关系式.

解:∵101x +10y 11=99x +11y +2x -y 11=9x +y +2x -y 11

又∵1≤x≤4,0≤y ≤9,∴-7≤2x-y≤8,还要使2x -y

11为整数,

∴2x -y =0.

(1)将分式x 2+6x -3

x -1拆分成一个整式与一个分子为整数的分式的和的形式,则结果为

___________________;

(2)已知整数x 使分式2x 2

+5x -20

x -3的值为整数,则满足条件的整数x =

_________________;

(3)已知一个六位整数20xy17能被33整除,求满足条件的x ,y 的值.

4. 在任意n(n>1且n 为整数)位正整数K 的首位后添加6得到的新数叫做K 的“顺数”,在K 的末位前添加6得到的新数叫做K 的“逆数”.若K 的“顺数”与“逆数”之差能被17整除,称K 是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324-13264=3060,3060÷17=180,所以1324是“最佳拍档数”.

(1)请根据以上方法判断31568________(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N 的值;

(2)证明:任意三位或三位以上的正整数K 的“顺数”与“逆数”之差一定能被30整除.

5. 若整数a 能被整数b 整除,则一定存在整数n ,使得a

b =n ,即a =bn.例如:若整数a

能被整数7整除,则一定存在整数n ,使得a =7n.

(1)将一个多位自然数分解为个位与个位之前的数,让个位之前的数减去个位数的两倍,若所得之差能被7整除,则原多位自然数一定能被7整除.例如:将数字1078分解为8和107,107-8×2=91,因为91能被7整除,所以1078能被7整除,请你证明任意一个三位数都满足上述规律.

(2)若将一个多位自然数分解为个位与个位之前的数,让个位之前的数加上个位数的k(k 为正整数,1≤k ≤5)倍,所得之和能被13整除,求当k 为何值时使得原多位自然数一定能被13整除.

参考答案

例1. 解:(1)F (243)=(423+342+234)÷111=9, F (617)=(167+716+671)÷111=14. (2)∵s ,t 都是“相异数”,

∴F (s )=(302+10x +230+x +100x +23)÷111=x +5, F (t )=(510+y +100y +51+105+10y )÷111=y +6,

∵F (s )+F (t )=18,∴x +5+y +6=x +y +11=18,∴x +y =7,∵1≤x ≤9,1≤y ≤9,

x ,y 都是正整数,∴?????x =1,y =6或?????x =2,y =5或?????x =3,y =4或?????x =4,y =3或?????x =5,y =2或?

????x =6,y =1.

(2)∵s 是“相异数”,∴x ≠2,x ≠3,∵t 是“相异数”,

∴y ≠1,y ≠5,∴????

?x =1,y =6或?????x =4,y =3或?????x =5,y =2.

∴???F ()s =6,F ()t =12或???F ()s =9,F ()t =9或???F ()s =10,F ()t =8.

∴k =F ()s F ()t =12或k =F ()s F ()t =1或k =F ()s F ()t =54,

∴k 的最大值为54

.

针对训练 1解:(1)74;32;31

(2)证明:令t =10x +y ,

2(10x +y )-(x 2-y 2

)-99

=20x +2y -x 2+y 2-99=(y 2+2y +1)-(x 2-20x +100)=(y +1)2-(x -10)2

∴t 的2倍减去t 的“平方差数”再减去99所得结果是另一个数的“平方差”数. (3)令t =xy ,t ′=yx ,

由题意知:10x +y +x 2+y 2=10y +x +y 2-x 2

所以9x -9y +2x 2=0,9(x -y )+2x 2

=0,

∵x -y ≥0,2x 2

≥0,∴x =y =0. 故t =0.

2. 解:(1)F (236)=-3

(2)证明:设这个正整数n 三个数位上的数字分别为: x ,x +y 2

,y .

∵|a +c -2b |最小时,我们称abc 是n 的“调和优选数”,∴F (n )=b 2

-ac =? ??

?

?x +y 22

xy =

x 2+y 24-xy 2=? ????x -y 22

; ∴F (n )为一个完全平方数;

(3)t =100x +60+y ,t ′=100y +60+x ,

∵t -t ′=99x -99y =693,∴99(x -y )=693,x -y =7,x =y +7, ∴1≤x ≤9,1≤y ≤9,∴1≤y +7≤9,∴1≤y ≤2, ∴?????y =1,x =8或?????y =2,x =9,

∴t =861或t =962, 当t =861时,可以重新排列为168,186,618.

∵|1+8-2×6|=3,|1+6-2×8|=9,|6+8-2×1|=12,∴168为861的“调和优选数”,

∴F (861)=6×6-1×8=28;当t =962时,可以重新排列为269,296,629,∵|2+9-2×6|=1,|2+6-2×9|=10,|6+9-2×2|=11,∴269为962的“调和优选数”,∴F (962)=6×6-2×9=18.

∴所有“和顺数”中F (t )的最大值为28.

3. 解:(1)43;50;140

(2)b +4×51+a ×52+4+a ×8+b ×82

=33a +65b +24=13(2a +5b +1)+7a +11, ∴13整除7a +11,

而1≤a ≤5,1≤b ≤5,∴18≤7a +11≤46,∴7a +11=26或39.解得a =15

7

(舍去)或4,

∴a =4.

(3)(mm 1)6+(nn 5)8

=1+6m +36m +5+8n +64n =6+42m +72n .

若互为“如意数”,则6+42m +72n =666, ∴7m +12n =110,此时m 必为偶数,

经检验,当m =2,n =8时,7m +12n =110, ∴这两个数为85和581.

4. (1)证明:对任意一个完全平方数m ,设m =a 2

(a 为正整数), ∵|a -a |=0,∴a ×a 是m 的最佳分解, ∴对任意一个完全平方数m ,总有F (m )=a a

=1.

(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=10y +x ,∵t 是“吉祥数”,

∴t ′-t =(10y +x )-(10x +y )=9(y -x )=36, ∴y =x +4,∵1≤x ≤y ≤9,x ,y 为自然数, ∴满足“吉祥数”的有15,26,37,48,59.

(3)F (15)=35,F (26)=213,F (37)=137,F (48)=68=34,F (59)=159.∵34>35>213>137>1

59

,∴

所有“吉祥数”中,F (t )的最大值是3

4

.

类型二

例2解:(1)证明:∵a ≤c ,a ,b ,c 为正整数, ∴bc -ba =b (c -a )≥0.

又q =m 2+n 2=m ·m +n 2

, 令n =b ,m =a =c ,

则此时bc -ba 最小为0,

故m ·m +n 2

是q 的“等比中项分解”,

∴P (q )=n +m 2(m +n )=1

2

.

(2)由题意,得2(10y +x )+14(10x +y )=8k +4(k 为整数), 即:142x +34y =8k +4.∴8(18x +4y )+2y -2x -4=8k , ∴2(y -x -2)是8的倍数,∴y -x -2是4的倍数. 又∵1≤y ≤x ≤5且x ,y 均为自然数, ∴-6≤y -x -2≤-2,∴y -x -2=-4, ∴x =y +2,∴s =31,42,53.

∵bc -ba =b (c -a ),且a ,b ,c 为正整数,a ≤c , ∴当b 越小,c -a 的差越小,b (c -a )越小.

∴当s =31时,31=5×6+12

,则P (31)=1+62×(5+1)=712

;当s =42时,42=2×3+

62

,则P (42)=6+32×(6+2)=916

当s =53时,53=7×7+22或53=2×2+72

则P (53)=12.∵916>712>12,∴P (s )max =9

16.

针对训练

1.②③

2. 解:(1)1+2(x -y )+(x -y )2=(x -y +1)2

(2)令A =a +b ,则原式变为A (A -4)+4=A 2-4A +4=(A -2)2

故(a +b )(a +b -4)+4=(a +b -2)2

(3)证明:(n +1)(n +2)(n 2

+3n )+1

=(n 2

+3n )[(n +1)(n +2)]+1

=(n 2+3n )(n 2

+3n +2)+1

=(n 2+3n )2+2(n 2

+3n )+1

=(n 2+3n +1)2

, ∵n 为正整数, ∴n 2

+3n +1也为正整数,

∴代数式(n +1)(n +2)(n 2

+3n )+1的值一定是某一个整数的平方.

3. 解:(1)∵1,2,3的倒数分别为1,12,13,且1>12>1

3

.

∵12+1

3≠1,∴1,2,3不可以构成“和谐三数组”.

(2)M (t ,k t ),N (t +1,k t +1),R (t +3,k t +3),且k t ,k t +1,k

t +3构成“和谐三数组”.

①若t k =t +1k +t +3k ,得2t +4=t ,得t =-4;

②若t +1k =t k +t +3k ,得2t +3=t +1,得t =-2;

③若t +3k =t k +t +1k

,得2t +1=t +3,得t =2.

综上,t 的值为-4或-2或2.

(3)①证明:∵a ,b ,c 均不为0,∴x 1,x 2,x 3都不为0,令y =2bx +2c =0,则x 1=-c

b

联立?????y =2bx +2c ,y =ax 2

+3bx +3c ,

整理得:ax 2+bx +c =0. ∵x 2+x 3=-b

a

,x 2·x 3=c a

∴1x 2+1x 3=x 2+x 3x 2·x 3=-b a ·a c =-b c =1x 1

, ∴A ,B ,C 三点的横坐标x 1,x 2,x 3构成“和谐三数组”. ②∵x 2=1,∴a +b +c =0,∴c =-a -b .

∵a >2b >3c ,∴a >2b >3(-a -b ),且a >0,整理得?

????a >2b ,

5b >-3a ,

∴-35

),

∴OP 2

=(c a )2+(b a )2=(-a -b a )2+(b a )2=2(b a +12)2+12,

令m =b a ,则-35

=2(m +12)2+12

,∵2>0,

∴当-35

有最大值1325,当m =-12

时,

OP 2有最小值1

2

当-12

有最小值12,当m =12

时,

OP 2有最大值5

2,

∴12≤OP 2<52且OP 2

≠1,∴22≤OP<102且OP≠1.

4. 解:(1)(答案不唯一)0,1,2,4,8,9均可.因为29=52+22

,所以29是“完美数”;

(2)当k =13时,S =x 2+4y 2+4x -12y +13=x 2+4x +4+4y 2-12y +9=(x +2)2

+(2y -3)2

,∵x ,y 是整数,∴x +2,2y -3也是整数,∴S 是一个“完美数”.

(3)∵m 与n 都是“完美数”,∴设m =a 2+b 2,n =c 2+d 2

(a ,b ,c ,d 都是整数),则 mn =(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2 =a 2c 2+2abcd +b 2d 2+b 2c 2-2abcd +a 2d 2

=(ac +bd )2+(bc -ad )2

. ∵a ,b ,c ,d 是整数,

∴ac +bd 与bc -ad 都是整数, ∴mn 也是“完美数”.

5. 解:(1)6不是“尼尔数”;39是“尼尔数”; 设a =3n +1,b =3n -1(其中n 为自然数), K =(3n +1)2+(3n -1)2-(3n +1)(3n -1)

=2×9n 2+2×1-(9n 2-1)=9n 2

+3, ∴所有“尼尔数”一定被9除余3.

(2)设这两个“尼尔数”分别为9m 2+3,9n 2

+3,

其中m ,n 为整数,则(9m 2+3)-(9n 2

+3)=189, m 2-n 2=21. (m +n )(m -n )=1×21或3×7. ∴?????m +n =21,m -n =1或?????m +n =7,m -n =3.解得?????m =11,n =10或?

????m =5,n =2. 当m =11,n =10时,9m 2+3=9×112

+3=1092, 9n 2+3=9×102

+3=903.

当m =5,n =2时,9m 2+3=9×52

+3=228, 9n 2+3=9×22

+3=39.

答:这两个“尼尔数”分别是1092和903或228和39.

类型3.整除问题

例3. 解:(1)11=1+10=2+9=3+8=4+7=5+6, 且1×10<2×9<3×8<4×7<5×6,所以F (11)=5×6=30. (2)设此数为1bc ,由题可得

10+b =2m +1①,由①得:10+b 为奇数,所以b 为奇数; 100+10b +c =3n +2②,由②得:1+b +c +1是3的倍数;

1+b +c +1=k 2

③.(其中m ,n ,k 为整数)

又因为1≤b ≤9,1≤c ≤9,所以4≤1+b +c +1≤20, 所以1+b +c +1只能等于9,即b +c =7. 所以当b =1时,c =6,此数为116. 当b =3时,c =4,此数为134; 当b =5时,c =2,此数为152; 当b =7时,c =0,此数为170; 当b =9时,舍去;

所以F (t )max =F (170)=85×85=7225.

针对训练

1. 解:(1)∵四位数123k 是一个“精巧数”, ∴1230+k 是4的倍数; 即1230+k =4n ,

当n =308时,k =2;当n =309时,k =6, ∴k =2或6;

(2)∵2ab 是“精巧数”,∴a 为偶数,且2+a +b 是3的倍数, ∵a <10,b <10,∴2+a +b <22, ∵各位数字之和为一个完全平方数,

∴2+a +b =32

=9,

∴当a =0时,b =7;当a =2时,b =5;当a =4时,b =3;当a =6时,b =1, ∴所有满足条件的三位“精巧数”有:207,225,243,261.

2. 解:(1)证明:设这个四位“两头蛇数”为1ab 1,由题意,得 1ab 1-3ab =1001+100a +10b -30a -3b =1001+70a +7b =7(143+10a +b ).

∵a 、b 为整数,∴143+10a +b 为整数,

∴一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍能被7整除. (2)∵16的真因数有:1,2,4,8,∴1+2+4+8=15. ∵15=1+3+11,∴16的“亲和数”为33.

设这个五位“两头蛇数”为1x 4y 1,由题意,得1x 4y 1

33

为整数,

∴315+30x +10x +10y +6

33

为整数,故10x +10y +6=66,

∴x +y =6.∵0≤x ≤9,0≤y ≤9,且x ,y 为整数,x

????x =2,y =4, ∴这个五位“两头蛇数”为:10461或11451或12441.

3. 解:(3)20xy 1733=200017+100xy 33=6061+3xy +xy +4

33

故xy +4为33的倍数,因为10≤xy ≤99,所以14≤xy +4≤103,即xy +4=33,66,99, 所以xy =29,62,95,即???

??x =2,y =9

或???

??x =6,y =2

或???

??x =9,y =5.

4. 解:(1)是;

设N =5xy (8-y ),其中0≤y ≤x ≤9,y ≤8,x ,y 为整数,

则N 的“顺数”为:56xy (8-y ),N 的“逆数”为:5xy 6(8-y ),

由题意,得56xy (8-y )-5xy 6(8-y )

17

为整数,

7+x -5y

17

为整数,∵0≤y ≤x ≤9,y ≤8,, ∴-33≤7+x -5y ≤16,∴7+x -5y =-17或0,

解得?????x =6,y =6或?????x =3,y =2或?

????x =8,y =3.∴N 的值为5835,5326,5662.

(2)证明:设正整数K =xAy ,其中A 为m 位正整数,m ≥1,1≤x ≤9,0≤y ≤9,x ,y 为整数,

则K 的“顺数”为:x 6Ay =10m +2x +6×10m +1

+10A +y , K 的“逆数”为:xA 6y =10m +2x +100A +60+y , x 6Ay -xA 6y =60(10m -1)-90A ,

∴x 6Ay -xA 6y 能被30整除,即结论成立.

5. 解:(1)证明:设某三位数百位、十位、个位上的数字分别是x 、y 、z , 则原三位数为:100x +10y +z ,

根据题意,存在整数n ,使得10x +y -2z =7n , ∴10x +y =2z +7n ,

∴100x +10y +z =10(10x +y )+z =10(2z +7n )+z =21z +70n , ∴100x +10y +z 7=21z +70n 7

=3z +10n ,

∵z 、n 都为整数,∴(3z +10n )为整数, ∴原数能被7整除.

(2)设将一个多位自然数按题意分解后得到的个位数是B ,个位之前的数是A ,则原数为(10A +B ).

根据题意,存在整数m ,使得A =13m -kB ,

∴10A +B =10(13m -kB )+B =130m +(1-10k )B =130m -13kB +(1+3k )B , ∴10A +B 13=130m -13kB +(1+3k )B 13=10m -kB +1+3k 13B ,

∵k 为正整数,1≤k ≤5,∴k =1或2或3或4或5, ∵1+3×113=413,1+3×213=713,1+3×313=1013,1+3×413=1,1+3×513=1613.又∵m ,B 为整

数,

∴当k =4时,10m -kB +1+3k

13

B 为整数,

此时原多位自然数能被13整除.

相关文档
最新文档